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Abstract: Motivated by modeling and forecasting annual hurricane activity in the

North Atlantic, we introduce a class of exponential space-time autoregressive (ES-

TAR) models for count processes by describing the local characteristics as members

of finitely supported exponential families. We show that the joint distribution of

a space-time count process conditioned on previous observations is a Gibbs field,

and demonstrate that an exponential space-time model can be represented as a

finite primitive aperiodic Markov chain. The space-time models are identifiable in

the parameter space. Asymptotic properties of the log-likelihood function for the

parameters in the processes are investigated. Under mild conditions, the maximum

likelihood estimates of the parameters are proved to be consistent and asymptoti-

cally normally distributed. In order to solve the intractable-constant problem in the

likelihood function, the Maximum Pseudo Likelihood Estimation (MPLE) method

and the Markov Chain Monte Carlo Maximum Likelihood (MCML) method are

proposed to estimate the parameters in an ESTAR model. Simulation results show

that both MPLE and MCML estimates appeared relatively unbiased. The MCML

method is preferred primarily due to this method providing reasonable standard

error estimates of the estimated parameters.

Key words and phrases: Auto-Poisson process, conditionally specified space-time

models, Fisher Information regularity conditions, Hessian matrix, reference and

objective functions.

1. Introduction

Hurricanes are some of the most devastating natural catastrophes. They

rival earthquakes in destructive potential and loss of life. In 1992 Hurricane

Andrew caused approximately $30 billion in damage, and in 1998 Hurricane

Mitch killed over 10,000 people in Central America. Unfortunately, the potential

for widespread destruction from hurricanes is increasing as development continues

in the areas where hurricanes tend to strike: the warm subtropical shorelines and

islands of the Atlantic Ocean, Gulf of Mexico, and Caribbean Sea.

Forecasting hurricanes in the North Atlantic is very important but quite dif-

ficult. Some of the difficulty in hurricane forecasting stems from the variability

in hurricane activity. For instance, during the last century in the North Atlantic,

there have been years without any hurricanes and years with as many as twelve.
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More difficulty in forecasting concerns the spatial and temporal nature of hurri-

canes: each hurricane forms at a different time during the year and a different

location in the ocean.

Accurate forecasts of hurricane activity with long lead times can reduce po-

tential damage and loss of life. Meteorologists have been using covariates to

create yearly hurricane activity forecasts for the North Atlantic since 1984 (Gray

(1984a, 1984b), Elsner, Lehmiller and Kimberlain (1996)). Currently, these fore-

casts provide total basin and sub-basin yearly activity estimates using both linear

and generalized linear regression models. However, the current hurricane forecast

models do not combine the spatial and temporal information from the data that

are available since 1887. Thus, they cannot provide specific monthly or yearly

activity forecasts for a given region.

New statistical models need to be developed that combine both the spatial

and temporal structures of the data. In an effort to improve current forecast mod-

els, we propose a class of exponential space-time autoregressive (ESTAR) models

for count processes defined on lattice systems. The ESTAR models developed

in this paper can be used to analyze and forecast any type of space-time count

processes, such as the number of tornadoes and storms in different locations over

a given time period, the number of earthquakes at different times and locations,

traffic flow and accident patterns in different cities, and crime patterns or disease

incidences in different countries. Jagger, Niu, and Elsner (2002) applied this type

of model to the analysis and forecasting of annual Atlantic hurricane activities,

and found that the space-time model could provide valuable guidance for issu-

ing seasonal hurricane forecasts. This article focuses on investigating statistical

properties of the space-time models, including the existence of consistent and

efficient estimates of the parameters in the models. The uniqueness of the maxi-

mum likelihood estimates of parameters is examined. Under mild conditions, we

prove that the estimates are consistent and asymptotically normally distributed.

It was first noted by Brook (1964) that space-time lattice models can be

either simultaneously or conditionally specified. In a simultaneously specified

model, a system of equations, usually one for each lattice site, is derived. Each

equation is a function of the values at the other lattice sites and a random error

term. The statistical properties of the models are introduced through this error

term.

Simultaneously specified spatial models where introduced by Whittle (1954),

and extended by Cliff et al. (1975) to a class of space-time autoregressive moving

average (STARMA) models. Niu and Tiao (1995) applied a class of STARMA

models for the analysis of satellite ozone data on a fixed latitude, which used

the temporal and longitudinal spatial dependence structure of the data with
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a Gaussian error term. Furthermore, Niu (1995) studied the consistency and

efficiency of the maximum likelihood estimates of parameters in the space-time

models of Niu and Tiao (1995). More recently, Niu, McKeague and Elsner (2003)

proposed a class of seasonal space-time models for general lattice systems, which

extended the models considered by Niu and Tiao (1995) and addressed both

longitudinal and latitudinal spatial structures of environmental data.

In a conditionally specified model the conditional distribution of the values at

each lattice site is a function of the values at the other lattice sites. Conditionally

specified models were introduced by Bartlett ((1955, Section 2.2), 1967, 1968).

When random variables on a multidimensional lattice take only two values 0 and

1 (or −1, 1), Bartlett (1971, 1972) considered the relationship between condi-

tional “nearest-neighbor” models and space-time autoregressive models. Besag

(1974) proved that under mild conditions, joint probability distributions exist

for the random variables in a conditional “nearest-neighbor” system, and sug-

gested some conditionally specified models for spatial lattice systems, such as the

auto-Poisson process for modeling spatial counts data, and the autologistic and

autobinomial processes for modeling spatial binary data. Huffer and Wu (1998)

used an autologistic process to model the distribution of plant species, where

they employed the Markov Chain Monte Carlo Maximum Likelihood (MCML)

method to estimate the parameters in the spatial models.

Hurricane frequencies in different time and spatial locations form a space-

time counts process. The dependence structure of this type of data can be

modeled by the conditional probability approach (see Bartlett (1968), Whittle

(1963), Besag (1972, 1974) and Gilks, Richardson and Spiegelhalter (1996)).

The auto-Poisson model proposed by Besag (1974) imposes some restrictions on

the parameter space that can only be applied to spatial data sets in which the

interaction coefficients are non-positive. Furthermore, few inference results are

available for this type of model. The ESTAR models proposed in this article

will relax the restrictions on the parameter space and show how the seasonal

hurricane frequency at a specific location is related to other atmospheric events

and neighborhood observations.

The ESTAR models are defined in Section 2 in terms of conditional distri-

butions. Two special classes of the models, one based on the truncated Poisson

distribution and the other based on the binomial distribution, are discussed. We

show that the joint distribution of any ESTAR model conditioned on the past is

a Gibbs field and derive its potential function. We demonstrate that the space-

time models can be represented by a finite state aperiodic primitive Markov

Chain and are identifiable. In Section 3, we derive the log-likelihood function

for the parameters in the models and discuss its properties. The conditions for
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the uniqueness of the maximum likelihood estimates are specified. Asymptotic

properties of the maximum likelihood estimates (MLE) are investigated in Sec-

tion 4. Under some mild conditions, we prove that the estimates are consistent

and asymptotically normal. The proofs of the main results are presented in the

Appendix. In practice, the likelihood function of an ESTAR model cannot be

calculated directly due to an intractable constant of proportionality that depends

not only on the parameter values but also the past data values of the process.

Two methods, the Maximum Pseudo Likelihood Estimation (MPLE) method

and the Markov Chain Monte Carlo Maximum Likelihood (MCML) method, are

proposed to estimate the parameters in an ESTAR model. Simulation results

in Section 5 show the finite sample properties of the estimators. The estimates

based on both methods appeared relatively unbiased, while the MCML method is

preferred in practice since it provides reasonable standard error estimates of the

estimated parameters. Finally, conclusions and discussion are given in Section 6.

2. The ESTAR Models

In this section we define the Exponential Space Time Autoregressive (ES-

TAR) models using the conditionally specified approach and study the statistical

properties of these models. We show that the joint distribution of any ESTAR

model conditioned only on the past is a Gibbs field and the models are identifi-

able.

Let {Xt,s} be a space-time count process defined on a lattice where t ∈ Z,

s ∈ S and S ⊂ Z
d with |S| < ∞. For each T > 0, we can represent an ESTAR

model as a collection of random vectors {X1, . . . , XT } with Xt = {Xt,s, s ∈ S} ∈
{0, 1, . . . ,M}|S|. For an element ω ∈ Ω, xt = Xt(ω) = {Xt,s(ω), s ∈ S} is called

a configuration. Using this notation, the ESTAR models are defined as follows.

