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Abstract: We present a family of spatio-temporal models which are geared to pro-

vide time-forward predictions in environmental applications where data is spatially

sparse but temporally rich. That is measurements are made at few spatial locations

(stations), but at many regular time intervals. When predictions in the time di-

rection is the purpose of the analysis, then spatial-stationarity assumptions which

are commonly used in spatial modeling, are not necessary. The family of models

proposed does not make such assumptions and consists of a vector autoregressive

(VAR) specification, where there are as many time series as stations. However, by

taking into account the spatial dependence structure, a model building strategy is

introduced which borrows its simplicity from the Box-Jenkins strategy for univari-

ate autoregressive (AR) models for time series. As for AR models, model building

may be performed either by displaying sample partial correlation functions, or by

minimizing an information criterion. A simulation study illustrates the gain re-

sulting from our modeling strategy. Two environmental data sets are studied. In

particular, we find evidence that a parametric modeling of the spatio-temporal cor-

relation function is not appropriate because it rests on too strong assumptions.

Moreover, we propose to compare model selection strategies with an out-of-sample

validation method based on recursive prediction errors.

Key words and phrases: Accumulated prediction errors, spatio-temporal correla-

tion, partial correlation, vector autoregression.

1. Introduction

In this article we present a model building strategy designed to work within

a family of vector autoregressive models for time series being recorded at specific
spatial locations. The methodology has been developed with environmental ap-

plications in mind where measurements on a variable are made at regular time

intervals and at several stations located within a specific area. More specifically,
we focus on situations were measurements are available at a few stations −the

spatio-temporal data is sparse in space but rich in time. We put the discussion

into concrete form with two examples treated previously in the literature.
The first data set we consider consists of average daily wind speeds mea-

sured at 11 synoptic meteorological stations located in Ireland during the period

1961-78, 6,570 observations per location. Gneiting (2002) used this data set to
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illustrate the lack of realism implied by the separability assumption, where the

correlation function is written as a product of a purely spatial correlation function

and a purely temporal correlation function. Modeling the space-time correlation

by an appropriate parametric family of functions is inspired by the geostatis-

tical tradition where spatial dependences are of main interest. Such models

make strong spatial stationarity assumptions: typically isotropy is assumed so

spatial correlations are a function only of the distance between stations. When

spatio-temporal correlation functions are considered, an isotropy-like assumption

is typically made, where the relative location of the stations is again considered

as irrelevant; see, e.g., Mardia and Goodall (1993) and Host, Omre and Switzer

(1995). These spatial stationarity assumptions are mainly appropriate for data

sets for which they can be checked, and when the purpose is to obtain predictions

at spatial locations where there are no measurements available. In order to apply

the geostatistical approach to environmental space-time data, many efforts have

been made to introduce transformations that achieve spatial stationarity (e.g.,

Sampson and Guttorp (1992) and Guttorp, Meiring and Sampson (1994)) or by

constructing flexible enough covariance models, e.g., by allowing non-separable

covariance functions, see Gneiting (2002). A geostatistical inspired analysis for

spatio-temporal data which makes neither spatial stationarity nor separability

assumptions was recently proposed by Stroud, Müller, and Sansó (2001). Their

approach is flexible but is relevant for data which is rich both in time and in

space. Some other spatio-temporal data analyses are based on methods that do

not require spatial stationarity assumptions, see e.g., Wikle and Cressie (2000)

and Huang and Hsu (2004). Several methods for estimating the nonstationary

spatial covariance function when data are rich in space have been proposed, e.g.,

Obled and Creutin (1986), Higdon (1998) and Fuentes (2002).

A spatio-temporal data set with measurements available only at a few sta-

tions was analyzed in Tonellato (2001). Carbon monoxide atmospheric concen-

trations were observed at four stations located in the city of Venice. For each

station 300 hourly records made in September 1995 are available. The purpose

of Tonellato’s analysis was to provide forecasts based only on past observations

made at the different locations. This was achieved with a multivariate time series

state space model together with the Bayesian inferential paradigm. Tonellato’s

model assumes isotropy. This can be avoided with the Kalman filter proposed in

Wikle and Cressie (1999).

When data sets are sparse in space, multivariate time series models are in-

deed most flexible to provide time-forward predictions taking into account spatio-

temporal dependencies. We introduce in this paper a modeling approach which

avoids making any spatial stationarity assumptions. We use vector autoregres-

sive (VAR) models, and propose a model building strategy which borrows its
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simplicity from the widely applied model selection methods used for autoregres-
sive (AR) models for univariate time series (Box and Jenkins (1976)). For AR
models, the selection problem is crucially simplified because of the natural nest-
edness of the models: time lags for the time series are introduced in the model
sequentially and only p + 1 models need to be visited, where p is the maximum
time lag. In a general vector autoregressive model this nesting does not exist,
but can be retrieved by considering a space-time hierarchy which is often almost
as natural as the purely temporal hierarchy.

