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Abstract: Canonical correlation analysis has been widely used in the literature to

identify the underlying structure of a multivariate linear time series. Most of the

studies assume that the innovations to the multivariate system are Gaussian. On

the other hand, there are many applications in which the normality assumption is

either questionable or clearly inadequate. For example, most empirical time series

in business and finance exhibit conditional heteroscedasticity and have high excess

kurtosis. In this paper, we establish some asymptotic results for canonical corre-

lation analysis of multivariate linear time series when the data possess conditional

heteroscedasticity. We show that for correct identification of a multivariate time

series model, it is essential to use a modification, which we prescribe, to a commonly

used test statistic for testing zero canonical correlations. We also use simulation

to study the efficacy of the modification, and apply the modified test statistics to

analyze daily log returns of three assets.

Key words and phrases: Canonical correlation, Central Limit Theorem, Hankel
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1. Introduction

Many statistical applications involve analysis of multivariate time series data,

and dynamic linear vector models are often used to model the underlying struc-

ture of the series. The models used include the state-space model and the vector

autoregressive moving-average (VARMA) model. In building such models, an an-

alyst often encounters the problems of “curse of dimensionality” and “explosion

in the number of parameters”. In addition, use of un-constrained dynamic linear

models may encounter the difficulty of “identifiability”, such as the existence

of exchangeable models and redundant parameters discussed in Tiao and Tsay

(1989). To overcome the difficulties, various methods of structural specification

have been proposed in the literature. Two useful methods to achieve structural

simplification of a linear vector process are Kronecker indexes and scalar com-

ponent models; see Hannan and Deistler (1988) and Tiao and Tsay (1989). For

both methods, canonical correlation analysis is often the statistical tool used to

identify the simplifying structure of the data.
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Since proposed by Hotelling (1936), canonical correlation analysis has been

widely applied in many statistical areas, especially in multivariate analysis. Time
series analysis is no exception. Box and Tiao (1977) proposed a canonical anal-

ysis of vector time series that can reveal the underlying structure of the data to

aid model interpretation. In particular, they showed that linear combinations

of several unit-root non-stationary time series can become stationary. This is
the idea of co-integration that was popular among econometricians in the 1990s

after the publication of Engle and Granger (1987). Tsay and Tiao (1985) ap-

plied canonical correlation analysis to develop the smallest canonical correlation

(SCAN) method for identifying univariate ARMA model for a stationary and/or
non-stationary time series. Tiao and Tsay (1989) introduced the concept of scalar

component models to build a parsimonious VARMA model for a given multivari-

ate time series. Again, canonical correlation analysis was used extensively to

search for scalar component models. Many other authors also used canonical
analysis in time series analysis. See, for instance, Quenouille (1957), Robin-

son (1973), Akaike (1976), Cooper and Wood (1982) and Jewell and Bloomfield

(1983).
To build a model for a k-dimensional linear process, it suffices to identify the

k Kronecker indexes or k linearly independent scalar component models, because

we can use such information to identify those parameters that require estimation

and those that can be set to zero within a dynamic linear vector model. Sim-
ply put, the Kronecker indexes and scalar component models can overcome the

difficulties of curse of dimensionality, parameter explosion, exchangeable models,

and redundant parameters in modeling a linear vector time series. For simplicity,

we consider the problem of specifying Kronecker indexes in this paper. The is-
sue discussed, however, is equally applicable to specification of scalar component

models.

The method of determining Kronecker indexes of a linear vector process

with Gaussian innovations has been studied by Akaike (1976), Cooper and Wood
(1982) and Tsay (1989a, 1991), among others. These studies show that canonical

correlation analysis is useful in specifying the Kronecker indexes under normality.

On the other hand, the assumption of Gaussian innovations is questionable in

many applications, especially in analysis of economic and financial data that often
exhibit conditional heteroscedasticity. See, for instance, the summary statistics

of asset returns in Tsay (2002, Chap.1). In the literature, a simple approach

to model conditional heteroscedasticity is to apply the generalized autoregres-

sive conditional heteroscedastic (GARCH) model of Engle (1982) and Bollerslev
(1986). We adopt such a model for the innovation series of multivariate time

series data.

In this paper, we continue to employ canonical analysis in multivariate time

series. However, we focus on statistical inference concerning canonical correlation
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coefficients when the distribution of the innovations is not Gaussian. Our main

objective is to identify a vector model with structural specification for a given

time series that exhibits conditional heteroscedasticity and has high kurtosis.

Specifically, we study canonical correlation analysis when the innovations of the

vector time series follow a multivariate GARCH model. In other words, we

consider the problem of specifying Kronecker indexes of a vector linear time

series when the innovations follow a GARCH model. We provide theoretical

justifications for using the analysis and propose a modified test statistic for testing

zero canonical correlation. We use simulations to investigate the performance

of the proposed analysis in the finite sample case and apply the analysis to a

financial vector time series.

1.1. Preliminaries

Based on the Wold decomposition, a k-dimensional stationary time series

Zt = (z1t, z2t, . . . , zkt)
′ can be written as

Zt = µ+
∞
∑

i=0

ψiat−i, (1)

where µ = (µ1, . . . , µk)
′ is a constant vector, ψi are k×k coefficient matrices with

ψ0 = Ik being the identity matrix, and {at = (a1t, . . . , akt)
′} is a sequence of

k-dimensional uncorrelated random vectors with mean zero and positive-definite

covariance matrix Σ. That is, E(at) = 0, E(ata
′
t−i) = 0 if i 6= 0 and E(ata

′
t) =

Σ. The at process is referred to as the innovation series of Z t. If
∑∞

i=0 ‖ψi‖ <∞,

then Zt is (asymptotically) weakly stationary, where ‖A‖ is a matrix norm, e.g.,

‖A‖ =
√

trace(AA′). Often one further assumes that at is Gaussian. In this

paper, we assume that

sup
i,t

E(|ait|η|Ft−1) <∞ almost surely for some η > 2, (2)

where Ft−1 = σ{at−1,at−2, . . .} denotes information available at time t − 1.