Definition 2.1. The conditional distribution of an ESTAR process {Xt} is given

by

Pr(Xt,s = xt,s|{Xv : v < t;Xt,u : u 6= s}) =
[λt,s]

xt,shs(xt,s)

cs(λt,s)
, (2.1)

where cs(λt,s) =
∑M

k=0(λt,s)
khs(k), λt,s = exp{αs +

∑p
j=0

∑
u∈S γj(u, s)xt−j,u}

with parameters γ0(u, s) = γ0(s, u), γ0(s, s) = 0 and θ = {αs, γj(u, s) : u, s ∈ S;

j = 0, . . . , p}.
In (2.1), the components λt,s represent generalized rates. The parameters

αs are similar to constants in a standard time series model, and the coefficient

γj(u, s) is a measure of the coupling from Xt−j,u to Xt,s.
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In this study, we assume that the functions {hs(·), s ∈ S} are known whereas

the parameter θ is unknown. Without loss of generality, we set hs(0) = 1.

Thus each collection of functions hs(·) defines a unique family of ESTAR models.

Notice that cs(·) at any given time t is indirectly a function of the parameter θ, the

previous values {xt−1, . . . , xt−p}, and the “instantaneous values” {xt,u : u 6= s}.
The truncated Poisson space-time autoregressive (TPSTAR) model, where

hs(x) = 1/x! and the components λt,s represent conditional Poisson rates, is an

example of the ESTAR models. In the temporal direction, it is an order p au-

toregressive time series. In the spatial direction, conditioned on the observations

in the last p time periods, it is an Auto-Truncated Poisson distribution. That

is, the distribution at a single site at some point in time, conditioned on all the

sites’ values for the last p periods and the other site values for the current time,

is a right truncated Poisson distribution, truncated at a fixed value M .

Another example of the ESTAR models is the binomial space-time autore-

gressive (BSTAR) model, where hs(y) = ns!/(y!(ns − y)!) and the components

λt,s represent the odds ratio p/(1 − p). This model has applications in modeling

disease propagation such as AIDs incidence rates, where the sites in the model

could represent counties in a state, and the time series at each site could be the

number of people in that county that contracted the disease each month.

The following three restrictions exist on the ESTAR process {Xt,s, t ∈ Z; s ∈
S}. Note that the second and third restrictions are implied by Definition 2.1.

1. The support of the conditional distribution for each s ∈ S and all t is Xs =

{0, 1, 2 . . . n(s)}, where 1 ≤ n(s) ≤M and M is a finite global constant.

2. The joint distribution of {Xt,s, s ∈ S} given {Xt′ ,s′ : t′ < t, s′ ∈ S} is pair-

wise dependent, as defined in Cressie ((1993), Section 6.4.2). This restricts

interactions in a space-time model to pairs of sites.

3. The conditional distribution of two lattice points separated by time, say Xt,s

and Xt′,s, must come from the same exponential family, varying only in the

natural parameter, for example, the right truncated Poisson distribution with

fixedM and possibly different λ. Another example is the binomial distribution

with fixed n but possibly different success probability p.

The first restriction on the support of Xt,s implies that hs(y) = 0 for all

s ∈ S whenever y > M or y < 0. This restriction can be generalized from a finite

set of positive integers to a finite set of real values. We have arbitrarily restricted

Xs to be a subset of the positive integers including zero and one, because this

set covers all of our examples and simplifies the notation used in our proofs. At

each lattice point s ∈ S, Xs must contain at least two values so that the process

is not deterministic. Note also that Xs is a function only of lattice position and

not of time, a necessary condition for stationarity of our ESTAR models.
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The second restriction defines the form of the dependence, (see, e.g., Be-

sag (1974)). This restriction is implied by Definition 2.1 and the Factorization

Theorem (Besag (1974)).

The third restriction is required so that the models are stationary, which

implies that hs(y) is time invariant. However, the space-time models proposed

allow us to have different exponential families at different spatial locations. (See

Definition 2.3 for an exponential family). For example, if we are using members

from the binomial(n, p) distribution, the restriction does not allow us to vary the

total, n, temporally, but does allow us to vary n spatially.

These three restrictions may be relaxed in future models to allow for contin-

uous support, nonstationarity, and complex interactions between sites.

For the purpose of investigating properties of the parameter estimates in

the space-time models, we use the most general case, namely that each site’s

distribution at time t depends on every site’s values at times {t − p, . . . , t − 1},
and on the other sites’ values at time t.

For the conditional distribution specified in Definition 2.1, we denote Pr(Xt,s

= xt,s|{Xv : v < t;Xt,u : u 6= s}) as Πθ(xt,s|xv : v < t; xt,u : u 6= s). This will

simplify notation in keeping with standard image analysis notation. For the most

general case of the space-time models we can define the parameter θ ∈ Θ as a real

valued vector with N distinct components {αs, γj(u, s) : j ∈ 0, . . . , p;u, s ∈ S}.
In order to ensure that the conditional distributions are consistently specified,

following Besag (1974) we assume that γ0(s, u) = γ0(u, s) and γ0(s, s)=0.

Restrictions on the parameters of the space-time models may be imposed as

needed. For example, we may set γ0(s, u) = 0. In this case, there are no instan-

taneous site dependencies, and the sites are conditionally independent of each

other given the previous observations. Compared to the case with instantaneous

dependencies, the conditionally independent case is easy to simulate, since the

underlying process is a Markov chain of known distributions. This also makes

parameter estimation easier, since we can use a modified generalized linear model

method. Unfortunately, space-time processes in practice are rarely conditionally

independent, as one expects spatial regions to interact with each other over small

time periods.

We can also restrict the space-time models by imposing translation invariance

on the parameters. That is, if the sites are on a regular n-dimensional lattice, we

may require γj(s, u) = γj(s−u, 0). Other restrictions may also be considered. For

example, it is reasonable in most cases to assume that γj(s, u) = γj(u, s) so that

we have a well defined neighborhood structure. Other than the need to specify

the order of the temporal autoregressive models, the additional neighborhood

structure is not needed to prove any of the asymptotic results in this paper.
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The purpose of the first investigation of the space-time models is to determine

the conditional distribution of Xt given the information from the past. We need

some terminology to describe these models.

Definition 2.2.(Winkler (1995, Section 3.2)) A Gibbs field is a probability mea-

sure on a configuration x = {xs : s ∈ S, xs ∈ X} of the form

Π(x) =
e−U(x)

∑
z∈X|S| e−U(z)

,

where the state space X is countable and S is finite. Π is called the Gibbs field

induced by the energy function U(z) and its denominator is called the partition

function.

Definition 2.3. An exponential family is a collection of Gibbs fields, parame-

terized by α ∈ R
d, that have the form

Πα(x) =
e〈α,T (x)〉+T0(x)

c(α)
,

where T (x) = (T1(x), . . . , Td(x))′, {Ti(x); i = 0, 1, . . . , d} are measurable func-

tions of x, and 〈·, ·〉 represents the usual inner product in Rd.

For a space-time autoregressive process defined by (2.1), Xt = {Xt,s, s ∈ S}
for a given t is a spatial process. The finite sample space of Xt will be denoted by

X =
∏

s∈S Xs. In order to simplify notation, we define Zt =
(
X ′

t, . . . , X
′
t−p+1

)′

and zt = (x′t, . . . , x
′
t−p+1)

′, i.e., zt is a sample configuration from Zt. The following

proposition specifies the joint distribution of Xt given Zt−1 = zt−1.

Proposition 2.1. For any time t, the distribution of a single configuration,

Xt, of the ESTAR process conditioned on the past observations is a Gibbs field.

The Gibbs energy function of Xt given zt−1 is denoted as Uθ(zt−1, xt)+K(zt−1),

where

Uθ(zt−1, xt) =
∑

s∈S

Vs(xt,s)−
p∑

j=1

∑

(u,s)∈S2

γj(u, s)xt−j,uxt,s−
∑

{u,s∈S}

γ0(u, s)xt,u ·xt,s,

with −Vs(x) = αsx+ ln(hs(x)) , γ0(u, s) = γ0(s, u), and γ0(s, s) = 0.