The article is set up as follows. Section 2 describes vector autoregressive
models with a spatial structure. Theory related to the inference on parameters
is available in the literature for general VAR models. The necessary stationarity
assumptions are described. Crucially, spatial stationarity is not a necessary as-
sumption and a different model can be built for each station. Temporal trends
present in the data can be estimated and/or removed in a classical manner. The
model building strategy that we then introduce is the main idea in the paper,
and it is essential since it makes the VAR family of models relatively simple and
natural to use for the environmental applications of interest. A simulation study
illustrates the gain resulting from our modeling strategy. Our modeling approach
is also applied to the Venician carbon monoxide data in Section 2. In Section 3,
we perform a correlation analysis on the Irish wind data set which allows us to
investigate isotropy and spatio-temporal correlation symmetry assumptions. Our
analysis indicates that the latter assumption is not fulfilled for this application.
We also show the flexibility of our models compared to the direct modeling of the
space-time correlation function. Both modeling approaches are useful when used
on the appropriate type of data. In Section 4 we focus on predictive performance
and use an out-of-sample validation technique to compare different modeling
strategies, both on the Venician carbon monoxide and the Irish wind data.

2. Vector Autoregressive Models with Spatial Structure

The models developed in this section are specifically designed for the analysis
of spatio-temporal data sets with the purpose of providing time-forward predic-
tions at given spatial locations. Our aim is to provide predictions based on a
minimum of assumptions.

2.1. Time-stationary models

We assume that observations z(si, t) are made at locations (stations) si,
i = 1, . . . , N , and times t = 1, . . . , T . A predictive model for the vector z t =
(z(s1, t), . . . , z(sN , t))′ is

zt − β =
p

∑

i=1

Ri(zt−i − β) + εt, (1)
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where β = (β(s1), . . . , β(sN ))′ is a vector of spatial effects (spatial trend), Ri,
i = 1, . . . , p, are unknown N×N parameter matrices, and εt is an N -dimensional
white noise or innovation process, E(εt) = 0, E(εtε

′

t) = Σε, and E(εtε
′

u) = 0 for
u 6= t. This model is appropriate once temporal trends have been removed, see
the discussion in the next section.

The model (1) is a vector autoregressive (VAR) model commonly used in
multivariate time series analysis (e.g., Lütkepohl (1991) and Peña, Tiao and
Tsay (2001)). When zt is univariate, (1) is simply called an autoregressive (AR)
model. The deterministic dynamic system defined by (1) when the error term
εt is dropped −also called the skeleton of the model− is said to be stable if its
reverse characteristic polynomial has no roots in or on the complex unit circle,
i.e.,

det(IN − R1x − . . . − Rpx
p) 6= 0, for x ∈ C, |x| ≤ 1, (2)

where IN denotes the N × N identity matrix. The stability property ensures
that the iteration of the dynamic system converges to a constant. Stability is
an important property since it implies time-stationarity of the stochastic pro-
cess (e.g., Lütkepohl (1991), Peña et al. (2001)). We write E(z t) = µ and
Cov(zt, zt−τ ) = Γz(τ), for all t and τ = 0, 1, . . .. The covariance matrix Γz(τ)
can then be computed from the parameter matrices R1, . . . , Rp and Σε. For
instance, when p = 1, we have vec(Γz(0)) = (IN2 − R1 ⊗ R1)

−1vec(Σε) and
Γz(τ) = Rτ

1Γz(0), where vec(·) denotes the operator vectorizing a matrix.
Estimation of the parameters in (1) can be carried out with maximum like-

lihood (if distributional assumptions are made), with least squares or with mo-
ments estimators (Yule-Walker type). The theory related to such estimators is
exposed in Lütkepohl (1991, Chap.3) and Peña et al. (2001, Chap.14), and is not
reproduced here. It is, however, worth mentioning that robust estimation of the
parameters may be obtained by using robust estimators of moments (Ma and
Genton (2000)) together with Yule-Walker estimating equations, as proposed in
de Luna and Genton (2002). Estimation of the parameters can be carried out for
all stations simultaneously, or station-wise in an equivalent manner. However,
model building must be performed separately for each station, see Section 2.3.

An important property of the presented models is that they do not assume
any spatial stationarity, isotropy for instance. Such assumptions have often been
made in the spatio-temporal literature, for instance to develop space-time AR-
MAX models (Pfeifer and Deutsch (1980) and Stoffer (1986)). For the applica-
tions of interest in this paper, spatial-stationarity is an over-restrictive assump-
tion.