Writing ψ(B) =
∑∞

i=0ψiB
i, where B is the backshift operator such that BZ t =

Zt−1, then Zt = µ + ψ(B)at. If ψ(B) is rational, then Z t has a VARMA

representation

Φ(B)(Z t − µ) = Θ(B)at, (3)

where Φ(B) = I − ∑p
i=1 ΦiB

i and Θ(B) = I − ∑q
j=1 ΘjB

j are two matrix

polynomials of order p and q, respectively, and have no common left factors. To

ensure identifiability, further conditions are required such as rank[Φp : Θq] =

dim(Zt). See Dunsmuir and Hannan (1976) for more details. The stationarity

condition of Z t is equivalent to that all zeros of the polynomial |Φ(B)| are outside
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the unit circle. The matrix polynomials of the model are related by ψ(B) =

[Φ(B)]−1Θ(B).

The number of parameters of the VARMA model in (3) could reach (p +

q)k2 + k + k(k + 1)/2 if no constraint is applied. This could make parameter

estimation unnecessarily difficult. Some procedures were proposed to reduce the

number of parameters in fitting VARMA(p, q) models, e.g., Koreisha and Pukkila

(1987). On the other hand, several methods are available in the literature that

can simplify the use of VARMA models when the innovations {at} are Gaussian.

For instance, specification of Kronecker indexes of a Gaussian vector time series

can lead to a parsimonious parametrization of VARMA representation, see Tsay

(1989b).

In many situations, the innovational process at has conditional heteroscedas-

ticity. In the univariate case, Bollerslev(1986) proposed a GARCH(r1, r2) model

to handle conditional heteroscedasticity. The model can be written as

at =
√
gtεt, gt = α0 +

r1
∑

i=1

αia
2
t−i +

r2
∑

j=1

βjgt−j , (4)

where α0 > 0, αi ≥ 0, βj ≥ 0, and {εt} is a sequence of independent and

identically distributed random variables with mean zero and variance 1. It is well

known that at is asymptotically second order stationary if
∑r1

i=1 αi +
∑r2

j=1 βj <

1. Generalization of the GARCH models to the multivariate case introduces

additional complexity to the modelling procedure because the covariance matrix

of at has k(k+1)/2 elements. Writing the conditional variance-covariance matrix

of at given the past information as Σt = E(ata
′
t|Ft−1), where Ft−1 is defined

in (2), we have at = Σ
1/2
t εt, where Σ

1/2
t is the symmetric square-root of the

matrix Σt and {εt} is a sequence of independent and identically distributed

random vectors with mean zero and identity covariance matrix. Often εt is

assumed to follow a multivariate normal or Student-t distribution. To ensure the

positive definiteness of Σt, several models have been proposed in the literature.

For example, consider the simple case of order (1,1). Engle and Kroner (1995)

consider the BEKK model

Σt = CC ′ +Aat−1a
′
t−1A

′ +BΣt−1B
′,

where C is a lower triangular matrix and A and B are k × k matrices. Ding

(1994) and Bollerslev, Engle and Nelson (1994) discuss the diagonal model

Σt = CC ′ +AA′ ⊗ (at−1a
′
t−1) +BB′ ⊗Σt−1,

where ⊗ stands for matrix Hadamard product (element-wise product).
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In the presence of GARCH effects, the time series Z t is no longer Gaussian.

Its innovations become a sequence of uncorrelated, but serially dependent random

vectors. It is well-known that such innovations tend to have heavy tails, see Engle

(1982) and Tsay (2002), among others. The performance of canonical correlation

analysis under such innovations has yet to be investigated. This is the main

objective of our paper.

The paper is organized as follows. Section 2 reviews Kronecker indexes and

VARMA model specification when the Kronecker indexes are known. Section 3

reviews the specification of Kronecker indexes for Gaussian linear time series.

Section 4 establishes the statistics to specify Kronecker indexes for VARMA

+GARCH process by a central limit theorem for the sample autocovariance of a

non-Gaussian process. Section 5 presents some simulation results, and Section 6

applies the analysis to a financial time series.

2. The Kronecker Index and Vector ARMA Representation

2.1. Vector ARMA model implied by Kronecker index

For simplicity, we assume that E(Z t) = µ = 0. Given a time point t, define

the past and future vectors P t and F t of the process Zt as P t = (Z ′
t−1,Z

′
t−2, . . .)

′

and F t = (Z ′
t,Z

′
t+1, . . .)

′. The Hankel Matrix of Z t is defined as H = E(F tP
′
t).

It is obvious that for a VARMA model in (3), the Hankel matrix H is of finite

rank. In fact, it can be shown that Rank(H) is finite if and only if Z t has a

VARMA model representation, see Hannan and Deistler (1988) and Tsay (1991).

The Kronecker indexes of Z t consist of a set of non-negative integers {Ki |
i = 1, . . . , k} such that for each i, Ki is the smallest non-negative integer that the

(k ×Ki + i)th row of H is either a null vector or is a linear combination of the

previous rows ofH . It turns out that
∑k

i=1Ki is the rank ofH , which is invariant

under different VARMA presentations of Z t. In fact, the set of Kronecker indexes,

{Ki}k
i=1, of a given VARMA process is invariant under various forms of model

representation. Tsay(1991) illustrates how to construct an Echelon VARMA form

for Zt using the Kronecker indexes {Ki}k
i=1. Specifically, for a stationary process

Zt with specified Kronecker index {K1, . . . ,Kk}, let p = max{Ki | i = 1, . . . , k}.
Then Zt follows a VARMA(p, p) model

Φ0Zt −
p

∑

i=1

ΦiZt−i = δ + Φ0et −
p

∑

j=1

Θjet−j , (5)

where δ is a constant vector, the ith row of Φj and Θj are zero for j > Ki, and

Φ0 is a lower triangular matrix with ones on the diagonal. Furthermore, some

elements of Φi can be set to zero based on the Kronecker indexes. A VARMA
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model in (5) provides a unique ARMA representation for Z t, see Hannan and

Deistler (1988, Theorem 2.5.1).