In Proposition 2.1, (s, u) ∈ S2 denotes the set of all possible pairs in S2

and {u, s ∈ S} denotes the set of all |S||S − 1|/2 distinct pairs from S. Thus,∑
{u,s∈S} γ0(u, s)xt,uxt,s = (1/2)

∑
(u,s)∈S2 γ0(u, s)xt,uxt,s, since we assume that

γ0(u, s) = γ0(s, u) and γ0(s, s) = 0.
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Since the conditional distribution of the configuration Xt, given the past

observations, depends only on the configurations at {t−1, . . . , t−p}, that is, zt−1,

we can write the conditional probability Pr(Xt = xt|Zt−1 = zt−1) as Pθ(zt−1, xt)

to express the dependence on both zt−1 and the vector parameter θ:

Pθ(zt−1, xt)

=
e
−Uθ(zt−1,xt)−K(zt−1)

∑
x∈{0,...,M}|S| e

−Uθ(zt−1,x)−K(zt−1)
=

e
−Uθ (zt−1,xt)

∑
x∈{0,...,M}|S| e

−Uθ(zt−1,x)

=
e
∑

s∈S
(αsxt,s+lnhs(xt,s))+

∑p

j=1

∑
u,s∈S2 γj(u,s)xt−j,uxt,s+

∑
{u,s∈S}

γ0(u,s)xt,uxt,s

c(θ, zt−1)
, (2.2)

where c(θ, z) =
∑

x∈{0,...,M}|S| e
−Uθ(z,x)

.

Remark 2.1. Since the distribution of Xt given the past is not affected by

the choice of K(zt−1), we can set it to 0. One can verify the joint distribution

by deriving the conditional distribution at each site from Pθ(zt−1, xt), or by

deriving it directly from the conditional distributions using the Factorization

Theorem (Cressie (1993, Equation 6.4.3)).

Remark 2.2. Even though the distribution ofXt conditioned on {Xt−1 . . . Xt−p}
forms an exponential family for each t ∈ {1, . . . T}, the joint distribution of

{X1, . . . XT } does not form an exponential family. Thus, the energy function

cannot be written as U(x) = 〈θ, T (x)〉 where x = (x′1, . . . , xT )′. Also, the space-

time model does not exhibit pairwise-only dependence, because the energy func-

tion cannot be defined by potential functions on sets containing only one or two

points.

The following lemma shows that an ESTAR process {Xt : t ∈ Z} defined

by (2.1) can be described as a Markov chain in the temporal direction. This is

important for investigating statistical properties of this process. Consider the

chain {Zt, t ∈ Z}, where Zt = (X ′
t, . . . , X

′
t−p+1)

′ with p · |S| components. This

chain is a Markov chain, because the distribution of Zt given Zu : u < t depends

only on Zt−1, since the model is autoregressive of order p. The members of zt are

denoted by [zt]i = xt−i+1 for i ∈ 1, . . . p, so that xt−i = [zt−1]i = [zt]i+1 for i ∈
1, . . . , p− 1.

Now we can generate the transition matrix Q of the Markov chain {Zt, t ∈ Z}
from Pθ(z, x) since

Q(zt−1, zt)
∆
= Pr (Zt = zt|Zu = zu : u < t)

= Pr(Zt = zt|Zt−1 = zt−1)

= Pθ(zt−1, [zt]1) = Pθ(zt−1, xt), (2.3)
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where Pθ(·, ·) is defined in (2.2). We can show that Q(·, ·) has a strict positive

power Qp(·, ·), i.e., Qp(x, y) > 0 for any x, y ∈ X p. According to the defini-

tion given by Winkler (1995, Section 4.3)), this type of Markov chains is called

primitive.

Lemma 2.1. The process {Zt = (X ′
t, . . . , X

′
t−p+1)

′ : t ∈ Z}, where Xt is defined

in (2.1), is a finite, primitive, and aperiodic Markov chain.

Since the Markov chain {Zt : t ∈ Z} has finite state space and is primitive, it

is irreducible and has a unique stationary distribution µ where limn→∞ ||νQn −
µ|| = 0 for any initial distribution of the state space, ν, such as the distribution of

Zt (Winkler (1995, Theorem 4.3.1)). Let µ(z) = Pr(Zt = z). The Markov chain

{Zt : t ∈ Z} is stationary with marginal distribution µ and joint distribution

µ(x)Q(x, y), which can be written as

Pr(Zt+1 = zt+1, Zt = zt) = Pr((X ′
t+1, . . . , X

′
t−p+1) = (x′t+1, . . . , x

′
t−p+1))

= µ(xt, xt−1, . . . , xt−p+1)Pθ((x′t, . . . , x
′
t−p+1), x

′
t+1).

Results based on the above arguments are summarized in the following the-

orem.

Theorem 2.1. The ESTAR process {Zt : t ∈ Z} is a stationary stochastic

process with Pr(Zt = z) = µ(z) and Pr(Zt = z,Xt+1 = x) = µ(z) · Pθ(z, x).

From now on, let Θ represent the parameter space of the ESTAR models.

Since |S| < ∞, we know that Θ ⊂ R
p|S|2+|S|(|S|+1)/2, a finite dimensional vector

space. The following theorem is one of our main results, its proof is given in the

Appendix.

Theorem 2.2. The ESTAR models in (2.1) parameterized with Θ are identifi-

able.

In the proof of this theorem, we use the first restriction to the ESTAR models,

that is, the support of the conditional distribution at any given site is a finite set

Xs including the value of 0, with hs(0) = 1.

3. Log-Likelihood Function of the Models

This section demonstrates the properties of the log-likelihood function for the

space-time models. We show that the MLE is not unique, and give conditions

on the observations to guarantee a unique MLE.

Let f(x|θ) be the joint density function of {X ′
T , . . . , X

′
1−p} for T > 0. We

use `T (θ) to denote the likelihood function as a function of θ given the obser-

vations {xt, t ∈ 1 − p, . . . , T ;xt,s ∈ {0, . . . ,M},∀s ∈ S}. In Section 2, we have
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shown the process {Zt, t ∈ Z} is a stationary process. Assume that the pro-

cess has reached its steady state Zt
d
= µ, the stationary distribution. Also,

let Z0 = (X ′
0, . . . , X

′
1−p)

′ represent the initial conditions of the model with

x = (x′1−p, . . . , x
′
T )′ denoting the sample path up to time T , with p initial condi-

tions (x′1−p, . . . , x
′
0).

The likelihood that we consider treats the initial distribution of Z0 as fixed

at µ, independent of θ, but equal to the invariant distribution associated with the

transition matrix Pθ0
that is associated with the true parameter θ0. However,

the likelihood function for the joint distribution under θ for all θ ∈ Θ involves

calculating the invariant distribution for each value of θ. We simplify matters

by maximizing the log-likelihood function which fixes the distribution of Z0
d
= µ,

i.e., the model where the transition matrix belongs to a family, but the initial

marginal distribution is not a function of θ.

Since Zt is a Stationary Markov Chain, then the joint distribution of {XT , . . .,

Z0} or {XT , . . . , X1−p} can be specified by the chain rule, which gives the fol-

lowing result.

Proposition 3.1. The log-likelihood function for the space-time models, with

respect to the counting measure Pθ(·, ·), is

`T (θ|x) =
T∑

t=1

ln(Pθ(zt−1, xt)) + ln(µ(z0))

=
T∑

t=1

ln(Pθ((x′t−1, . . . , x
′
t−p), xt)) + ln(µ(z0)).

Expressing the log-likelihood function in terms of the energy function Uθ
(zt−1, xt) for the ESTAR models, we have

`T (θ|x) =
T∑

t=1

{
− ln(c(θ, zt−1)) − Uθ(zt−1, xt)

}
+ ln(µ(z0)).