2.2. Spatio-temporal trends

In the univariate time series literature two types of trends are common:

deterministic trends −typically functions of time− and stochastic trends, see, e.g.,
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Dagum and Dagum (1988) and references therein. Deterministic trends can often

be removed by differencing with ∇d, the classical time series difference operator

of order d. For instance, we have ∇z(si, t) = z(si, t) − z(si, t − 1),∇2z(si, t) =

(z(si, t) − z(si, t − 1)) − (z(si, t − 1) − z(si, t − 2)), and so on. Model (1) can,

therefore, be used after very general types of spatio-temporal trends have been

removed. For instance, a natural deterministic trend specification is the following:

z(s, t) = µ + g(s, t) + y(s, t),

where y(s, t) is a time stationary process. Then ∇z(s, t) = g(s, t) − g(s, t − 1) +

∇y(s, t), where ∇y(s, t) is a time stationary process by definition. Thus ∇z(s, t)

can be modeled by (1) if β(s) = g(s, t)−g(s, t−1) is a function of s only. This, we

believe, will happen most often in practice, at least approximately. Indeed, it will

happen as soon as g(s, t) is a polynomial function in t with coefficients possibly

dependent on s. A simple example, for which a difference of order one will suffice,

is g(s, t) = γ1(s) + γ2(s)t. In other words, differencing eliminates deterministic

polynomial time trends interacting with a spatial trend. Any spatio-temporal

trend g(s, t) which is well-approximated by a polynomial function in t can be, at

least approximately, handled by time differencing. Moreover, the process y(s, t)

above could be thought of as having a stochastic trend, for instance z(s, t) may

be an integrated (in time) process. In the spatial dimension, differencing has also

been suggested in order to remove trends, see e.g., the intrinsic random functions

of order k, IRF-k, proposed by Matheron (1973).

Periodic time trends or cycles may also be tackled by taking differences. For

instance, observations taken monthly are typically treated through ∇12z(s, t) =

z(s, t) − z(s, t − 12). When other variables are observed at the same locations

and times, these may also be used to model trends by regressing on them.

Another popular approach consists in modeling a deterministic trend with a

weighted sum of known basis functions, where the weights are typically estimated

by regression. For example, periodic functions can be used to account for sea-

sonal effects along the time axis, and polynomials can be used to model smooth

variations in space. Further discussions can be found in the review article by

Kyriakidis and Journel (1999).

2.3. Model building and checking

Although the model presented in Section 2.1 is essentially a VAR model,

the spatial structure of the data is informative and, in particular, the parameter

matrices Ri’s will typically have a specific structure.

We therefore introduce a model building strategy to identify zeros in the

matrices Ri of (1). The N rows of these matrices correspond to the N locations

at which time series are observed. These N stations must be modeled separately
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if no spatial-stationarity assumption is to be made. For each station s, we have a

covariate selection problem where, for the response z(s, t), the available predictors

are the time-lagged values at all stations, i.e., z(si, t − j), i = 1, . . . , N and

j = 1, . . .. This would be a complex model selection problem if all lagged values

at all stations had to be considered as potential predictors, since then the number

of potential models would rapidly explode with the number of stations and the

time frequency. However, by taking into account the spatio-temporal structure,

it becomes possible to define an ordering with which to sequentially introduce

the predictors in the model for z(s, t). Such an ordering is used in univariate

time series models where for explaining xt (a variable observed at time t) the lag

one variable xt−1 is considered first, then the lag two xt−2, and so forth.

In the spatio-temporal context we propose to use a natural ordering defined
as follows. To explain z(s, t), consider predictors in the following order

z(s, t−1), z(s(1), t−1), z(s(2), t−1), . . . , z(s(N−1), t−1), z(s, t−2), z(s(1), t−2), . . . ,

(3)
where s(1), . . . , s(N − 1) is an ordering of the stations, for instance, in ascending

order with respect to their distance (using a given metric) to s. This ordering

of the stations, and thereby the covariates, is most clearly explained graphically,

see Figure 1. Other orderings can be considered as well, for instance orderings

motivated by physical knowledge about the underlying process, see the Irish wind

speed application in Section 3.

Figure 1. A schematic representation of the ordering of the stations (3).



PREDICTIVE SPATIO-TEMPORAL MODELS 553

The fact that predictors can be entered in the model sequentially simplifies

the model building stage and several strategies may be followed to know how

many of these predictors should be used. A popular technique in time series

modeling is to look at partial autocorrelations. For the spatio-temporal mod-

els under consideration, and with a given ordering of the predictors, we can

straightforwardly generalize this time series technique by looking at partial cor-

relations along the ordering of predictors. For three random variables x, z and

y, the latter possibly vector-valued, the partial correlation of x and z given y is

Corr(x, z|y) = Corr(x − P (x|y), z − P (z|y)), where Corr(x, z) denotes the cor-

relation between x and z, and P (x|y) is the best linear predictor of x given y.

This partial correlation has the property that it is equal to zero when x and z

are independent conditional on y.

Renaming the sequence (3) as

x1 = z(s, t − 1), x2 = z(s(1), t − 1), . . . , xN = z(s(N − 1), t − 1),

xN+1 = z(s, t − 2), xN+2 = z(s(1), t − 2), . . . , x2N = z(s(N − 1), t − 2),

. . . ,

we can define a partial correlation function (PCF) for station s as ρs(h) =

Corr(z(s, t), xh|x1, . . . , xh−1).