2.2. Specification of the Kronecker index

Under normality, canonical correlation analysis has been applied to iden-

tify the Kronecker index by Akaike (1976), Cooper and Wood (1982) and Tsay

(1989a), among others. A canonical correlation ρ ≥ 0 between two random

vectors P and F can be obtained from:

Σ−1
pp ΣpfΣ

−1
ff ΣfpV p = ρ2V p,

(6)
Σ−1

ff ΣfpΣ
−1
pp ΣpfV f = ρ2V f ,

where Σfp = Cov(F ,P ), e.g., Reinsel (1997). The variables X = V ′
fF and

Y = V ′
pP are the corresponding canonical variates. The canonical correlation

is the cross correlation between X and Y , ie., ρ = corr(X,Y ). Sample canonical

correlations are constructed from sample covariance matrices of P and F .

If the smallest canonical correlation between the future and past vectors

F t and P t is zero, then Xt = V ′
fF t is uncorrelated with P t, i.e., Cov(Xt,P t)

= V ′
fE(F tP

′
t) = V ′

fH = 0. This leads to a row dependency of the Hankel

matrix so that the analysis is directly related to the Kronecker index. Testing for

zero canonical correlation thus plays an important role in specifying Kronecker

indexes. Cooper and Wood (1982) used the traditional χ2 test to propose a

modelling procedure:

Step 1: Select a sufficiently large lag s so that the vector P t = (Z ′
t−1, . . . ,Z

′
t−s)

′

is a good approximation of the past vector, and choose an initial future

sub-vector F ∗
t = {Z1t}. If a vector AR approximation is used, then s

can be selected by an information criterion such as AIC or BIC.

Step 2: Let ρ̂ be the smallest sample canonical correlation in modulus between

F ∗
t and P t. Denote the canonical variates by Xt = V ′

fF
∗
t and Yt =

V ′
pP t, and compute the test statistics

S = −n log(1 − ρ̂2) ∼ χ2
ks−f+1, (7)

where n is the number of observations, f and ks are the dimension of

F ∗
t and P t, respectively.

Step 3: Denote the last element of F ∗
t as Zi,t+h. If H0 : ρ = 0 is not rejected,

then the Kronecker index for the ith component Zit of Zt is Ki = h. In

this case, update the future vector F t by removing Zi,t+j for j ≥ h. If

all k Kronecker indexes have been found, the procedure is terminated.

Otherwise, augment F ∗
t by adding the next available element of the

updated F t and return to Step 2.
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The asymptotic χ2 distribution of the S-statistic in (7) of Step 2 is derived

under the independence sampling assumption. Tsay (1989a) argued that the

canonical correlations cannot be treated as the cross correlation of two white-

noise series since the corresponding canonical variates are serially correlated.

Suppose F ∗
t = (Z1,t, . . . , Zi,t+h)′. The smallest sample canonical correlation ρ̂ is

the lag-(h+1) sample cross-correlation ρ̂xy(h+1) of the corresponding canonical

variates Xt = V ′
fF

∗
t and Yt = V ′

pP t, because Yt is observable at time t − 1

whereas Xt is observable at time t+ h. Under H0 : ρxy(m) = 0, the asymptotic

variance of ρ̂xy(m) is (Box and Jenkins (1976, p.736))

var[ρ̂xy(m)] ≈ n−1
∞
∑

ν=−∞

{ρxx(ν)ρyy(ν) + ρxy(m+ ν)ρyx(m− ν)}. (8)

For canonical correlation analysis, under H0 : ρ = 0, we have cov(Xt,C
′P t) = 0

∀C ∈ Rg, where g is the dimension of P t. In particular, cov(Xt,Zt−i) = 0

∀i > 0. Therefore, cov(Xt, Xt−j) = 0 for j ≥ h + 1 because Xt−j is in the

sigma-field σ{Z t−1,Zt−2, . . .}. Consequently, ρxx(j) = 0 for j ≥ h + 1 and

Xt is in σ{at, . . . , at+h} and is an MA(h) process. Using this fact and (8), the

asymptotic variance of the sample canonical correlation ρ̂ is var(ρ̂) ≈ n−1{1 +

2
∑h

ν=1 ρxx(ν)ρyy(ν)}. Tsay (1989a) proposed a modified test statistic

T = −(n− s) log(1 − ρ̂2

d̂
) ∼ χ2

ks−f+1, (9)

where d̂ = 1 + 2
∑h

ν=1 ρ̂xx(ν)ρ̂yy(ν). In (9), it is understood that d̂ = 1 if h = 0,

ρ̂xx(ν) and ρ̂yy(ν) are the lag-ν sample autocorrelations ofXt and Yt, respectively,

and n is the sample size.

Akaike (1976) adopted a criterion function to judge the significance of the

smallest canonical correlation in Step 2 of the above procedure: DIC(f) =

−n log(1 − ρ̂i
2) − 2(ks− f + 1), where f is the dimension of F ∗

t . The canonical

correlation ρ is judged to be zero if DIC(f) < 0.

The Bartlett’s formula in (8) is for independent Gaussian innovations {at}.
This is not the case when the innovations follow a GARCH(r1, r2) model. For

a weakly dependent process, traditional asymptotic variance estimates may be

misleading (Romano and Thombs (1996) and Berlinet and Franco (1997)). In the

next section, we study the property of sample auto-covariances in the presence

of GARCH effects in the innovations.

3. Sample Auto-covariance Functions of a Linear Process

We begin our study with a useful result.
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Lemma 1. Suppose {at} is a stationary GARCH(r1, r2) process of (4), with
finite fourth moment and εt symmetrically distributed, then E(aiakajal) = 0 ∀i ≤
j ≤ k ≤ l unless i = j and k = l both hold.

