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Abstract: This paper is concerned with the problem of computing the approximate

D-optimal design for polynomial regression with weight function ω(x) > 0 on the

design interval I = [m0 − a, m0 + a]. It is shown that if ω′(x)/ω(x) is a rational

function on I and a is close to zero, then the problem of constructing D-optimal

designs can be transformed into a differential equation problem leading us to a

certain matrix including a finite number of auxiliary unknown constants, which

can be approximated by a Taylor expansion. We provide a recursive algorithm to

compute Taylor expansion of these constants. Moreover, the D-optimal interior

support points are the zeros of a polynomial which has coefficients that can be

computed from a linear system.
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1. Introduction

Consider the weighted polynomial regression model of degree d:

E[y(x)] =
d∑

i=0

βix
i, x ∈ I = [m0 − a,m0 + a],

Var(y(x)) = σ2/ω(x), (1.1)

where ω(x) denotes a positive weight function on the design interval I and the
control variable x is taken from I. An approximate design ξ is a probability
measure on I. The Fisher information matrix of a design ξ for the parameters
β = (β0, . . . , βd)

T can be expressed as

M(ξ) =

∫

I
ω(x)f(x)fT (x) d ξ(x),

where f(x) = (1, x, . . . , xd)T denotes the vector of monomials up to order d.
A design ξ∗ is called D-optimal for β if ξ∗ maximizes the determinant of the

information matrix M(ξ) among the set of all designs on I. For more about
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the theory of optimal designs see Fedorov (1972), Silvey (1980) and Pukelsheim

(1993).

The model (1.1) is widely used in situations where the response is curvi-

linear, as even complex nonlinear relationships can be adequately modeled by

polynomials over reasonably small range of the x’s. The problem of determining

optimal designs for weighted polynomial regression models has been extensively

investigated (e.g., Hoel (1958), Karlin and Studden (1966), Huang, Chang and

Wong (1995), Chang and Lin (1997), Imhof, Krafft and Schaefer (1998), Chang

(1998), Dette, Haines and Imhof (1999), Fang (2002) and Antille, Dette and

Weinberg (2003), among many others).

The theory of differential equations is a powerful tool for determining the

D-optimal designs for weighted polynomial regression. This approach was used

in Karlin and Studden (1966), Huang, Chang and Wong (1995), Chang and Lin

(1997), Imhof, Krafft and Schaefer (1998), Dette, Haines and Imhof (1999) and

Antille, Dette and Weinberg (2003), among others. However, the closed forms

of the D-optimal designs for weighted polynomial regression exist only for very

limited weight functions and restricted design spaces.

The pioneering work of Melas (1978) used a functional approach–Taylor ex-

pansion to determine the optimal design for exponential regression. This powerful

and interesting tool was also used by Melas (2000, 2001) and Dette, Melas and

Pepelyshev (2002, 2004). In a recent paper Dette, Melas and Biedermann (2002)

combined it with an algebraic approach, transforming the original problem into

a differential equation problem leading to an eigensystem of a certain matrix, to

determine the D-optimal support points for trigonometric regression models on a

partial circle. In this paper we extend the Dette, Melas and Biedermann (2002)

approach to determine the D-optimal design for the parameters in (1.1) with a

general class of weight functions ω(x) satisfying

ω′(x)

ω(x)
=

p(x)

q(x)
is a rational function, (1.2)

where both p(x) and q(x) are polynomials, the greatest common divisor of p(x)

and q(x) is 1, and q(x) 6= 0 for all x ∈ I. Without loss of generality we consider

the case m0 = 0 only, i.e., the design space is on the symmetric interval [−a, a],

since the D-optimal design for (1.1) can be obtained from that for (1.1) with

ω(m0 + x) and I = [−a, a] by a linear transformation.