The usefulness of the PCF for model selection is now clarified. Define h1

to be such that ρs(h1) 6= 0 and ρs(h) = 0 for h1 < h ≤ N . Similarly, a value

hi can be defined for each time lag i, such that ρs(hi) 6= 0 and ρs(h) = 0

for hi < h ≤ iN . The orders hi’s can be identified by looking at the sample

partial correlation function ρ̂s(h) = Ĉorr(z(s, t) − P̂ (z(s, t)|x1, . . . , xh−1), xh −

P̂ (xh|x1, . . . , xh−1)). An approximate test for ρs(h) = 0 is obtained by noting

that, under joint normality of the variables, ρ̂s(h)
√

(n − h)/(1 − ρ̂s(h)2) is t-

distributed with n − h degrees of freedom, where n denotes the sample size

utilized; see, e.g., Krzanowski (1988, Sec.14.4). The normality assumption is

fairly natural when linear models are utilized. This test statistic can be used to

derive confidence intervals for ρs(h) = 0, see Section 2.4.

Identification strategy

Step 0: Choose one of the observed sites s.

Step 1: Identify h1 by looking at the sample PCF ρ̂s(h), h = 1, . . . , N .

Step 2: Identify h2 by looking at the sample PCF ρ̂s(h), h = N + 1, . . . , 2N ,

when xh1+1, . . . , xN have been discarded as unhelpful in explaining

z(s, t) in the previous step.

Step 3: Identify h3 by looking at the sample PCF ρ̂s(h), h = 2N + 1, . . . , 3N ,

when xh1+1, . . . , xN and xh2+1, . . . , x2N have been discarded as unhelp-

ful in explaining z(s, t) in the previous steps.
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Step 4: Step 3 is repeated in a similar manner for all necessary time lags in

order to identify h4, h5, etc.

Step 5: Repeat the previous steps for all observed sites.

The deletion of uninteresting predictors at each time lag improves on effi-

ciency by avoiding the estimation of zero coefficients. However, this procedure

does not avoid the estimation of all zero coefficients since. This problem is, how-

ever, also present in the identification of the order of linear AR models. For

such models, all parameters are estimated up to a given time-lag by convention.

This is convenient since it avoids chasing zero coefficients by using a sequence of

t-tests.

An alternative to the use of the PCF is the use of an automatic model selec-

tion criterion in each step of the identification strategy. AIC (Akaike information

criterion, Akaike (1974)) or BIC (Bayesian information criterion, Schwarz (1978))

may be used, the former being usually preferred for predictive purposes.

Finally, model checking is commonly done by looking at residuals for signs

of deviation from model assumptions. A feature that can be controlled for is, for

instance, whether they are correlated in time.

2.4. Simulation results

We perform a simulation study in order to investigate the gain resulting from

our model building strategy compared to the approach without identification of

zeros in the Ri’s. We consider the N = 11 spatial locations of the Irish wind

speed data and a spatial VAR(1) model without trend, i.e., the model (1) with

p = 1 and β = 0. We define a white noise process εt with a spatial stationary

and isotropic exponential correlation function given by (Σε)ij = exp(−‖si −

sj‖/100), i, j = 1, . . . , 11. The matrix R1 is such that for each station si, i =

1, . . . , 11, the corresponding (lag one) coefficients are 0.5, whereas for the two

nearest stations s(1) and s(2), the coefficients are 0.2 and 0.1, respectively. The

remaining coefficients in R1 are equal to zero. This sparsity is quite typical for

environmental applications, see e.g., Section 2.5.

We simulate T + 1 = 201 observations from this VAR(1) model and predict

the observations at time T +1 for each station, i.e., z(si, 201), i = 1, . . . , 11, with

two spatial VAR(1) models identified and fitted based on the first T observations.

The first VAR(1) model (denoted SVAR-AIC) is obtained by identifying zeros in

the matrix R1. For this purpose, we use the identification strategy described in

Section 2.3 together with an ascending distance order and the automatic model

selection criterion AIC. The second model is the complete VAR(1) model (de-

noted SVAR-COM) where all coefficients in R1 are estimated. We generate 10,000

replicates.
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We compute the mean squared error of prediction (PMSE) for the two

prediction strategies SVAR-AIC and SVAR-COM, that is, for the 11 stations

i = 1, . . . , 11, we compute
∑10000

j=1 (zj(si, 201) − ẑj(si, 201))
2 where j indexes the

simulated replicates, and ẑj(si, 201) is either the prediction obtained with SVAR-

AIC or SVAR-COM. For each station, the relative difference in PMSE can be

compared with an F -test. The results are given in Table 1. We observe that

the strategy SVAR-AIC has better prediction performance for all stations, and

that the improvement in PMSE is about 3%. Moreover, the p-values are all close

to 5% giving statistical significance to the observed difference in PMSE. This

is a meaningful improvement in most applications, e.g., when predicting wind

speeds for the production of renewable energy, see Alexiadis, Dokopoulos and

Sahsamanoglou (1999). Indeed, even small improvements in mean squared error

of prediction may result in substantial financial gains.

A global measure of prediction performance is given by averaging
∑11

i=1(z(si,

201) − ẑ(si, 201))
2 over the 10,000 replicates. The ratio of the global PMSE for

SVAR-AIC and SVAR-COM is 1.032 (that is, a gain of 3.2%).