Proof. E(aiajakal) = 0 holds if k < l or i < j = k = l since E(al|Fl−1) =
0, E(a3

l |Fl−1) = 0. For i < j < k = l, observe E(aiaja
2
k) = E(aiajhk) =

∑(k−j)∧r1

m=1 αmE(aiajhk−m)+
∑r2

m=1 βmE(aiajhk−m). Then E(aiaja
2
k) = 0 follows

from induction by noticing that E(aiajhm) = 0 ∀m ≤ j.

Proposition 1. Suppose {at} is a GARCH(r1, r2) process with E(a2
t ) = σ2 and

E(a4
t ) <∞, and the process Xt is defined as Xt =

∑∞
i=0 ψiat−i with

∑

i |ψi| <∞,
and

∑

i iψ
2
i < ∞. Let γxx(0) = σ2 ∑∞

i=0 ψ
2
i . Then

∑∞
t=1 ‖E(X2

t − γxx(0)|ξ0)‖ <
∞, where ξ0 = σ{ε0, ε−1, . . .} and ‖Y ‖ denotes the L2-norm of a random variable
Y .

Proof. Let C > 0 be some generic constant throughout this proof. Note that

‖E(X2
t − γxx(0)|ξ0)‖ ≤ ‖

∑

i≥t

ψ2
i (a

2
t−i − σ2)‖ + ‖

∑

i6=j≥t

ψiψjat−iat−j‖

+
t−1
∑

i=0

ψ2
i ‖E(a2

t−i − σ2|ξ0)‖.

The first term of the right side satisfies ‖∑

i≥t ψ
2
i (a

2
t−i − σ2)‖ ≤ C

∑

i≥t ψ
2
i by

the triangle inequality. The second term satisfies ‖ ∑

i6=j≥t ψiψjat−iat−j‖ =
√

2
∑

i6=j≥t ψ
2
i ψ

2
jE(a2

t−ia
2
t−j) ≤ C

∑

i≥t ψ
2
i . The third term becomes

∑t−1
i=0 ψ

2
i

‖E(a2
t−i − σ2|ξ0)‖ ≤ C

∑t−1
i=0 r

t−iψ2
i because ‖E(a2

t−i − σ2|ξ0)‖ ≤ Crt−i with r ∈
(0, 1), which can be shown by using the ARMA representation of GARCH(r1, r2)
process. These inequalities show that

∑∞
t=1 ‖E(X2

t −γxx(0)|ξ0)‖ ≤ ∑∞
t=1 C(

∑

i≥t

ψ2
i +

∑t−1
i=0 r

t−iψ2
i ) = C

∑∞
i=0 ψ

2
i (i+ r/(1 − r)) <∞.

Defining the norm of a random matrix as ‖A‖ :=
√

E(trAA′), we can gen-
eralize Proposition 1 to a linear process with innovational process that follows a
multivariate GARCH model.

Proposition 2. Assume at = (a1t, . . . , amt)
′, and ait follows a univariate

GARCH(r1, r2) model and is stationary with finite fourth moment for each i =
1, . . . ,m. Consider the process Xt =

∑∞
i=0 Ψ′

iat−i, where Ψi are m-dimensional
vectors. Assume further that

∑∞
i=0 ‖Ψi‖ < ∞ and

∑∞
i=0 i‖Ψi‖2 < ∞. Let

ξ0 = σ{a0,a−1, . . .} . Then
∑∞

t=1 ‖E(X2
t − γxx(0)|ξ0)‖ < ∞, where γxx(0) =

∑∞
i=0 Ψ′

iΣΨi and Σ = E(ata
′
t) = diag(σ2

1 , . . . , σ
2
m).

Proof. Since X2
t =

∑

i,j≥0 Ψ′
iat−ia

′
t−jΨj. By the triangle inequality,

‖E(X2
t − γxx(0)|ξ0)‖ ≤ ‖

∑

i≥t

Ψ′
i(at−ia

′
t−i −Σ)Ψi‖ + ‖

∑

i6=j≥t

Ψ′
iat−ia

′
t−jΨj‖
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+
t−1
∑

i=0

‖Ψ′
iE(at−ia

′
t−i −Σ|ξ0)Ψi‖

≤ C
∑

i≥t

‖Ψi‖2 + C
∑

i≥t

‖Ψi‖2 + C
t−1
∑

i=0

‖Ψi‖2rt−i.

The result follows.

From XtYt+h = ((Xt + Yt+h)2 − (Xt − Yt+h)2)/4 and the triangle inequality,

one has the following.

Corollary 1. Suppose Xt =
∑∞

i=0 Ψ′
iat−i and Yt =

∑∞
i=0 Φ′

iat−i both satisfy

the conditions in Proposition 2. Let γxy(h) = E(XtYt+h), where h is an integer.

Then
∑∞

t=1 ‖E(XtYt+h − γxy(h)|ξ0)‖ <∞.

To generalize the result to the case that X t is multivariate, we adopt the

matrix vectorization operator Vec defined as: Given a matrix Am×n , Vec(A) =

(A′
1, . . . ,A

′
n)′, i.e., Vec(A) is a column vector generated by stacking the columns

of A.

Proposition 3. Let X t = (X1t, . . . , Xkt)
′ =

∑∞
i=0 Ψiat−i, where Ψi are ma-

trices of dimension k ×m and at is m-dimensional and follows a pure diagonal

stationary GARCH(r1, r2) model with finite fourth moment. Further, suppose

that
∑∞

i=0 ‖Ψi‖ <∞,
∑∞

i=0 i‖Ψi‖2 <∞. Letting Σ = E(X tX
′
t+h) where h is an

integer, we have
∑∞

t=1 ‖Vec(E(X tX
′
t+h|ξ0) −Σ)‖ <∞.

Proof. ‖Vec(E(X tX
′
t+h|ξ0) − Σ)‖ ≤ ∑k

i,j=1 ‖E(XitXj,t+h|ξ0) − Σi,j‖. Since

each component of X t satisfies the conditions in Corollary 1, the result follows.

The following lemma of Wu (2003) is used to prove the next proposition.