This paper is organized in the following way. In Section 2, the differential

equation for the D-optimal support points for the model (1.1) is derived. In

addition, the form of ω(x) satisfying (1.2) is also established. An algorithm

using a Taylor expansion to compute the D-optimal support points is given in

Section 3. Finally, in Section 4, two illustrative examples are presented. All of the
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computations here were performed on an IBM compatible PC using the numeric

and symbolic computational software Mathematica 5.0 (Wolfram (2003)).

2. The differential equation

First we establish the structure of the D-optimal designs on [−a, a] when a

is close to 0, and an explicit formula for the determinant of information matrix

of designs, in the following lemma.

Lemma 2.1.

(a) If ω(x) is a continuous function and ω(0) > 0, then there exists a constant

ā > 0 such that the D-optimal design for polynomial regression model on

[−a, a], 0 < a ≤ ā, is unique and has the form

ξ =

(
x0 x1 · · · xd

1/(d + 1) 1/(d + 1) · · · 1/(d + 1)

)
, (2.1)

where −a = x0 < x1 < · · · < xd = a.

(b) If ξ denotes a design of the form (2.1), then detM(ξ) = 4a2ω(−a)ω(a)

φ(x1, . . . , xd−1, a
2)/(d + 1)d+1, where

φ(x1, . . . , xd−1, a
2) =

d−1∏

i=1

ω(xi)
d−1∏

i=1

(x2
i − a2)2

∏

1≤i<j≤d−1

(xi − xj)
2. (2.2)

Proof. (a) Let x = at. Since ω(0) > 0, it is easy to see that the problem of

determining the structure of the approximate D-optimal design for f(x) with

ω(x) on [−a, a] is equivalent to that of finding D-optimal designs for f(t) with

ω(t) = 1 on [−1, 1] as a tends 0. It is well-known (Fedorov (1972), Theorem

2.3.3) that the D-optimal design for f(t) with ω(t) = 1 on [−1, 1] consists of two

end points and d− 1 interior points of the interval [−1, 1]. Therefore there exists

an ā > 0 such that if 0 < a ≤ ā, then the D-optimal design is unique and has

the form (2.1).

(b) The proof is straightforward by a direct application of Theorem 2.3.1

(Fedorov (1972)) and the determinant of the Vandermonde matrix.

It is clear that maximizing det M(ξ) is equivalent to maximizing log φ(x1, . . .,

xd−1, a
2). Then the following conditions must be satisfied

∂ log φ

∂xi
=

4xi

x2
i − a2

+
ω′(xi)

ω(xi)

+2

(
1

xi − x1
+ · · · +

1

xi − xi−1
+

1

xi − xi+1
+ · · · +

1

xi − xd−1

)
= 0,
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for i = 1, . . . , d − 1. Let

u(x) =
d−1∏

i=1

(x − xi) =
d−1∑

i=0

uix
i, ud−1 = 1 (2.3)

denote a monic polynomial of degree d − 1 which has the d − 1 interior support
points of the design in (2.1) as its zeros. It is easy to verify that

u′′(xi)

u′(xi)
= 2

(
1

xi − x1
+ · · · +

1

xi − xi−1
+

1

xi − xi+1
+ · · · +

1

xi − xd−1

)

(see, Fedorov (1972), Section 2.3). Then the following differential equation holds

4x

x2 − a2
+

ω′(x)

ω(x)
+

u′′(x)

u′(x)
= 0 (2.4)

for x = x1, . . . , xd−1.
To ensure that (2.4) can be solved by techniques as in Theorem 2.3.3 of

Fedorov (1972), we have to assume that

ω′(x)

ω(x)
=

p(x)

q(x)
=

pmxm + pm−1x
m−1 + · · · + p0

qnxn + qn−1xn−1 + · · · + q0
(2.5)

is a rational function where p(x) and q(x) are polynomials of degrees m and n,
respectively, and the greatest common divisor of p(x) and q(x) is 1. The following
lemma characterizes the form of ω(x) satisfying (2.5). The proof is complicated
and deferred to Appendix.