Finally, note that the improvement in prediction performance depends on

the sparsity of the matrices in the generating model VAR, and on the sample

size. If the matrices have few zeros and the observed sample is large, then

the identification strategy will not improve prediction performance significantly.

On the other hand, with sparse matrices our strategy may result in important

improvement in PMSE.

Table 1. Relative mean squared error of prediction (PMSE) for the two

prediction strategies SVAR-AIC and SVAR-COM at the 11 stations and

associated p-values.

stations 1 2 3 4 5 6 7 8 9 10 11

PMSE(SV AR−COM)
PMSE(SV AR−AIC) 1.033 1.029 1.032 1.029 1.036 1.037 1.032 1.032 1.029 1.032 1.031

p-values 0.053 0.079 0.056 0.079 0.038 0.035 0.057 0.056 0.077 0.056 0.061

2.5. Carbone monoxide in Venice

The data set available has T = 300 hourly observations of atmospheric con-

centration (micrograms per cubic meter) of carbon monoxide (CO), recorded in

September, 1995 at N = 4 monitoring stations located in Mestre (Venice, Italy).

This data set has been analyzed by Tonellato (2001) in a Bayesian dynamic linear

model framework.

Our methodology is particularly well suited for this application for several

reasons. First, Italian law requires public authorities to produce short-term fore-

casts of air pollutant concentrations at locations where monitoring stations are
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present, that is, spatial interpolation is not of prime interest. Second, our model

does not make spatial stationarity assumptions, in contrast with Tonellato (2001)

who used a spatial stationary isotropic exponential correlation function. Such

assumptions are arbitrary because, with only four stations, it is not possible to

assess their validity. Moreover, wind speed and direction can be expected to

influence air pollutant concentrations in a nonstationary and anisotropic way.

There are a few missing values in the data set. Following Tonellato (2001),

they are replaced by the mean of the values at the same station and hour over

the sample period. The data is plotted in Figure 2 according to the four different

locations, as depicted in Figure 3. We take the logarithm of the observations,

thereby stabilizing the variance. Stations 2 and 4 are located along streets with

a high intensity of traffic, whereas Station 1 is located in a garden, and Station

3 is in a pedestrian area. Therefore, there are differences in CO levels among the

stations. This spatial trend is readily included in our models since each station

is allowed to have its own level, β, in model (1). Time trends must, on the other

hand, be accounted for previous to fitting the time-stationary model (1). We

follow Tonellato (2001) and estimate a trend for each station by regressing on

a family of daily harmonics. We then subtract these temporal trends from the

data.
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Figure 2. The time series of CO concentrations at the 4 stations.



PREDICTIVE SPATIO-TEMPORAL MODELS 557

•

•

•

•

P
S
fra

g
re

p
la

c
e
m

e
n
ts

-3-2-10

1

2

3

4

56

2
0

4
0

5
0

6
0

8
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

2
5
0
0
0
0

3
0
0
0
0
0

4
0
0
0
0
0

S
ta

tio
n

1
S
ta

tio
n

2
S
ta

tio
n

3
S
ta

tio
n

4
T

im
e

(h
o
u
rs)

(a
)

(b
)

(c)
(d

)

C
O

c
o
n
c
e
n
tra

tio
n
s

-0
.2

-0
.4

-0.5

-0
.6

0
.0

0.0

0
.1

0
.2

0
.3

0
.4

0.5
0
.6

0
.7

0
.8

0
.9

1.0

Locations of stations

tim
e

t
−

1
tim

e
t
−

2
tim

e
t
−

3

sta
tio

n
P

C
F

d
ista

n
ce

(
m

)

co
rrela

tio
n

S
V
A

R
-B

IC
(d

ist
o
rd

e
r)

v
s

S
V
A

R
-A

IC
(d

ist
o
rd

e
r)

S
V
A

R
-B

IC
(w

in
d

o
rd

e
r)

v
s

S
V
A

R
-A

IC
(d

ist
o
rd

e
r)

S
V
A

R
-A

IC
(w

in
d

o
rd

e
r)

v
s

S
V
A

R
-A

IC
(d

ist
o
rd

e
r)

A
R

-A
IC

v
s

S
V
A

R
-A

IC
(d

ist
o
rd

e
r)

Figure 3. The locations of the 4 stations (distance in kilometers).

As a benchmark we first perform an analysis ignoring the spatial structure

of the data set. That is, the four time series are analyzed separately by fitting an

autoregressive model to each of them. Using the Bayesian information criterion

we obtain the models described in Table 2.

Table 2. Univariate autoregressive models identified with BIC for the time

series observed at each station. The maximum lag allowed for with BIC was

30. Parameters are estimated by least squares. The models are written in

matrix form as a VAR(2) model to facilitate the comparison with the VAR

model with spatial structure identified in Table 3. The residual correlation

matrix assumes that the time series are independent of each other.

R̂1 R̂2 Σ̂ε









0.64 0 0 0

0 0.67 0 0

0 0 0.48 0

0 0 0 0.53

















0 0 0 0

0 0 0 0

0 0 0.19 0

0 0 0 0.17

















0.13 0 0 0

0 0.11 0 0

0 0 0.22 0

0 0 0 0.13









The univariate time series approach ignores the spatial dependence structure.