Lemma 2. (Wu (2003)) Let {ξn}n∈Z be a stationary and ergodic Markov chain

and h(·) be a measureable function defined on the state space of the chain with

zero mean and finite variance. If
∑∞

n=1 ‖E[h(ξn)|ξ1] − E[h(ξn)|ξ0]‖ < ∞, then

for some σ2 <∞, (1/
√
n)

∑n
i=1 h(ξi) −→ N(0, σ2).

Proposition 4. Let X t =(X1t, . . . , Xkt)
′=

∑∞
i=0 Ψiat−i and Y t = (Y1t, . . . , Ylt)

′

=
∑∞

i=0 Φiat−i, where Ψi and Φi are matrices of dimension k ×m and l ×m,

respectively. Suppose both X t and Y t satisfy the conditions in Proposition 3. If

Σxy(h) = E(X tY
′
t+h), then

1√
n

n
∑

t=1

Vec(XtY
′
t+h −Σxy(h)) −→ N(0,Σ),

where h is any integer and Σ ∈ Rkl×kl.
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Proof. It suffices to prove the result for the case that h = 0 and Y t = Xt,
because we can consider (X ′

t,Y
′
t+h)′ as a new X t and apply the result we show.

We only need to show that ∀λ ∈ Rk2

, 1/
√
n(

∑n
t=1 λ

′Vec(X tX
′
t − Σxx(0))) −→

N(0, λ′Σλ) and then apply Crámer’s device. By Proposition 3,
∑∞

t=1 ‖Eλ′
Vec(X tX

′
t −Σxx(0)|ξ0)‖ ≤ ∑∞

t=1 ‖λ‖. ‖Vec(E(X tX
′
t|ξ0) −Σxx(0))‖ <∞. The

result follows from Lemma 2. To apply the Lemma, let ξk = (εk, εk−1, . . .)
and notice that we have proved

∑∞
n=1 ‖E(h(ξn)|ξ0)‖ < ∞ and the result

∑∞
n=1

‖E(h(ξn)|ξ1)‖ <∞ holds by a similar argument.

Remark 1. For a causal, stationary VARMA(p, q) process Φ(B)(Z t − µ) =
Θ(B)at, its MA(∞) representation Z t = µ +

∑∞
i=0 Ψiat−i satisfies the condi-

tion
∑∞

i=0 ‖Ψi‖ < ∞,
∑∞

i=0 i‖Ψi‖2 < ∞, since ‖Ψi‖ ∼ ri with r ∈ (0, 1) being
the largest root (in magnitude) of Φ(B−1). Consequently, if at follows a pure
diagonal GARCH model with finite fourth moment, the sample auto-covariance
matrix of Zt has an asymptotic joint normal distribution.

We now establish a result similar to Theorem 1 of Tsay (1989a) for VARMA
models with GARCH innovations.

Theorem 1. Suppose that Z t is a k-dimensional stationary VARMA process in
(3), where the innovation series at follows a GARCH(r1, r2) model with finite
fourth moment. Let P t = (Z ′

t−1, . . . ,Z
′
t−s)

′ be a past vector with a prespecified
s > 0 that contains all the information needed in predicting the future observation
of Zt, F t = (z1,t, . . . , zi,t+h)′ be the future subvector of Z t constructed according
to the procedure described in Section 2. Let ρ̂ be the smallest sample canoni-
cal correlation between P t and F t. Under the null hypothesis that the smallest
canonical correlation ρ between P t and F t is zero, but all the other canonical
correlations are nonzero, then ρ̂2/var(ρ̂) has an asymptotic χ2 distribution with
ks− f + 1 degrees of freedom, where f is the dimension of F t.

Proof. First, assume the future canonical variate Xt = V ′
fF t is known. Under

the null hypothesis that the smallest canonical correlation between F t and P t is
zero, Xt is uncorrelated with P t. Let P and X be the matrices of P t and Xt.
The sample covariance matrix β̂ = P ′X ∼ Nks(0,V ) by Proposition 4. Thus

β̂
′
V −1β̂ ∼ χ2

ks. Observe

β̂
′
V −1β̂ = sup

α∈Rks,6=0

(α′β̂)2

α′V α
= sup
α6=0

(α′β̂)2/(α′P ′PαX ′X)

α′V α/(α′P ′PαX ′X)
.

Let ρ = corr(Xt,α
′P t) = (X ′Pα)/(

√

X ′X(Pα)′(Pα)) be the sample correla-
tion between Xt and a linear combination of the past vectors α′P t. By a Taylor
expansion we have

Var(ρ) ≈ Var(X ′Pα)

X ′X(Pα)′Pα
≈ α′V α

X ′X(Pα)′Pα
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under the null hypothesis that Cov(Xt,α
′P t) = 0. So β̂

′
V −1β̂ = supα6=0

ρ2/Var(ρ) is the maximum normalized correlation between Xt and any linear
combination of the past vector P t, which is 0 under the null hypothesis. No-
tice the canonical variate V ′

pP t of ρ also gives the maximum correlation be-

tween Xt and any linear combination of P t, which is 0. This implies β̂
′
V −1β̂ ≈

ρ̂2/Var(ρ̂) ∼ χ2
ks. Since V f has to be estimated from the data, the degrees of

freedom become ks− f + 1.

4. Asymptotic Variance of Sample Cross Correlation

Next we consider the variance of the sample cross-correlation coefficient for
the case that gives rise to a zero canonical correlation between the past and

future vectors of Z t. To this end, we make use of the following result. When
the variation of variables U, V and W about their mean u, v, and w, respectively,
becomes small, we have

Var(
W√
UV

) ≈ Var(W )

uv
+

1

4

w2

u2v
Var(U) +

1

4

w2

uv3
Var(V ) − w

u2v
Cov(W,U)

− w

uv2
Cov(W,V ) +

1

2

w2

u2v2
Cov(U, V ).