Lemma 2.2. If ω′(x)/ω(x) is a rational function on I, then ω(x) has the form

of

(
∏

i

|ri(x)|αi

)
er(x)+

∑
i
βi tan−1 γi(x+δi), (2.6)

where ri(x) is either a monic linear or quadratic polynomial, r(x) is a rational

function and αi, βi, γi, δi are real.

Remark. The class (2.6) contains almost all weight functions discussed in the
literature on D-optimal designs of weighted polynomial regression. For exam-
ple, ω(x) = 1; (1 − x)α+1(1 + x)β+1 for α > −1, β > −1;xα+1 exp(−x) for α ≥
−1; exp(−x2) in Theorem 2.3.3 of Fedorov (1970), and ω(x) = (1 + x2)α+1

exp(2β tan−1 x) in Theorem 3.1 of Antille, Dette and Weinberg (2003).
Substituting ω′(x)/ω(x) = p(x)/q(x) into (2.4), and multiplying the equation

by the common denominator, we obtain L(x) = 0 for x = x1, . . . , xd−1, where

L(x) = (x2 − a2)q(x)u′′(x) + ((x2 − a2)p(x) + 4xq(x))u′(x) (2.7)
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is a second order differential function. Note that L(x) is a polynomial of degree

k + d− 1 where k = max(m + 1, n) and vanishes at x = x1, . . . , xd−1. Then u(x)

is a factor of L(x). Thus there exists an auxiliary polynomial b(x) = bkx
k +

bk−1x
k−1 + · · · + b0 such that

(x2 − a2)q(x)u′′(x) + ((x2 − a2)p(x) + 4xq(x))u′(x) = b(x)u(x), (2.8)

where bk is the leading coefficient of L(x) and b0, . . . , bk−1 are k unknown con-

stants.

3. Taylor Expansions for Unknown Constants

Substituting u(x) =
∑d−1

i=0 uix
i into (2.8) and comparing the coefficients on

both sides, we obtain an equation, in matrix-vector form,

(1, x, . . . , xk+d−2)Au = 0, (3.1)

where A = (ai,j) = D − B, i = 0, . . . , k + d − 2, j = 0, . . . , d − 1, u =

(u0, . . . , ud−1)
T , and

D=




0 d0,1 d0,2 0 · · · · · · · · · 0

0 d1,1 d1,2 d1,3
. . .

...

0 d2,1 d2,2 d2,3
. . .

. . .
...

...
...

...
...

. . .
. . .

. . .
...

dd−4,d−3 dd−4,d−2 0
dd−3,d−2 dd−3,d−1

dd−2,d−1
...

...
...

...
. . .

...
...

...
0 dk,1

0 dk+1,1 dk+1,2

0 0 dk+2,2 dk+2,3
...

...
. . .

. . .
. . .

...
...

...
...

...
. . .

. . . dk+d−4,d−3 dk+d−4,d−2 dk+d−4,d−1
...

...
. . . dk+d−3,d−3 dk+d−3,d−2 dk+d−3,d−1

0 0 · · · · · · · · · 0 dk+d−2,d−2 dk+d−2,d−1




(k+d−1)×d

(3.2)

is a banded matrix with bandwidth k + 3, di,j = j(−a2[(j − 1)qi−j+2 + pi−j+1]

+[j + 3]qi−j + pi−j−1) is the coefficient of xiuj in L(x), pi = 0 if i < 0 or i > m,

qi = 0 if i < 0 or i > n, and B is a lower banded matrix which has bandwidth
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k + 1 and constant values along negative-sloping diagonals,

B =




b0 0 · · · · · · 0

b1 b0
. . . 0

...
. . .

. . .
. . .

...

bk−1
. . .

. . . 0

bk bk−1
. . . b0

0 bk
. . . b1

...
. . .

. . .
. . .