We therefore apply the model building strategy described in the previous section,

where the station ordering (3) is defined by considering ascending distances, see

Figure 3. We start by looking at the partial correlations to explore the existing

dependences. Plots of these correlations are given in Figure 4 for Station 3 (as

an illustration), as a function of the ordered stations, along with 95% confidence

intervals for ρs(h) = 0 (horizontal lines). We see that all the partial correlations
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3. Spatio-temporal Correlation Analysis

In this section, we aim to show the flexibility of our approach in modeling
the correlation structure of the Irish wind data set of Haslett and Raftery (1989).
The data consist of daily averages of wind speeds recorded at N = 11 synoptic
meteorological stations in Ireland between 1961 and 1978. A map of the locations
of the stations can be found in Haslett and Raftery (1989).

Following Haslett and Raftery (1989) and Gneiting (2002), we take a square
root transformation to stabilize the variance over stations and time periods, and
subtract an estimated seasonal effect and spatially varying mean from the data.
The data set initially included one additional station, but it was omitted because
its spatial correlation structure with respect to the other stations was not con-
sistent with the stationarity assumptions (see Haslett and Raftery (1989)). Our
analysis indicates that some spatial stationarity assumptions are still violated by
the remaining stations.

Gneiting (2002) provided evidence that the assumption of full symmetry of
the spatio-temporal correlation structure is not realistic, because wind patterns
are predominantly westerly over Ireland. We incorporate this information about
wind direction in our model by defining a special ordering of the stations. Specif-
ically, for each station s, we define an ordering of the stations to the west of s in
ascending order of distances, followed by the stations to the east of s. Note that
this ordering does not imply any assumption of stationarity or even isotropy, but
helps in improving the selection of a model. An inappropriate ordering would
only imply that fewer coefficients in the matrices Ri’s of (1) would be identified
as zeros, thereby implying larger prediction errors (see Section 4.2).

Next, we fit (1) to the modified data above. We use the BIC model selection
criterion to identify a model for each station separately. The maximum temporal
lag allowed for was three to make our results comparable to those in Gneiting
(2002), and because univariate AR analyses of the different time series confirmed
that higher temporal lags were not necessary. The resulting model is a VAR(3),
where each matrix R1, R2, and R3 is of dimension 11 × 11. The covariance
matrix Σε is estimated from the residuals of the model and yields estimates of
the matrices Γz(τ), τ = 0, 1, 2, 3, from straightforward formulae, see Lütkepohl
(1991, pp.23-24). The estimated spatial correlation matrices corresponding to
Γz(τ) from our model are plotted in Figure 5 as open circles for τ = 0, 1, 2, 3.
The empirical spatial correlations are plotted as pluses, along with the fitted
stationary correlation functions (solid curve) proposed by Gneiting (2002). The
estimated correlations from our model (open circles) are very close to the empir-
ical correlations (pluses), indicating that the spatial VAR(3) model can capture
the correlation structure well. Although the fitted stationary correlation func-
tion summarizes the correlation structure rather well at the temporal lag τ = 0
(Figure 5, panel (a)), this is less so at higher lags (Figure 5, panel (b)−(d)).
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Figure 5. Spatial correlation as a function of distance (in meters) for the
Irish wind dataset (open circles: from fitted VAR(3); pluses: empirical) at
various temporal lags: (a) τ = 0; (b) τ = 1; (c) τ = 2; (d) τ = 3. The solid

curve is the stationary correlation function fitted by Gneiting (2002).

We next investigate the assumptions of isotropy and full symmetry of the

correlation structure of the Irish wind data. For this purpose, we consider three

main directions: horizontal west-east (WE), vertical north-south (NS), and di-

agonal (SW-NE). The panels (a)−(c) in Figure 6 depict the spatial correlation

at temporal lag τ = 0 in the WE, NS and SW-NE directions, respectively. Open

circles indicate the correlations from our fitted model VAR(3), pluses indicate

empirical correlations, and the solid curve is Gneiting’s (2002) fit. We can see

that the fitted correlation function (solid line) represents the correlation struc-

ture rather well in each of the three directions. Thus, the assumption of isotropy

at temporal lag τ = 0 seems adequate.

The panels (d)−(f) in Figure 6 depict the spatial correlation from our fitted

VAR(3) model at temporal lag τ = 1 in the WE, NS and SW-NE directions

(closed circles) and EW, SN and NE-SW directions (open circles) respectively.