Suppose Yt and Xt are stationary moving-average processes. More specifi-
cally, Yt =

∑h
i=0 φiat−i and Xt =

∑∞
i=0 ψiat−i, with at being a GARCH(r1, r2)

process (4). By Lemma 1, E(aiajakal) = 0, ∀i ≤ j ≤ k ≤ l, unless i = j

and k = l both hold. Let U = γ̂xx(0), V = γ̂yy(0) and W = γ̂xy(q) =
1/(n− q)

∑n−q
t=1 XtYt+q. Given q > h, where h corresponds to a Kronecker index,

we have γxy(q) = γyy(q) = 0 and, by the above formula, the following holds.

Var(ρ̂xy(q)) ≈
1

nγxx(0)γyy(0)

∑

|d|≤h

Cov(X0Yq, XdYd+q)

≈ 1

nγxx(0)γyy(0)

∑

|d|≤h

[γxx(d)γyy(d) + γxy(d+ q)γxy(q − d)

+Cum(X0, Xd, Yq, Yd+q)]

≈ 1

n

∑

|d|≤h

[

ρxx(d)ρyy(d) +
Cum(X0, Xd, Yq, Yq+d)

γxx(0)γyy(0)

]

, (10)

where

Cum(X0, Xd, Yq, Yq+d) =
∑

i,j,k,l

ψiψjφkφlEat−iat+d−jat+q−kat+q+d−l

−
(

∑

i≥0

ψiψi+dσ
2
)(

h−d
∑

k=0

φkφk+dσ
2
)
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=
∑

i≥0

h−d
∑

k=0

ψiψi+dφkφk+dCov(a2
0, a

2
q−k+i).

Therefore, the fourth order cumulants of {Xt} depend on the auto-covariance

function of {a2
t }. Compared to γxx(d)γyy(d), Cum(X0, Xd, Yq, Yq+d) has a non-

negligible impact on Var(ρ̂xy(p)) if Cov(a2
0, a

2
q−k+i)/E

2(a2
0) is large. For instance,

if at is a GARCH(1,1) process, then Cov(a2
0, a

2
1)/σ

4 = 2α1 + (6α2
1(α1 + β1/3))/

(1 − 2α2
1 − (α1 + β1)

2). This ratio is 86 given α1 = 0.5 and β1 = 0.2. Considering

the fourth order cumulant correction term in Var(ρ̂), one can modify the T

statistic proposed by Tsay as

T ∗ = −(n− s) log(1 − ρ̂2

d̂∗
) ∼ χ2

ks−f+1,
(11)

d̂∗ =
∑

|d|≤h

[

ρxx(d)ρyy(d) +
Cum(X0, Xd, Yq, Yq+d)

γxx(0)γyy(0)

]

.

Note that if α1 = 0, the kurtosis of at and autocovariance of a2
t vanish. Therefore

Bartlett’s formula continues to hold. Consequently, the test statistics proposed

by Tsay should work well. This is confirmed by our simulation study although

we did not include the result in the simulation report below.

5. Simulations Study

We conducted some simulations to study the finite sample performance of the

modified test statistics. We focused on a two-dimensional ARMA(1,1)+GARCH

(1,1) model chosen to have GARCH parameters similar to those commonly seen

in empirical asset returns. The model was

Zt −
[

0.8 0

0 0.3

]

Zt−1 = at −
[

−0.8 1.3

−0.3 0.8

]

at−1 t = 1, . . . , n, (12)

where n indicates sample size and

at =

[√
g1t 0

0
√
g2t

]

εt, εt ∼ i.i.d. N2(0, I),

where the conditional variances satisfy the GARCH(1,1) model

gt =

[

g1t

g2t

]

=

[

0.5

0.5

]

+ 0.2

[

a2
1,t−1

a2
2,t−1

]

+ 0.7

[

g1t−1

g2t−1

]

.

For a given sample size n, each realization was obtained by generating 5n ob-

servations. To reduce the effect of the starting values Z0 and a0, we only
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used the last n observations. For this model, the two future subvectors, which

in theory give a zero canonical correlation, are F t(1) = (z1t, z2t, z1,t+1)
′ and

F t(2) = (z1t, z2t, z2,t+1)
′. A value of s = 5 was selected according to the AIC cri-

terion in a preliminary analysis using pure vector AR models. The corresponding

past vector was P t = (Z ′
t−1, . . . ,Z

′
t−5)

′.

Let S(1) and S(2) be the test statistics S = −n log(1 − ρ̂2) of Cooper

and Wood (1982) when the future subvectors are F t(1) and F t(2), respec-

tively. Similarly, let T (1) and T (2) be the corresponding test statistics T =

−(n − s) log(1 − ρ̂2/d̂) of Tsay (1989a) and T ∗(1) and T ∗(2) be the test statis-

tics T ∗ = −(n − s) log(1 − ρ̂2/d̂∗) proposed in (11). In particular, we adopted

the approach of Berlint and Francq (1997) to estimate the variance of sample

cross-covariance Var[γ̂xy(q)] by

n Var[γ̂xy(q)] ≈ σ̂∗(0) + 2
n−q
∑

i=1

(1 − i/n)K(ibn)σ̂∗(i), (13)

where σ̂∗(i) =
∑

tXtYt+qXt+iYt+i+q/n − γ̂2
xy(q), K(x) = I|x|≤1, and bn = n−1/4.

However, to improve the robustness of the variance estimate in finite samples, we

employed a modified estimate of σ̂∗(i). The modification was to use a trimmed

sequence {XtYt+q} by trimming both the lower and upper 0.2 percentiles of

XtYt+q.

As an alternative, we also applied the stationary bootstrap method of Ro-

mano and Thombs (1996) to estimate Var(ρ̂). Each bootstrap step was re-

peated 1, 000 times. Let B(1) and B(2) be the corresponding test statistics

−(n− s) log(1 − ρ̂2/d̂), where d̂ is obtained from bootstraps.

Tables 1 and 2 compare empirical percentiles and the size of various test

statistics discussed above for the model (12). The sample sizes used were 1,000

and 2,000, respectively (these sample sizes are common among financial data).