For simplicity of presentation, we denote the log-likelihood function by `T (θ)

instead of `T (θ|x) from now on. Moreover, for the purpose of investigating

the properties of `T (θ), it is convenient to increase the parameter space of the

ESTAR models by additional parameters γj({s, u}, v) with {s, u, v ∈ S} and

j ∈ {1, . . . , p}. These parameters are used to add additional terms γj({s, u}, v) ·
xt,sxt,uxt−j,v to the energy function. Furthermore, suppose that we order the

sites as {s1, . . . , s|S|}. Then we can define a new random vector of dimension

|S|(|S| + 1)/2

Wt =(Xt,s1 ,. . . , Xt,s|S|
, Xt,s1Xt,s2 ,. . . , Xt,s1Xt,s

|S|
, Xt,s2Xt,s3 ,. . . , Xt,s

|S|−1
Xt,s

|S|
)′
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with each component of Wt denoted by Wt,{s,u} = Xt,sXt,u and Wt,s = Xt,s. The

sample values of Wt,{s,u} and Wt,s are denoted by wt,{s,u} and wt,s, respectively.

Using this notation, the additional terms are γj({s, u}, v)wt,{s,u}xt−j,v. Similarly,

we can replace the terms γ0(s, u)xt,sxt,u with γ0(s, u)wt,{s,u}·1 and the term αsxt,s

with αswt,s.

The new parameter space is called Θ. The previous parameter space, now

denoted as Θ′, spans a subspace of the new space Θ, defined as γj({s, u}, v) = 0

for all elements {s, u, v ∈ S; j = 0, . . . , p}. For simplicity of expression, we order

the parameter vector as a column vector consisting of θ = (α′,γ′)′, where the

orderings are α = (αs1 , . . . , αs|S|
) and

γ =
(
γ0(s1, s2), . . . , γ0(s1, s|S|), γ0(s2, s3), . . . , γ0(s|S|−1, s|S|),

γ1(s1, s1), . . . , γ1(s1, s|S|), . . . , γ1(s|S|, s|S|),

γ1({s1, s2}, s1), . . . , γ1({s|S|−1, s|S|}, s1), . . . , γ1({s|S|−1, s|S|}, s|S|),
γ2(s1, s1), . . . , γp({s|S|−1, s|S|}, s|S|)

)
.

Moreover, we use the Kronecker products for matrices and vectors to sim-

plify notation. As used in this paper, the Kronecker product has a higher prece-

dence than addition and multiplication, but a lower precedence than exponenti-

ation. Since wt, zt, and θ are column vectors, [1, z ′t−1]
′ ⊗wt is the column vector

[w′
t, xt−1,s1w

′
t, . . . , xt−p,s|S|

w′
t]
′ and

Uθ(zt−1, xt) = −
〈
θ, [1, z′t−1]

′ ⊗ wt

〉
−
∑

s∈S

ln(hs(xt,s)).

Using the previous notation we can express the log-likelihood function as

`T (θ) = lnµ(z0)+
T∑

t=1

(
− ln(c(θ, zt−1)) +

〈
θ, [1, z′t−1]

′ ⊗ wt
〉)

+
T∑

s∈S,t=1

ln(hs(xt,s)),

(3.1)

where

c(θ, zt−1) =
∑

xt∈{0,...,M}|s|

(
exp

〈
θ, [1, z′t−1]

′ ⊗ wt
〉 ∏

s∈S

hs(xt,s)

)
. (3.2)

Theorem 3.1.

1. The Fisher Information (FI) regularity conditions hold for `T (θ):

• for all θ ∈ Θ and x ∈ X T+p with T > 0, the gradient with respect to θ,

∇`T (θ), exists;

• the set C = {x : f(x|θ) > 0} does not depend on θ;
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• for all θ ∈ Θ and x ∈ X T+p with T > 0, the Hessian matrix ∇2`T (θ) is

negative semidefinite.

2. The gradient ∇`T (θ) and Hessian ∇2`T (θ) are Lipschitz continuous in θ and

the modulus of continuity does not depend on x.

3. For all x ∈ X T+p, `T (θ) is analytic about any point in Θ.

The gradient ∇`T (θ) is also called the score function. Since the log-likelihood

function satisfies the FI regularity condition, we have the following results based

on Proposition 2.84 in Schervish (1995).

Corollary 3.1. For all T > 0 and any distribution for the initial states µz0 , if

the process {Xt, t ∈ Z} is generated by θ0 ∈ Θ, then Eθ0
[∇`T (θ0)] = 0 and

IT (θ0) =
Eθ0

[∇`T (θ0)∇`T (θ0)
′]

T
=

−Eθ0
(∇2`T (θ0))

T
.

Whenever the ESTAR process is stationary, the Fisher Information IT (θ0)

is the same for all T > 0, so we can drop the T subscript. The ESTAR process is

stationary whenever the process starts at t = −∞ or when µz0 = µ, the invariant

distribution of Zt.

The results in Corollary 3.1 allow us to use the negative of the expected

value of the Hessian to represent the Fisher Information I(θ0). The negative of

the Hessian is also known as the observed information. Unlike the exponential

distribution, the Fisher information and the observed Fisher information are not

the same in the space-time models defined in (2.1).

The score function ∇`T (θ0), expressed in equation (A.2) and being the sum

of terms whose expectation is zero, can usually be described as a martingale.

The result is stated in the following corollary, the proof is omitted.

Corollary 3.2. Under θ0, {∇`T (θ0), T = 1, 2, 3, . . .} is a martingale.

The result in Corollary 3.2 is true for any parameterized transition function

(see, e.g., Greenwood and Wefelmeyer (1997, p.107)). The fact that {∇`T (θ0),

T = 1, 2, 3, . . .} is a martingale will help us prove asymptotic normality of the

score function, a requirement for asymptotic normality of the MLE.

We use the following lemma on Kronecker products to derive several results

concerning the Hessian ∇2`T (θ). The proof of this lemma is straightforward,

thus omitted.

Lemma 3.1. Let Am be a positive semidefinite matrix, Bn be any symmetric

matrix, with m,n > 0, and In an n by n identity matrix. Suppose λmin is the

minimum eigenvalue of Bn and λmax is the maximum eigenvalue of Bn, then for
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any column vector a in R
mn,

λmina′(Am ⊗ In)a ≤ a′(Am ⊗Bn)a ≤ λmaxa′(Am ⊗ In)a .

Based on the results in Lemma 3.1, we give the sufficient and necessary

conditions under which the Hessian ∇2`T (θ) is strictly negative definite. The

proof of the following theorem is given in the Appendix.

Theorem 3.2. The Hessian ∇2`T (θ) for an ESTAR model is strictly negative

definite if and only if {zt − z0, t ∈ {1, . . . T − 1} spans R
p|S|, if and only if

Var (zt, t = 0, . . . , T −1) is positive definite, where Var (zt, t = 0, . . . , T −1) is the

sample covariance matrix of {Zt, t = 0, . . . , T − 1} based on the observed vectors

{z0, z1, . . . , zT−1}.
For the ESTAR models, if the Hessian ∇2`T (θ) is negative definite for a

given value of θ ∈ Θ, then it is negative definite for all values of θ. Thus if

a maximum of the log-likelihood function exists then this maximum is unique,

since the Hessian is a strictly concave function of θ given x.

Now suppose that the Hessian ∇2`T (θ) is only negative semi-definite and at

least one MLE, θ̂, exists. Then by the proof of Theorem 3.2, there exists some

vector a0 such that 〈a0, [1, z
′
t]
′〉 = 0 for all t ∈ {0 . . . T−1}. Now for any trajectory

of the form θ̂ + t(a0 ⊗ β) where β ∈ R
|S|(|S|+1)/2, consider the function M(t) =

`T (θ̂ + t(a0 ⊗ β)). Since the log-likelihood function `T (·) is Lipschitz continuous

and the gradient ∇`T (·) exists everywhere, the function M(t) is continuous with

derivatives everywhere in R. Notice that 〈a0 ⊗ β, [1, z′t]
′ ⊗ wt〉 = 0. From the

expression of `T (·) given in (3.1) we can show that the derivative of M(t) with

respect to t is zero everywhere. Therefore M(t) is a constant function on R. Thus

any point on the trajectory θ̂+t(a0⊗β) maximizes the function `T (θ̂+t(a0⊗β)).

In other words, the MLE is not unique when the Hessian ∇2`T (θ) is only negative

semi-definite. The results on the uniqueness of the MLE are summarized in the

following Corollary.

Corollary 3.3. The maximum likelihood estimate of the vector parameter in an

ESTAR model, if it exists, is unique if and only if the Hessian ∇2`T (θ) is strictly

negative definite for some value of θ.