We can see that, although the correlations are rather symmetric in the NS and SN

direction (panel (e)), there are strong asymmetries in the WE and EW direction
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Figure 6. Panels (a)−(c): Spatial correlation (open circles: fitted VAR(3);

pluses: empirical) as a function of distance (in meters) for the Irish wind

dataset at temporal lag τ = 0, for the directions WE (a), NS (b), and SW-

NE (c). Panels (d)−(f): Spatial correlation from the fitted VAR(3) model

at temporal lag τ = 1, for the directions WE, NS and SW-NE (closed circles

in panels (d), (e) and (f) respectively) and EW, SN and NE-SW directions

(open circles in panels (d), (e) and (f) respectively). In the right-hand-side

panels empirical correlations are omitted for readability. The solid curve is

the stationary correlation function fitted by Gneiting (2002).
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and in the SW-NE and NE-SW direction. This asymmetric behavior, which is

caught by the VAR(3) specification, cannot be modeled by a single correlation

function (solid line).

4. Prediction Performance Analysis

In Section 2 we proposed a strategy to identify a spatio-temporal model.

Model selection strategies are seldom unique and it is necessary to evaluate them.

The availability of different model selection strategies may be due to the avail-

ability of different classes of models. Even for a given family of models, different

model strategies may be available which are optimal under different circum-

stances; see de Luna and Skouras (2003). In the latter paper, a framework was

advocated to compare model selection strategies through out-of-sample validation

based on recursive prediction errors. This can be adapted to the spatio-temporal

data studied here. For a given station located at s, a model selection strategy

can be evaluated with the accumulated prediction error criterion

T
∑

t=M

(z(s, t) − ẑt−1(s, t))2, (4)

where ẑt−1(s, t) is the prediction of z(s, t) obtained by applying the model se-

lection strategy on the sub-sample z1, . . . , zt−1. That is, a model is chosen and

fitted to all sub-samples t = M, . . . , T . The prediction errors z(s, t) − ẑ t−1(s, t)

are also called recursive residuals. Other loss functions than squared prediction

error may be used. The criterion (4) can be computed for several model selection

strategies, possibly based on different model sets. In de Luna and Skouras (2003,

Theorem 1), it was shown that choosing the model strategy minimizing (4) would

eventually identify the best strategy with probability one.

We now apply this out-of-sample framework to the two data sets studied

earlier. This allows us to evaluate model selection strategies associated to the

VAR models and to compare them with a benchmark univariate time series

modeling.

4.1. Carbone monoxide in Venice

The carbon monoxide data was described in Section 2.5, where we used BIC

to identify a univariate time series model and a spatio-temporal model. We

evaluate them here, together with two other model selection strategies. We use

both BIC and AIC to select a model within the AR family (univariate time series

models) and the VAR family with spatial structure. Only Stations 1 and 3 are

considered because the models in Table 2 and 3 were equivalent for Stations 2

and 4.



PREDICTIVE SPATIO-TEMPORAL MODELS 563

From Table 4, we note that BIC provides the best prediction performance.

Moreover, for Station 3, the univariate time series model was outperformed by

the model with the spatial structure found with BIC. On the other hand, for

Station 1 the univariate time series model has lowest accumulated prediction

error, indicating that the spatial structure found with BIC may be superfluous

for predictive purposes.

Table 4. Root accumulated mean squared errors (square root of (4) with

M = 50) for four strategies: AR models chosen with BIC and AIC (AR-

BIC and AR-AIC, respectively) and spatio-temporal autoregressions chosen

with BIC and AIC (SVAR-BIC and SVAR-AIC, respectively). The maxi-

mum temporal lag allowed for was six. The smallest root accumulated mean

squared errors per station are represented in boldface.

strategy AR-BIC SVAR-BIC AR-AIC SVAR-AIC

Station 1 0.371 0.380 0.371 0.382

Station 3 0.480 0.466 0.480 0.494

4.2. Irish winds

The Irish wind data set was described in Section 3, where stationarity hy-

potheses were investigated. The spatial structure (ordering of the stations) of

the VAR models used was defined by taking into account that winds are predom-

inantly westerly over Ireland. The spatial ordering of the stations is part of the

model specification and can also be investigated with a prediction performance

analysis. We consider six model identification strategies based on different fami-

lies of models. As in the previous section, two strategies are based on univariate

time series models: AR-BIC and AR-AIC. Moreover, AIC and BIC are used to

select between two families of VAR models having different spatial structure: the

first family uses an ordering of stations (3) defined solely on ascending distances

between stations (SVAR-BIC and SVAR-AIC with dist order), while the second

family is based on an ordering which takes into account the information on wind

directions as described in Section 3 (SVAR-BIC and SVAR-AIC with wind or-

der). In addition, we also consider persistence prediction as a benchmark, i.e.,

ẑ(si, t) = z(si, t − 1), i = 1, . . . , N .

The root accumulated mean squared errors (square root of (4)) are presented

in Table 5 for the eleven stations and the six model selection strategies, as well as

the persistence prediction. Two main general comments can be given. First, the

spatio-temporal models outperform the univariate time series models. Second,

the differences in prediction performances between the different spatio-temporal
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modeling strategies are much less important than the differences observed be-

tween the spatio-temporal modeling and the univariate time series strategies.