...
0 · · · 0 bk bk−1




(k+d−1)×d

. (3.3)

Now the D-optimal design problem is reduced to finding the k+d−1 unknown
constants b = (b0, . . . , bk−1)

T and {u0, . . . , ud−2} such that

Au = 0, (3.4)

or that u is orthogonal to the row space of A. Note that if k = 0, then the d− 1
unknown constants u can be solved directly from (3.4) since A is a real matrix.
If the k unknown constants b, k ≥ 1, are available, then u can be solved by a
backward-substitution process from the following matrix equation

Ak−1u = 0, (3.5)

where Ak−1 consists of the last k− 1 rows of A. Noting that the last row in (3.5)
implies ud−2 = −ak+d−2,d−1/ak+d−2,d−2. The last second row can be solved for
ud−3 = −(ak+d−3,d−1 + ak+d−3,d−2ud−2)/ak+d−3,d−3. Continuing in this fashion

yields u0 = −
∑d−1

i=1 ak,iui/ak,0. If k = 1, then Ak−1 = A, b0 is an eigenvalue of A,
and u is the unique eigenvector of A corresponding to b0. A special form of this
case is considered in Dette, Melas and Biedermann (2002). Apparently, there is
no literature on how to solve for D-optimal designs with k > 1.

A recursive procedure to approximate the k (k ≥ 1) unknown constants b
is described in the following. Our approach, based on (3.4), is algebraic. The
method is an extension of Dette, Melas and Biedermann (2002), which combines
algebraic and functional approaches to study D-optimal designs for trigonometric
regression models on a partial circle.

First we relate (3.4) to an optimization problem that reduces to solving
a system of k polynomial equations in b and a fixed parameter a2. Note that
uT AT Au = 0 by (3.4). Consider G(b, a2) = det(AT A), non-negative since AT A is
a positive semidefinite matrix. The unknown constants bi’s in (2.8) are functions
of a2 (b∗0, . . . , b

∗
k−1, say), which is a global minimum point of G for any fixed a,

i.e., minb G(b, a2) = G(b∗, a2) = 0, where b∗ = (b∗0, . . . , b
∗
k−1)

T . Therefore

g(b∗, a2) = 0 ∈ <k, (3.6)
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where g = (g0, . . . , gk−1)
T and gi = ∂G(b, a2)/∂bi. If the the Jacobian matrix

Jg(a) = (∂gi/∂bj)
k−1
i,j=0 is nonsingular at a = 0, that is det[Jg(0)] 6= 0, then

from the implicit function theorem (see, Khuri (2002), Theorem 7.6.2), the b∗i ’s
are analytical functions of a2 on the interval (−ā, ā) where ā is a function of
ω(x) and d. This implies that the Taylor series of b∗i at the origin exists for
i = 0, . . . , k − 1.

The constant term of the Taylor series of b∗i can be calculated as follows. As a
tends to 0, all optimal support points converge to 0, and the limiting supporting
polynomial is û(x) = xd−1. Let b̂i = lima→0 b∗i . Then by (2.8) the b̂i’s satisfy

b̂(x) = (d − 1)[(d − 2)q(x) + xp(x) + 4q(x)], (3.7)

where b̂(x) = b̂0 + · · · + b̂k−1x
k−1 + bkx

k.
Consider the Taylor expansions of b∗i ’s, b∗(a2) =

∑∞
j=0 b(j)(a

2)j , b(0) = b̂,

where b̂ = (b̂0, . . . , b̂k−1)
T and b(j) = (b(0,j), . . . , b(k−1,j))

T . Denote the Taylor

polynomials of degree n by b<n>(a2) =
∑n

j=0 b(j)(a
2)j , b(0) = b̂, where b<n>(a2) =

(b<0,n>, . . . , b<k−1,n>)T . The coefficients b(j) can be computed recursively as

b(n+1) = −
1

(n + 1)!
J−1

g (0)
dn+1

d(a2)n+1
g(b<n>(a2), a2)

∣∣∣∣∣
a=0

, n = 0, 1, . . .

which has been explicitly found in Dette, Melas and Pepelyshev (2004).

4. Examples

An illustration of the method presented in Section 3 is given in the following
two examples.