4. Asymptotic Properties of the MLE

In this section, we prove consistency and asymptotic normality of the max-

imum likelihood estimates. Let us assume that the random vectors {(Xt, . . .,

Xt−p), t ∈ 1, . . . , T } come from a stationary ESTAR model with parameter θ.

Since the stationary time series admits a unique measure, we use EθH(·) to de-

note the expected value of any measurable function H(·) of the random vectors
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{Xt : t ∈ Z}. We use the concept of objective and reference functions to prove

consistency of the MLE. Once consistency is demonstrated, we apply a central

limit theorem for martingales to prove asymptotic normality of the MLE.

4.1. Strong consistency

We prove strong consistency of the MLE instead of asymptotic consistency

or convergence in probability. Winkler (1995) discussed the use of objective func-

tions to prove asymptotic consistency. We demonstrate the strong consistency of

the MLE using strengthened versions of Winkler’s Theorems 13.4.1 and 13.4.2,

and a modified definition of the objective function.

First, we need to give the definitions for objective functions and a reference

function. These functions are described by a set of properties. The parameter

space for the ESTAR models is Θ ⊂ R
d.

Definition 4.1. A reference function is a function g from Θ onto R such that

it has a unique maximum, θ0, and for which there exists a γ > 0 such that

g(θ) ≤ −γ‖θ − θ0‖2
2 + g(θ0), ∀θ ∈ B(θ0, r), where B(θ0, r) is a closed ball with

finite radius r > 0.

Consider a stationary random count process {Xt, t = 1, 2, 3, . . .}. Let X =

(X ′
1, . . . , X

′
T )′, and let x = (x′1, . . . , x

′
T )′ represent a sample path of X.

Definition 4.2. We call a sequence of functions {GT (θ, x), T = 1, 2, 3, . . .}
from Θ × X T onto R objective functions with the reference function g(θ), if for

each sample path x, each GT (θ, x) is a concave function of θ, and GT (θ, x)
a.s.→

g(θ) as T → ∞ uniformly ∀ θ ∈ B(θ0, r), where θ0 is the unique maximum of

g(θ).

From Proposition 3.1, we notice that the log-likelihood function for the pa-

rameters in the ESTAR models is a sum of functions, ln(Pθ((x′t−1, . . . , x
′
t−p), xt)).

We propose some candidate functions for a reference function and a sequence of

objective functions based on the log-likelihood function. Specifically, we define

GT (θ, x) and g(θ) as follows.

GT (θ, x) =
`T (θ) − µ(z0)

T
=

∑T
t=1 ln(Pθ(zt−1, xt))

T
, (4.1)

g(θ) = EµQ(G1(θ, x)) = Eθ0
ln(Pθ(Z0, X1))

= Eθ0

[〈
θ, [1, Z0]

′ ⊗W1

〉
− ln(c(θ, Z0))

]
+
∑

s∈S

ln(hs(x1,s)). (4.2)
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Since {Zt, t ∈ Z} is stationary, we have ∀t > 0,

g(θ) = Eθ0
ln(Pθ(Zt−1, Xt))

= Eθ0

[〈
θ, [1, Z ′

t−1]
′ ⊗Wt

〉
− ln(c(θ, Zt−1))

]
+
∑

s∈S

ln(hs(xt,s)).

Remark 4.1. For a given T > 0, the candidate objective function, GT (θ, x), is

the average contribution of each term in the log-likelihood function. For a given

sample x, maximizing `T (θ) is equivalent to maximizing GT (θ, x).

Remark 4.2. The candidate reference function g(θ) is well defined since ln(Pθ
(Zt−1, Xt)) is a measurable function and we are sampling from the stationary

distribution. Since the likelihood function is positive and bounded on the support

of Xt, (although not uniformly so for all θ), the value of the reference function

for a given θ exists and is finite.

In order to prove the strong consistency of the MLE, we must show that

our chosen candidate reference function is a valid reference function. Based on

Definition 4.1 and Lemma C.0.3 in Winkler (1995), this is the same as proving

the following lemma, the proof of which is omitted.

Lemma 4.1. The candidate reference function g defined by (4.2) is twice dif-

ferentiable and strictly concave with a unique maximum at θ0. Therefore g is a

valid reference function.

Now it remains to show that {GT (θ, x), T = 1, 2, . . . , } is a sequence of

objective functions. For this purpose, we first show some relationship between

the reference function, g and the candidate objective functions {GT (θ, x), T =

1, 2, . . . , }. The results on this relationship are given in the following two lemmas,

where Lemma 4.3 is a stronger version of Lemma 13.4.2 of Winkler (1995). Proofs

are omitted.

Lemma 4.2. For all θ ∈ Θ:

GT (θ, X)
a.s.→ g(θ),

∇`T (θ)

T
= ∇GT (θ, X)

a.s.→ ∇g(θ) and ∇g(θ0) = 0,

∇2 `T (θ)

T
= ∇2GT (θ, X)

a.s.→ ∇2g(θ) = I(θ0), if θ = θ0,

where the convergence is almost surely with respect to µQ, equivalently with re-

spect to µPθ, where ∇g(θ0) = 0 and ∇2g(θ0) = I(θ0).

Lemma 4.3. Let Θ be an open subset of R
d. Suppose that {GT (·, x), x ∈ X ;T ≥

1} and g(·) are Lipschitz continuous in θ with a common Lipschitz constant.
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Suppose further that for every θ ∈ Θ, GT (θ, x)
a.s.→ g(θ) as T → ∞. Then, for

each r > 0 there exists a set A with Prθ0
(A) = 1 such that for all x ∈ A,

limT→∞GT (θ, x) = g(θ) uniformly for θ ∈ B(θ0, r) ∩Θ.

Based on the results in Lemmas 4.2 and 4.3, we have the following.

Lemma 4.4. The functions {GT (θ, x), T ≥ 1} form a sequence of objective

functions.

Assume that we have a family of stochastic processes {Xt, t ∈ Z;Xt ∈ R
|S|}

indexed by θ ∈ Θ and defined on a probability space (Ω,F ,Prθ), with sample

path ω ∈ Ω such that Xt(ω) = xt. Assume that we are sampling from this

process with θ = θ0, where θ0 is the true vector parameter in the interior of Θ.

We can define an estimate

θ̂T = arg max
θ∈Θ

GT (θ, x). (4.3)

If there is more than one maximum choose one from the set. The following

theorem is a stronger version of Lemma 13.4.1 in Winkler (1995).

Theorem 4.1. Let Θ ⊂ R
d be open. If {GT (θ, x)} is a sequence of objective

functions with reference function g, then θ̂T
a.s.→ θ0 as T → ∞.

As we discussed in Remark 4.1, maximizing GT (θ, x) over θ ∈ Θ is equivalent

to maximizing the log-likelihood function `(θ). Therefore θ̂T defined in (4.3) is

a maximum likelihood estimate of the vector parameter θ.

Corollary 4.1. The maximum likelihood estimate θ̂T of an ESTAR model is

strongly consistent, where θ̂T = arg maxGT (θ, x).

4.2. Asymptotic normality

When the ESTAR process defined in (2.1) is stationary, the maximum like-

lihood estimates of the parameters in the model are asymptotically normally

distributed.

Theorem 4.2. The MLE for the ESTAR process, when θ0 is in the interior of

Θ, satisfies

√
T
(
θ̂T − θ0

)
d→N

(
0, I(θ0)

−1
)
,

where I(θ0) is the Fisher information matrix.

One method of proving asymptotic normality relies on the asymptotic nor-

mality of the score function along with a smoothness property of the Fisher
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information. To that end we first demonstrate that the space-time models pos-

sess these properties in the following lemma, then use the results in Theorem

5.2.2 of Sen and Singer (1993, p.209) to prove the asymptotic normality of the

MLE. The proof of the lemma is based on Lemma 4.2 and Corollary 3.2.

Lemma 4.5. The ESTAR process with the true parameter θ0 in the interior of

Θ has a positive definite and finite Fisher information Matrix I(θ0). Moreover,

Eθ0

[
sup

{h:‖h‖≤δ}
‖∇2GT (θ0 + h, x) −∇2GT (θ0, x)‖

]
= ψδ → 0 as δ → 0,

and
√
T∇GT (θ0, x)

d→ N(0, I(θ0)).