The corresponding quantiles of the asymptotic χ2
8 are also given in the table.

From the tables, we make the following observations. First, the T ∗ and boot-

strap B statistics performed reasonably well when the sample size was sufficiently

large. The bootstrap method outperformed the other test statistics, though it

requires intensive computation. For instance, it took several hours to compute

the bootstrap tests in Table 2 whereas it only took seconds to compute the other

tests. Second, the T statistics underestimated the variance of cross-correlation

so that the empirical quantiles exceeded their theoretical counterparts. Third,

as expected, the S statistics performed poorly for both sample sizes considered.

Fourth, the performance of the proposed test statistic T ∗ indicates that the

Berlint and Francq (1997) method to estimate the variance of cross-covariance

is reasonable in the presence of GARCH effects provided that robust estimators

σ̂∗(i) are used.
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Table 1. Empirical percentiles and size of various statistics for testing zero
canonical correlations. The model used is (12). The results are based on
2,000 iterations, each with 1,000 observations.

Statistic mean S.D Percentile Rej. Rate at χ2
8(0.95)

50% 75% 90% 95% 99% percentage

S(1) 10.89 6.30 9.64 13.88 18.63 22.24 32.66 18.4

S(2) 11.06 7.26 9.58 13.8 19.42 23.39 35.83 19.1

T(1) 10.29 5.82 9.13 13.04 17.49 20.50 30.39 14.5

T(2) 8.73 5.26 7.76 10.99 14.67 17.99 25.60 8.3

χ2
8 8.00 4.00 7.34 10.21 13.36 15.51 20.10 5.0

T ∗(1) 8.03 4.16 7.38 10.22 13.29 15.76 20.94 5.3

T ∗(2) 6.91 3.64 6.24 8.87 11.77 13.65 18.38 2.6

B(1) 8.02 4.17 7.34 10.20 13.67 15.50 21.80 5.0

B(2) 6.77 3.89 5.97 8.71 11.74 14.11 19.00 3.3

Table 2. Empirical Percentiles of Various Test Statistics for Testing Zero
Canonical Correlations. The results are based on 2,000 replications and the
sample size is 2,000.

Statistic Mean S.D Percentile Rej. Rate at χ2
8(0.95)

50 % 75% 90% 95% 99% percentage

S(1) 10.81 5.81 9.79 13.84 18.20 21.67 30.30 20.3

S(2) 11.63 8.91 9.72 14.68 20.94 25.94 37.48 22.2

T (1) 10.88 6.89 9.52 13.62 18.26 22.04 32.5 17.3

T (2) 9.14 6.66 7.82 11.55 15.94 19.27 28.66 10.8

χ2
8 8 4 7.34 10.21 13.36 15.51 20.10 5.0

T ∗(1) 8.13 4.29 7.39 10.43 13.82 16.35 21.60 6.5

T ∗(2) 7.01 3.93 6.35 9.05 11.99 14.01 20.11 3.4

B(1) 7.72 4.1 7.04 9.75 13.05 15.32 20.81 4.8

B(2) 6.31 3.66 5.54 8.08 11.03 13.65 18.47 4.0

5.1. Case when the fourth moment of GARCH does not exist

The asymptotic results shown in this paper require that the fourth moments
of the innovations exist. In this simulation, we show that this condition is in-
deed necessary. We use the same bivariate ARMA(1,1) model as before but the
GARCH(1,1) model becomes

gt =

[

g1t

g2t

]

=

[

0.5

0.5

]

+ 0.5

[

a2
1,t−1

a2
2,t−1

]

+ 0.4

[

g1t−1

g2t−1

]

.

It’s easy to verify E(a4) = ∞. Therefore Var(ρ̂), although it exists, cannot be
estimated by the Bartlett formula. We expect the statistics T to fail in this case.
Table 3 gives the results.
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The test statistics S(1), S(2), T (1) and T (2) based on Bartlett’s formula are

completely off the mark here. This is expected, since the asymptotic variance

of sample cross-correlations is invalidated when Ea4 = ∞. However, with the

variance estimated from stationary bootstrapping, the asymptotic χ2 test has a

Type I error which is close to the nominal value of 5%. The proposed variance es-

timate (13) overestimates the theoretical asymptotic variance of cross-correlation

so that the T ∗ statistic is too small. The clear violation of the assumption of

Ea4 < ∞ for the asymptotic χ2 test raises an open question of establishing the

asymptotic distributions of the smallest canonical correlations when Ea4 = ∞.

Table 3. Simulation results when the innovational series does not have a

finite fourth moment. The results are based on 2,000 iterations, each with

1,000 observations.

Statistic Mean S.D Percentile Rej. Rate at χ2
8(0.95)

50% 75% 90% 95% 99% percentage

S(1) 22.08 21.45 16.07 25.68 40.58 56.57 110.51 52.8

S(2) 21.00 23.64 14.71 23.92 39.54 56.67 113.34 47.0

T(1) 21.09 20.96 15.41 24.02 38.82 53.23 110.12 49.6

T(2) 16.94 19.52 11.97 19.04 31.05 44.59 103.98 35.4

χ2
8 8.00 4.00 7.34 10.21 13.36 15.51 20.10 5.0

T ∗(1) 6.72 3.58 6.15 8.71 11.57 13.43 17.21 2.0

T ∗(2) 6.33 3.50 5.73 8.39 11.00 12.83 16.88 1.7

B(1) 8.32 4.93 7.13 10.52 14.55 17.03 26.03 7.5

B(2) 7.17 4.56 6.13 9.11 13.07 15.96 22.62 5.6

6. An Illustrative Example

In this section we apply the proposed test statistics to a three-dimensional

financial time series. The data consist of daily log returns, in percentages, of

Amoco, IBM, and Merck stocks from February 2, 1984 to December 31, 1991

with 2,000 observations. The series are shown in Figure 1. It is well-known

that daily stock return series tend to have weak dynamic dependence, but strong

conditional heteroscedasticity, making them suitable for the proposed test; see

Figures 2 and 3. Our goal here is to provide an illustration of specifying a vector

ARMA model with GARCH innovations rather than a thorough analysis of the

term structure of stock returns. As such, we do not seek to simplify the identified

model by removing all insignificant parameters in estimation.