Example 4.1. Consider quadratic polynomial regression with ω(x) = 2x2+x+1
on the interval [−a, a]. Then p(x) = 4x + 1 and q(x) = 2x2 + x + 1. The second-
order differential equation in (2.8) is given by (x2−a2)(4x+1)+4x(2x2 +x+1) =
(12x2 +b1x+b0)(x+u0). We can rewrite the equation above in the matrix-vector
form (1, x, x2)A(u0, 1)

T = 0, where

A =



−b0 −a2

−b1 4 − 4a2 − b0

−12 5 − b1


 .

From (3.7) the limit of b∗(a2) when a tends to 0 is given by b̂ = (b̂0, b̂1)
T = (4, 5)T .

The Taylor expansion of b<5>(a2) = (b<0,5>, b<1,5>)T is (4− 11
4 a2 + 103

64 a4, 5+3a2

+33
16a4)T . Then by (3.4)




−4 + 11
4 a2 − 103

64 a4 −a2

−5 − 3a2 − 33
16a4 − 5

4a2 − 103
64 a4

−12 −3a2 − 33
16a4




(
u0

1

)
≈




0
0
0


 .
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Solving (3.5) gives u0 = −a2/4 − 11a4/64. For example, if a = 0.3, then the

zero of the supporting polynomial u(x) = x− a2/4− 11a4/64 is 0.024. Then the

design computed from above is

ξ =

(
−0.3 0.024 0.3

1
3

1
3

1
3

)
.

The numerical result shows that ξ is a D-optimal design on the interval [−0.3, 0.3]

in the sense of the D-Equivalence criterion (see Kiefer and Wolfowitz (1960)) sat-

isfying maxx∈[−a,a] |d(x, ξ) − 3| ≤ 10−3, where d(x, ξ) = ω(x)fT (x)M−1(ξ)f(x).

The coefficients of the ui’s and the Taylor expansions for the bi’s for d =

2, 3, 4, 5 are given in Table 1.

Table 1. The coefficients of ui’s and Taylor expansions for bi’s.

j 0 1 2 3 4 5

d = 2 b0 4 −2.75000 1.60938 1.11914 −0.17511 −1.34727

b1 5 3.00000 2.06250 0.21094 −1.52417 −1.57846

u0 0 −0.25000 −0.17188 −0.01758 0.12701 0.13154

d = 3 b0 10 −4.53333 1.20415 −1.61573 2.30525 −0.71317

b1 12 4.26667 −3.94430 −0.77807 1.25073 −2.25860

u0 0 −0.20000 −0.06400 −0.02958 −0.04288 0.02770

u1 0 −0.26667 0.24652 0.04863 −0.07817 0.14116

d = 4 b0 18 −6.16071 1.24477 1.37457 −0.03039 −2.15460

b1 21 5.35714 −6.02029 5.23264 −2.06192 3.18621

u0 0 0.00000 0.05357 −0.01122 0.02499 −0.01195
u1 0 −0.42857 −0.06997 −0.06236 0.10328 −0.01851

u2 0 −0.26786 0.30102 −0.26163 0.10310 −0.15931

d = 5 b0 28 −7.73333 1.33666 2.41879 −4.76908 3.78370
b1 32 6.40000 −7.57977 7.63099 −4.97560 1.45153

u0 0 0.00000 0.04762 0.01411 0.00933 −0.01927

u1 0 0.00000 0.11429 −0.08093 0.07060 −0.06925

u2 0 −0.66667 −0.07055 −0.06736 0.20346 −0.24073
u3 0 −0.26667 0.31582 −0.31796 0.20732 −0.06048

Example 4.2. Consider the problem of the radius ā of convergence for the

Taylor expansion of b∗(a2). In general, a closed form for ā seems intractable.

Even the task of computing the numerical values of ā is formidable, since the

length of expressions involved in computing of Taylor expansion growths quickly

as n increases. Therefore we consider the radius ān of convergence for b<n>(a2).