These properties in addition to the Fisher information conditions proved in

Theorem 3.1 are sufficient for proving that the maximum likelihood estimates

are asymptotically normal.

We conclude by noting that since the conditions for consistency and asymp-

totic normality do not require that the initial distribution of Z0 be the limiting

distribution, these results also hold for any initial distribution of the ESTAR

process. For example, we may find the MLE of the parameters assuming that

the initial values are zero, and the estimates will still be consistent and asymp-

totically normal.

5. Estimation Methods and Simulation Results

This section discusses estimation methods for the parameters in the ES-

TAR model and present some simulation results. If we know the likelihood of a

given model exactly, then we can determine the maximum likelihood estimator.

However, for the ESTAR models, the exact distribution is not known. At each

time period of our model, there is an intractable constant of proportionality that

depends not only on the parameter values but also the past data values.

In spatial models, where the constant of proportionality depends only on

the parameter values, there are several choices for parameter estimation. For

example, in models where the mean and variances of the conditional distribu-

tion at each lattice site can be calculated from the parameters, the Maximum

Pseudo Likelihood Estimation (MPLE) method (see, e.g., Besag (1974) and Win-

kler (1995)) or the Markov Chain Monte Carlo Maximum Likelihood (MCML)

method (Geyer (1994), Huffer and Wu (1998) and Jagger, Niu and Elsner (2002))

can be used to estimate the parameters.

The MPLE method is so named because the estimates are the parameter val-

ues maximizing the product of the conditional likelihood functions. The MPLE

was first used by Besag (1975) for his auto-logistic models. It is easy to use
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with conditionally specified models, since the conditional distributions are al-

ready given. Let us assume a conditional STAR model with D parameters such

that the conditional density of {Xt,s, t ∈ 1, . . . , T, s ∈ S} given {xm,s : m < t, s ∈
S; xt,u, u 6= s}, with respect to the Lebesgue measure or a counting measure is

fθ,t,s(x) =
ht,s(x) · exp 〈T t,s(x∂{(t,s)}, x),θ〉

ct,s(θ, x∂{(t,s)})
,

where xt is a time series of configurations, on a lattice S of finite size, and θ ∈ Θ

with Θ ⊂ R
D. We use ∂{(t, s)} to represent the space-time neighborhood of

(t, s) and x∂{(t,s)} the vector of values in this neighborhood. Also, for each (t, s),

T t,s(·, ·) is a D-dimensional measurable function of the values. The MPLE is

then

θ̂ = arg max
θ∈Θ

T∑

t=1

∑

s∈S

− ln(ct,s(θ, x∂{(t,s)})) + 〈T t,s(x∂{(t,s)}, xt,s),θ〉.

If a spatial model is shift invariant with finite range, the MPLE of the parameter

vector in the model is asymptotically consistent with increasing domains (Winkler

(1995), Theorem 14.3.1). However, the estimator is not necessarily efficient, and

does not provide standard error estimates.

The MCML method, Geyer (1994), estimates the maximum likelihood when

the formula for a model’s distribution contains an intractable or unknown normal-

izing constant. The MCML method is computationally intensive, and requires an

initial parameter estimate that is reasonably close to the MLE, lest the method

fail to produce any estimate. In the spatial lattice case, Wu (1994) applied this

methodology to determining the parameters in an auto-logistic regression model.

This method is derived by noting that the ratio of likelihood functions can be

estimated using Markov Chain Monte Carlo methods. In this paper, the MCML

method for spatial processes is extended and applied to parameter estimation for

ESTAR models.

For illustrating the MPLE and MCML methods and assessing the final

sample properties of the estimates, we used a lag one (p=1) nearest neighbor

TPSTAR model for simulation and parameter estimation. The site space is

S = {1, . . . ,m} × {1, . . . , n}, and the time dimension is {1, . . . , T} with T > 0.

We denote the random variable at each site as Xt,i,j taking on values xt,i,j, with

t ∈ 1, . . . , T and (i, j) ∈ S. We set the boundary conditions to zero. That is

X0,i,j = Xt,m+1,j = Xt,i,n+1 = Xt,0,j = Xt,i,0 = 0.

The model is expressed as

Xt,i,j |Xs,k,l ∼ tpois(λt,i,j,M),

ln(λt,i,j) = γv(Xt,i−1,j +Xt,i+1,j)+γh(Xt,i,j−1+Xt,i,j+1)+γcXt−1,i,j +α+βzi,j,

with zi,j = sin(ω(i + j)), (5.1)



ESTAR MODELS 587

where tpois(λ,M) is the notation for the right truncated Poisson distribution

with parameter λ and maximum value M . Note that the neighborhood of each

point consists of five lattice points, they are the two nearest horizontal, the two

nearest vertical, and the previous point.

In order to verify that the MCML algorithm works, we performed simulations

on five parameter vectors using the TPSTAR model defined by (5.1). Each

parameter vector consists of {γh, γv , γc, α, β}. The five parameter vectors are

presented in the first column of Table 1. We set the frequency ω = 0.2 for

the simulation, and β = 0.5. The simulation was done on a 40 by 40 array with

T = 5 and boundary conditions set to be zero outside the array, and we initialized

x0 = {x0,i,j} = 0. Moreover, we set the maximum, M , or the truncation value

to 10 for the simulations.

For each given parameter vector, 100 simulations were performed. The Gibbs

sampler was used to produce the samples from Model (5.1). Specifically, given

the initial values x0 = {x0,i,j} = 0 and the boundary conditions, we can generate

sample x1, a vector of length 40 × 40 from the distribution {X1|xt : t < 1} using

the Gibbs sampler. The Gibbs sampler can be used because the ESTAR model

is defined so that conditioned on the past, the distribution at each stage t is

a Gibbs field, determined by its local characteristics. Next, we repeat this for

each value of {t ∈ 1, . . . , T}, and generate a single sample of {Xt|Xs : s < t}.
After T steps the process generates one sample from the joint distribution of

{X1, . . . , XT } given {Xs = xs : s < 1}. This method provides perfect samples

of the process, that is the distribution of samples under this sampling method

follows the TPSTAR process in Model (5.1), under the given parameters and

boundary conditions (see, e.g., Propp and Wilson (1996)).

For each simulation, the five parameters were estimated using both MPLE

and MCML methods. The simulation results are shown in Table 1. The second

and third columns of Table 1 show the MPLE and MCML estimates of the actual

parameters, while the next two columns are the mean, standard deviation of the

parameter estimates based on the 100 simulations. The last column of Table 1

presents the mean of the modified MCML standard error estimates derived from

the estimated Fisher information matrix.

From the results in Table 1, we cannot conclude that the MCML is a better

parameter estimator than the MPLE, as reported in Wu (1994) for the auto-

logistic spatial model. Both the MCML and the MPLE parameter estimates

appeared relatively unbiased as compared to their standard errors. However the

primary reason for using MCML is that, unlike MPLE, it provides reasonable

standard error estimates, Wu (1994). In our simulation, the mean MCML stan-

dard error estimates are within 10% of the actual standard errors, as estimated

by simulation.
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Table 1. MPLE and MCML estimates of the parameters in Model (5.1) based

on 100 simulations.