Denote the return series by Zt = (Z1t, Z2t, Z3t)
′ for Amoco, IBM and Merck

stocks, respectively. Following the order specification procedure of Section 2.2, we

apply the proposed test (11), denoted by T ∗, to the data and summarize the test

results in Table 4. We also include the test statistics T from (9) for comparison.
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The past vector P t is determined by the AIC as P t = (Z ′
t−1,Z

′
t−2)

′. The p-value

is based on a χ2
ks−f+1 test, where k = 3, s = 2, and f = dim(F ∗

t ).
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Figure 1. Time series of Amoco, IBM and Merck stocks daily return (2/2/1985
–12/31/1991).

From Table 4, the proposed test statistic T ∗ identified {1, 1, 1} as the Kro-

necker indexes for the data, i.e., Ki = 1 for all i. On the contrary, if one

assumes that there are no GARCH effects and uses the test statistic T , then

one would identify {1, 1, 2} as the Kronecker indexes. More specifically, the T

statistic specifies K1 = K2 = 1, but finds the smallest canonical correlation

between F ∗
t = (Z1,t, Z2,t, Z3,t, Z3,t+1) and P t to be significant at the usual 5%

level. To determine K3, one needs to consider the canonical correlation analysis

between F ∗
t = (Z1,t, Z2,t, Z3,t, Z3,t+1, Z3,t+2)

′ and the past vector P t. The cor-

responding test statistic is T = 4.05, which is insignificant with p-value 0.134

under the asymptotic χ2
2 distribution. Therefore, without considering GARCH

effects, the identified Kronecker indexes are K1 = 1, K2 = 1, K3 = 2, resulting

in an ARMA(2,2) model for the data. Consequently, by correctly considering
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the GARCH effect, the proposed test statistic T ∗ was able to specify a more

parsimonious ARMA(1,1) model for the data.
−0

.1

PSfrag replacements

0
.00
.00
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.2

0
.2

0
.2

0
.2

0
.2

0
.3

0
.4

0
.4

0
.4

0
.4

0
.4

0
.4

0.6

0
.8

0
.8

0
.8

-30-30

-30

-20-20

-20

-10-10

-10

-5

-2

000

000

000

2

5

10

1010

101010

20

2020

202020

30

3030

303030

110

141

500

938

970

994

1000

1429

1441

1801

1970

1500

2000

AMOCO

IBM

Merck

A
C

F
A

C
F

A
C

F

LagLagLag

amoco amoco and ibm amoco and mk

ibm and amoco ibm ibm and mk

mk and amoco mk and ibm mk

amoco

ibm

mk

Standardized Residuals
Quantiles of gaussian distribution

QQ-Plot of Standardized Residuals

Figure 2. Auto- and cross-correlation plot of original series.
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Table 4. Model Specification of Daily Stock Returns Data (Amoco, IBM, Merck).

future subvector F ∗

t can. cor(smallest) T ∗ d.f p-value of T ∗ Remark T

(Z1,t) 0.130 33.957 6 0 33.957

(Z1,t, Z2,t) 0.116 26.972 5 0 26.972
(Z1,t, Z2,t, Z3,t) 0.101 20.681 4 0 20.681

(Z1,t, Z2,t, Z3,t, Z1,t+1) 0.051 5.588 3 0.133 K1 = 1 5.945

(Z1,t, Z2,t, Z3,t, Z2,t+1) 0.032 1.516 3 0.678 K2 = 1 4.477

(Z1,t, Z2,t, Z3,t, Z3,t+1) 0.055 5.976 3 0.113 K3 = 1 11.384
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Figure 4. Auto- and cross-correlations of standardized residuals.

In summary, we entertain a vector ARMA(1,1) model with GARCH innova-

tions for the data. For simplicity, we employ a diagonal GARCH(1,1) model for

the innovations. The estimated VARMA(1,1)-GARCH(1,1) model is given below

as

Zt −







0.005 1.970∗∗∗ 0.427

0.015 0.250 0.189∗

0.141 0.894∗∗ 0.123






Zt−1

=







−0.060

−0.009

0.093∗






+ at +







−0.070 2.072∗∗∗ 0.445

0.057 0.242 0.233∗∗

0.192∗ 0.896∗∗ 0.054






at−1,
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where the superscript *, ** and *** indicate significance at the 10%, 5% and 1%

level, respectively, and the volatility gt = E(a2
t |Ft−1) follows the model

gt =







1.591

0.225

0.053






+







0.278 0 0

0 0.138 0

0 0 0.060






a2

t−1 +







0.003 0 0

0 0.756 0

0 0 0.914






gt−1,

where all estimates except the (1,1)th element of the coefficient matrix of g t−1

are significant at the 1% level. Finally, we examine the correlation matrices of

the standardized residuals and their squared series of the fitted VARMA(1,1)-

GARCH(1,1) model; see plots in Figures 4 and 5. The fitted model appears

to be adequate in removing serial dependence in the data. The QQ-plot of the

standardized residuals, however, show some departure from normality. This is

common among asset return data.

PSfrag replacements

0.0

0.1

0.2

0.3

0.4

0.6

0.8

-30

-20

-10

-10

-5

-5

-2

0

0

0

2

5

5

10

20

30

110

141

500

938

938938

970

994

1000

1429

1441

1801

1970

1500

2000

AMOCO

IBM

Merck

ACF

Lag

amoco
amoco and ibm
amoco and mk
ibm and amoco

ibm
ibm and mk

mk and amoco
mk and ibm

mk

amoco ibm

mk

S
ta

n
d
a
rd

iz
ed

R
es

id
u
a
ls

Quantiles of gaussian distribution

QQ-Plot of Standardized Residuals

Figure 5. QQ plots of standardized residuals.
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