Note, however, that AIC performs better than BIC in many cases, and that the

models whose spatial structure take into account the predominant wind direction

(wind order) have as good or better prediction performance as the models ignor-

ing this physical information (dist order) in all but one case (Station 3). Finally,

all six strategies perform significantly better than the persistence forecast bench-

mark. For example, consider Station 1. Compared to the persistence forecast,

the univariate time series strategies reduce the root accumulated mean squared

errors by about 16.9% and the spatio-temporal strategies by about 21.6%.

Table 5. Root accumulated mean squared errors (square root of (4) with

M = 1, 000) for the persistence prediction and six strategies: AR models

chosen with BIC and AIC (AR-BIC and AR-AIC, respectively) and spatio-

temporal autoregressions chosen with BIC and AIC (SVAR-BIC and SVAR-

AIC, respectively). For the latter, two different ordering of the stations

are examined. One based solely on distances between stations (dist order)

and the other taking also into account the dominating wind direction over

Ireland (wind order). The maximum temporal lag allowed for was three, see

Section 3. The smallest root accumulated mean squared errors per station

are represented in boldface.

Station Strategy

persistence AR-BIC AR-AIC SVAR-BIC SVAR-AIC

dist order wind order dist order wind order

Roche’s Pt. (1) 0.575 0.492 0.492 0.474 0.473 0.473 0.473

Valentia (2) 0.579 0.503 0.503 0.498 0.498 0.499 0.499

Kilkenny (3) 0.516 0.446 0.446 0.424 0.424 0.423 0.424

Shannon (4) 0.523 0.461 0.460 0.455 0.454 0.452 0.452

Birr (5) 0.546 0.481 0.480 0.470 0.470 0.469 0.468

Dublin (6) 0.521 0.461 0.461 0.445 0.445 0.444 0.444

Claremorris (7) 0.561 0.488 0.488 0.485 0.485 0.483 0.482

Mullingar (8) 0.509 0.446 0.445 0.433 0.433 0.433 0.433

Clones (9) 0.547 0.477 0.477 0.467 0.468 0.467 0.467

Belmullet (10) 0.561 0.490 0.490 0.491 0.490 0.489 0.489

Malin Head (11) 0.571 0.499 0.499 0.494 0.492 0.493 0.493

The out-of-sample prediction performances summarized in Table 5 may be

analyzed in more detail by displaying the accumulated prediction errors graphi-

cally. More precisely, for two strategies S1 and S2, it is informative to plot the

sums
i

∑

t=M

((z(s, t) − ẑt−1(s, t))2 − (z(s, t) − z̃t−1(s, t))2) (5)
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against i = M, . . . , T , where ẑt−1 and z̃t−1 are obtained with S1 and S2, respec-

tively. Such cumulative sums plots allow us to understand whether a strategy

which has best root accumulated mean squared error is really performing bet-

ter recursively through time. This is illustrated in Figure 7 where, for Station 3

(Kilkenny), the best strategy SVAR-AIC (dist order) for this station is compared

with the other strategies. These comparisons provide strong evidence for the fact

that the best spatio-temporal strategy performs better than the univariate time

series models. The difference in performance when comparing spatio-temporal

strategies to each other is much less conclusive, indicating that the different

spatio-temporal strategies provide similar prediction performances.

The patterns observed in Figure 7 could also be observed for the other sta-

tions, although we do not include the graphs. Notable exceptions were Stations

2 and 10, for which univariate time series and spatio-temporal strategies had

similar performances. This can be explained by the fact that these two stations

are located on the west coast.
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5. Conclusion

In this paper, we have advocated the use of VAR models when the avail-

able spatio-temporal data is rich in the time dimension but sparse in the spatial

dimension, and when the purpose of the analysis is to provide time-forward pre-

dictions at the spatial location where historical data is available. VAR modeling

is well understood and widely applied in many disciplines. Our main contribu-

tion is to propose a model identification strategy which takes advantage of the

spatial location of the different time series.

We believe that the proposed modeling strategy will find wide applicability

in the environmental sciences where time forward prediction and monitoring of

spatio-temporal processes is a major activity. This wide applicability should be

eased by the fact that the models and identification strategy (which can be auto-

mated) are both easy to implement and general. The simplicity in implementa-

tion is a consequence of the consideration of linear models which are nested with

respect to a natural spatio-temporal hierarchy. Splus codes are available from the

authors upon request. The generality of the method is implied by treating each

spatial location separately in the modeling process, thereby avoiding restrictive

and often difficult-to-verify spatial-stationarity assumptions.

We have aimed at showing both the simplicity and generality of the method

with two real data sets. For instance, the estimation of temporal trends has

been done with harmonic functions of time. As we mentioned in Section 2.3,

our modeling strategy may readily be used together with other trend estimation

techniques such as those using measurements on other variables when these are

available.

The modeling framework is, moreover, open to further generalizations, al-

though at the cost of its simplicity and probably robustness. For instance, non-

linear autoregressive models may be entertained. This would be much more

difficult to do in the context of spatial-stationary processes. State-space rep-

resentations could also be considered in a similar setting allowing us to deal

optimally with missing observations at certain locations and times. The model

building strategy could also be generalized, for example by using shrinkage tech-

niques such as a ridge or Lasso penalty to select the predictor variables.
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