Mean Standard

Mean of Estimates Standard Deviations Errors

Parameter MPLE MCML MPLE MCML MCML

γv 0.2 0.2038 0.2040 0.0150 0.0156 0.0136

γh 0.2 0.1979 0.1979 0.0152 0.0155 0.0135

γc 0.4 0.4320 0.4189 0.0997 0.0736 0.0652
α -2.0 -2.0113 -2.0075 0.0560 0.0546 0.0588

β 0.5 0.5034 0.4934 0.0648 0.0617 0.0623

γv 0.0 -0.0035 -0.0049 0.0726 0.0719 0.0670

γh 0.0 -0.0030 -0.0021 0.0677 0.0667 0.0670

γc 0.4 0.3920 0.3922 0.0549 0.0553 0.0592

α -2.0 -1.9983 -1.9984 0.0470 0.0465 0.0433
β 0.5 0.5031 0.5034 0.0417 0.0425 0.0453

γv -0.5 -0.5033 -0.5032 0.0921 0.0925 0.1106

γh -0.5 -0.5066 -0.5049 0.0993 0.0967 0.1108

γc 0.4 0.3830 0.3834 0.0725 0.0699 0.0740

α -2.0 -1.9993 -1.9997 0.0463 0.0456 0.0440

β 0.5 0.5033 0.5034 0.0511 0.0518 0.0517

γv 0.0 0.0006 0.0006 0.0025 0.0023 0.0024
γh 0.0 0.0002 0.0003 0.0027 0.0024 0.0024

γc 0.4 0.3984 0.3983 0.0050 0.0049 0.0058

α 1.0 0.9942 0.9941 0.0197 0.0196 0.0222

β 0.5 0.4977 0.4978 0.0144 0.0144 0.0137

γv -0.5 -0.4989 -0.4958 0.0365 0.0342 0.0334

γh -0.5 -0.5097 -0.5065 0.0363 0.0343 0.0343
γc 0.4 0.3998 0.4000 0.0078 0.0074 0.0065

α 1.0 1.0016 1.0006 0.0181 0.0158 0.0167

β 0.5 0.4989 0.4996 0.0198 0.0189 0.0191

6. Conclusions and Discussion

Testing spatial and temporal correlations is an important topic in under-

standing and modeling the structure of a space-time process. One possible ap-

proach for achieving this purpose is model selection. For example, consider two

TPSTAR models with parameters

ln(λt,i,j) = γv(Xt,i−1,j +Xt,i+1,j) + γh(Xt,i,j−1 +Xt,i,j+1) + γcXt−1,i,j , (6.1)

ln(λt,i,j) = γv(Xt,i−1,j +Xt,i+1,j) + γh(Xt,i,j−1 +Xt,i,j+1). (6.2)

Various criteria can be used to compare the two models. If Model (6.2) is cho-

sen instead of Model (6.1), we conclude that the temporal dependence of the
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space-time process {Xt,i,j} is not significant. A similar approach can be applied

to test the spatial dependence of the process. Jagger, Niu and Elsner (2002)

used the Bayesian Information Criterion (BIC) to select models for annual North

Atlantic hurricane activity. The final model they chose showed that both spatial

and temporal dependences were significant in describing the hurricane activity

process. Other procedures of testing spatial and temporal independence may also

be developed. We will pursue this topic in our future research.

The ESTAR models with time varying covariates are non-stationary. For si-

multaneously specified STAR models with nonstationary covariates, for example

Niu and Tiao (1995), it is clear how to separate the model into a determinis-

tic time varying component and a stationary component. This separation may

not be possible for the general ESTAR models with nonstationary covariates,

the theory in this paper only applies to stationary ESTAR processes. Statistical

properties of non-stationary ESTAR models will be investigated in future studies.
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Appendix. Proofs of the Main Results

Proof of Proposition 2.1. Fix t and assume that {Xv , v < t} is known. The

conditional distribution of Xt,s is

Π(xt,s|xv : v < t; xt,u : u 6= s) · cs(θ, zt−1, xt,u : u 6= s)

= exp
{
αsxt,s +

p∑

j=1

∑

u∈S

γj(u, s)xt−j,uxt,s +
∑

u∈S

γ0(u, s)xt,uxt,s + lnhs(xt,s)
}

= exp
{(
αs +

p∑

j=1

∑

u∈S

γj(u, s)xt−j,u

)
xt,s +

∑

u∈S

γ0(u, s)xt,uxt,s + lnhs(xt,s)
}

= exp
{(
α′

s +
∑

u∈S

γ0(u, s)xt,u

)
xt,s + lnhs(xt,s)

}
, (A.1)

where α′
s = αs +

∑p
j=1

∑
u∈S γj(u, s)xt−j,u. The conditional distributions at each

site given the values at the other sites form a family of exponential distributions

with one natural parameter, α′
s +

∑
u∈S γ0(u, s) · xt,u, T1,s(xt,s) = xt,s and

T0,s(xt,s) = lnhs(xt,s).
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Since γ0(u, s) = γ0(s, u) and γ0(s, s) = 0 by the definition in (2.1), based on

the arguments in Section 6.4.2 of Cressie (1993, pp.419-422) the conditional dis-

tributions in (A.1) uniquely specify a Gibbs energy function on the configuration

at time t, up to a constant K(zt−1). We denote the Gibbs energy function of Xt

given zt−1 as Uθ(zt−1, xt) +K(zt−1).

Based on the form of the conditional distribution we have

Uθ(zt−1, xt)

= −
∑

s∈S

(α′
sxt,s + lnhs(xt,s)) −

∑

{u,s∈S}

γ0(u, s)xt,uxt,s

= −
∑

s∈S

(αsxt,s+lnhs(xt,s))−
p∑

j=1

∑

(u,s)∈S2

γj(u, s)xt−j,uxt,s−
∑

{u,s∈S}

γ0(u, s)xt,uxt,s.

This expression closely follows the form given by Cressie (1993, p.421). Now the

joint distribution of the vector Xt given the past exists if the partition function

is finite. Since Xt has (M + 1)|S| configurations, a finite number, the partition

function is finite and always exists. Thus the distribution of Xt given the past,

{Xt−1, . . . Xt−p}, is a Gibbs field.

Proof of Theorem 2.2. Suppose a space-time model defined in (2.1) is not

identifiable. Then there exist two vector parameters θ1, θ2 ∈ Θ such that the

distributions of all finite combinations of {Xt, t ∈ Z} are the same. This im-

plies that the conditional distributions must be the same as long as the joint

distributions are positive, i.e., the model is not conditionally identifiable.

Since the process {Xt, t ∈ Z} is a Markov chain of order p, for any initial

distribution of {X0, . . . , Xp−1} the joint distribution of {Xp, . . . , X2p−1} is pos-

itive by Theorem 2.1. Thus we can look at the conditional distribution of X2p

given {Xp, . . . , X2p−1}. Since the conditional distribution must be the same for

any value of X2p, let X2p,s = 0 ∀s ∈ S, then for each value of Xp, . . . , X2p−1 we

must have Pr(X2p = 0|Xp, . . . , X2p−1) = c(θ1, Xp, . . . , X2p−1)
−1 = c(θ2, Xp, . . .,

X2p−1)
−1. Now this implies that the conditional potential functions given in

Proposition 2.1 must be the same for the two sets of parameters. Thus, for all

possible values of (Xp, . . . , X2p),

Uθ1
((X ′

2p−1, . . . , X
′
p), X

′
2p) = Uθ2

((X ′
2p−1, . . . , X

′
p), X

′
2p).

Now θ1 and θ2 differ in at least one component, either αs or γj(s, u).

First assume that they differ for αs, say αs1 6= αs2. In this case, we choose

{Xp,s = 0, . . . , X2p−1,s = 0;∀s ∈ S}, {X2p,u = 0;u 6= s}, and X2p,s = 1. Then

Uθ1
((X ′

2p−1, . . . , X
′
p), X

′
2p) = −αs1 · 1 + log hs(1) and Uθ2

((X ′
2p−1, . . . , X

′
p), X

′
2p)

= −αs2 · 1 + log hs(1). These must be the same for both αs1 and αs2, but this is

impossible, since hs(1) > 0.
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Now suppose Uθ1
((X ′

2p−1, . . . , X
′
p), X

′
2p) and Uθ2

((X ′
2p−1, . . . , X

′
p), X

′
2p) dif-

fer for some component γj(s, u), say γj,1(s, u) 6= γj,2(s, u). In this case, we
choose X2p−j,u = X2p,s = 1 and Xt,v = 0 for any other vector components in
{X2p−1, . . . , Xp}. Then for j > 0, Uθ1

((X ′
2p−1, . . . , X

′
p), X

′
2p) = −γj,1(s, u) and

Uθ2
((X ′

2p−1, . . . , X
′
p), X

′
2p) = −γj,2(s, u) and, for j = 0,

Uθ1
((X ′

2p−1, . . . , X
′
p), X

′
2p) = −αs − αu − log(hs(1)hu(1)) − γ0,1(s, u),

Uθ2
((X ′

2p−1, . . . , X
′
p), X

′
2p) = −αs − αu − log(hs(1)hu(1)) − γ0,2(s, u).

In either case, these must be the same for both γj,1(s, u) and γj,2(s, u), but this
is impossible, since both hs(1) and hu(1) are greater than zero. Thus, our model
is conditionally and unconditionally identifiable.

Proof of Theorem 3.1. From the previous lemma, we know that the log-
likelihood function is the sum of terms Pθ(z, y). Each of these terms is a con-
ditionally generalized auto-distribution. Since this is an exponential distribution
given any state z, each term satisfies the FI regularity conditions. Thus the
log-likelihood function, being a finite sum of these distributions, satisfies the FI
regularity conditions and, for each z0, the set C is the set of all sample paths
{z0, x1, . . . , xT }. It should be noted that if M is not a fixed parameter these
conditions cannot be met, since the support for the distribution is not fixed.

The second condition can be proved by showing that the first three deriva-
tives of the log-likelihood function are bounded globally, for fixed T , M and S.
First we find the derivatives of the conditional constant c(θ, zt−1). By (3.2), we
have

∂ ln(c(θ, zt−1))

∂θ

=

∑
xt∈{0,...,M}|s|([1, z

′
t−1]

′ ⊗ wt) exp
(〈

θ, [1, z′t−1]
′ ⊗ wt

〉∏
s∈S hs(xt,s)

)

c(θ, zt−1)

= Eθ([1, z′t−1]
′ ⊗Wt|zt−1) = [1, z′t−1] ⊗ Eθ(Wt|zt−1).

Now in general we have

∂n ln(c(θ, zt−1))

∂θn = [1, z′t−1]
n ⊗ κn(θ, zt−1),

where κn(θ, zt−1) is the cumulant of order n for Wt|zt−1 under θ. For n = 2 or
n = 3 this is the same as the second and third central moment. It should be
noted that the cumulant of order n is a symmetric covariate tensor of order n.

Then, by the expression of `T (θ) in (3.1), the first three derivatives of the
log-likelihood function with respect to θ are

∇`T (θ) =
T∑

t=1

(
[1, z′t−1]

′ ⊗ wt −
∂(ln(c(θ, zt−1)))

∂θ

)
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=
T∑

t=1

(
[1, z′t−1]

′ ⊗ wt − Eθ([1, z′t−1]
′ ⊗Wt|zt−1)

)

=
T∑

t=1

(
[1, z′t−1]

′ ⊗
{
wt − Eθ(Wt|zt−1)

})
, (A.2)

∇2`T (θ) = −
T∑

t=1

{(
[1, z′t−1]

′[1, z′t−1]
)
⊗ Var θ(Wt|zt−1)

}
, (A.3)

∇3`T (θ) = −
T∑

t=1

(
[1, z′t−1]

3 ⊗ Eθ([Wt − Eθ(Wt|zt−1)]
3|zt−1)

)
. (A.4)

The bounds on the derivatives are determined by finding the maximum value

of the derivative on the line for each path x:

‖∇n`T (·)‖

= sup
θ0,θ1:‖θ1‖2

=1

dn`T (θ0 + tθ1)

dtn
≤ T



√

(p|S| + 1|)(|S| + 1)|S|
2

·M3




n

.

Thus the log-likelihood function and its first two derivatives are Lipschitz

continuous in θ, with the Lipschitz constant for each derivative being a global

constant depending only on T and M . Furthermore, if we are interested in

`T (θ)/T the Lipschitz constant depends only on M and |S|.
Finally, the log-likelihood function is analytic, that is, `T (θ) has a Taylor

expansion in an open ball about each θ ∈ Θ. Since c(θ, zt−1) is a finite sum of

exponential functions it is analytic. Now for any value of zt−1, or θ, this sum is

strictly positive. Since the log(x) is an analytic function for x > 0, each term

in the log-likelihood expression is analytic, using a power expansion. Thus the

log-likelihood is analytic about every θ ∈ Θ.

Proof of Theorem 3.2. Since the conditional distribution is exponential and

identifiable for every zt−1, we have by Lemma 13.2.1 (c) of Winkler (1995) that

the conditional covariance matrix Var θ(Wt|zt−1) is positive definite for all zt−1

and θ. Now let

λmin(θ) = min
zt−1∈{0,...,M}p|S|

eigenvalue
(
Var θ(Wt|zt−1)

)
, so that λmin(θ) > 0.

λmax(θ) = max
zt−1∈{0,...,M}p|S|

eigenvalue
(
Var θ(Wt|zt−1)

)
,

λ∗min = min eigenvalue
( T∑

t=1

[1, z′t−1]
′[1, z′t−1]

)
≥ 0.
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Since each term [1, z′t−1]
′[1, zt−1] is positive semidefinite, we have by Lemma 3.1

that for every a ∈ R
(p|S|+1)(|S|(|S|+1)/2),

a′∇2`T (θ)a ≤−λmin(θ)a′
{ T∑

t=1

([1, z′t−1]
′[1, z′t−1]) ⊗ I

}
a

= −λmin(θ)a′
{( T∑

t=1

[1, z′t−1]
′[1, z′t−1]

)
⊗ I

}
a (A.5)

≤−λ∗minλmin(θ)‖a‖2
2,

where I is the identity matrix with dimension |S|(|S| + 1)/2.

Now let b be the normalized eigenvector associated with λ∗
min. For any

nonzero vector c ∈ R
(p|S|+1)(

|S|(|S|+1)
2

), let a0 = b ⊗ c so ‖a0‖2 = ‖c‖2. By

Lemma 3.1

0 ≥ a′
0∇2`T (θ)a0 ≥ −λmax(θ)a′

0

{( T∑

t=1

[1, z′t−1]
′[1, z′t−1]

)
⊗ I

}
a0

= −λmax(θ)b′
( T∑

t=1

[1, z′t−1]
′[1, z′t−1]

)
b · c′Ic

= −λmax(θ)λ∗min‖c‖2
2 .

If λ∗min = 0 there exists a nonzero vector, a0, such that a′
0∇2`T (θ)a0 = 0.

Thus, a′∇2`T (θ)a < 0 for all a 6= 0 if and only if λ∗min > 0, which is true if

and only if the determinant of
∑T

t=1[1, z
′
t−1]

′[1, z′t−1] is greater than 0 or, equiva-

lently, the sample covariance matrix of {Zt−1 : t ∈ {1, . . . T}} is positive definite,

since

det (Var ({zt−1 : t ∈ {1, . . . T}})) = det
(∑T

t=1[1, z
′
t−1]

′[1, z′t−1]

T

)
.

Moreover,
∑T

t=1[1, z
′
t−1]

′[1, z′t−1] is positive definite if and only if [1, zt−1] : t ∈
{1, . . . , T} spans the space R

p|S|+1, which is true if and only if zt − z0 : t ∈
{1, . . . , T − 1} spans R

p|S|.

Proof of Theorem 4.1. We need a set A with Prθ0
(A) = 1 such that, for any

x ∈ A and every ε > 0, there exists a T (x, ε) where θ̂T ∈ B(θ0, ε) whenever T >

T (x, ε). We choose A to be the set of x ∈ X where GT (θ, x)
a.s.→ g(θ) uniformly for

θ ∈ B(θ0, r)∩Θ. Since GT (θ, x) is a sequence of objective functions, Prθ0
(A) =

1. Since θ0 is in the interior of the open set Θ, we can choose ε > 0, with ε < r,

so that B(θ0, ε) ⊂ B(θ0, r) ∩Θ.

As g(θ) is a reference function, there exist both γ > 0 and r > 0 such that, for

any θ on the boundary ∂B(θ0, ε) of the ball B(θ0, ε), we have g(θ) ≤ g(θ0)−γε2.
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Now since GT (θ, x) is a sequence of objective functions, GT (θ0, x) converges

uniformly to g(θ) for θ ∈ B(θ0, r). Thus, for all θ ∈ B(θ0, r) there exists

a T (ε, x) such that GT (θ, x) < g(θ0) − γε2/2 and g(θ0) − γε2/2 < GT (θ0, x)

whenever T > T (ε, x).

In particular, the above two inequalities are true for all θ ∈ ∂B(θ0, ε). This

implies that GT (θ, x) < GT (θ0, x) whenever T > T (ε, x). This fact can be

extended to all elements in Θ \ B(θ0, ε) by the concavity of GT (·, x). Thus we

have θ̂T ∈ B(θ0, ε) whenever T > T (ε, x).
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