The convergence criterion for b<n>(a2) used here is

max
x∈[−a,a]

|d(x, ξ̂) − (d + 1)| ≤ 10−5, (4.1)
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where ξ̂ is a design computed from b<n>(a2). The constant ān is the maximum a

such that (4.1) holds. Table 2 lists ān for various weight functions, d = 2, 3, 4, 5

and n = 5, 10. For example, if ω(x) = 2x2 + x + 1 and d = 2, then ān for n = 5

and 10 is 0.644 and 0.752, respectively. For any ω(x), ā5 is always less than ā10.

Numbers in bold face satisfy d = 2 and ω ′(0) = 0. The numerical values of b<n>

are quadratic functions in a. Thus the radius of convergence ān is a constant.

Table 2. Radius ān of convergence for b<n>(a2).

ω(x) k n d = 2 d = 3 d = 4 d = 5

x + 2 1 5 1.470 1.610 1.773 1.303
10 1.471 1.681 1.787 1.796

2x2 + x + 1 2 5 0.644 0.601 0.564 0.591

10 0.752 0.740 0.692 0.677
1

x2+1 2 5 ∞ 0.781 0.757 0.520

10 ∞ 0.975 0.940 0.800

ex 1 5 1.559 2.430 2.249 2.220
10 1.844 2.692 3.341 4.070

e
1

x−1 2 5 0.569 0.641 0.666 0.455
10 0.566 0.660 0.719 0.674

(x + 1)ex 2 5 0.548 0.636 0.704 0.503
10 0.631 0.798 0.870 0.767

e
x

(x+1)2 2 5 0.723 0.660 0.649 0.392

10 0.858 0.829 0.840 0.695

etan−1
x 2 5 0.980 0.880 0.784 0.625

10 1.152 1.058 0.934 0.863

etan−1 x

x−1 2 5 0.643 0.620 0.535 0.442

10 0.753 0.745 0.711 0.633

(x2 + 1)etan−1
x 2 5 0.842 0.756 0.670 0.590

10 0.904 0.908 0.905 0.827

e
tan
−1

x

x2+1 2 5 0.881 0.790 0.602 0.527

10 0.941 0.891 0.823 0.810

x2 + 1 2 5 1.352 0.930 0.838 0.727

10 1.352 1.331 1.156 1.011

x4 + 1 4 5 1.773 0.945 0.832 0.609

10 1.773 1.150 0.995 0.951

ex
2

2 5 1.389 1.047 1.223 1.145

10 1.389 1.435 1.602 1.728

etan−1
x
2

4 5 1.353 0.874 0.793 0.635

10 1.353 1.097 0.993 0.930
x
2+1

x4+1 6 5 1.179 0.718 0.734 0.473

10 1.179 1.038 0.902 0.887
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Appendix. Proof of Lemma 2.2

Any rational function p(x)/q(x) in (2.5) can be written as s(x) + t(x)/q(x),
where s(x), t(x) and q(x) are polynomials and the degree of t(x) < the degree of
q(x). From the Partial-Fraction Decomposition Theorem (see, Grossman (1993),
Section 7.7) we have

t(x)

q(x)
=

k1∑

i=1

mi∑

j=1

Aij

(x − Ai)j
+

k2∑

i=1

ni∑

j=1

Bijx + Cij

(x2 + Bix + Ci)j
,

where Aij , Bij , Cij , Ai, Bi, Ci, are constants and each x2 + Bix + Ci is an irre-
ducible quadratic polynomial. It is well-known that

∫
Aij

(x − Ai)j
dx =





Aij log |x − Ai| + C if j = 1,

Aij

1 − j
(x − Ai)

−j+1 + C if j = 2, 3, . . .,
(A.1)

∫
Bijx+Cij

(x2+Bix+Ci)j
dx =





α1 log |x2 + Bix + Ci| + α2 tan−1(α3(x + Bi/2)) + C

if j = 1,

r(x) + β1 tan−1(β2(x + Bi/2)) + C if j = 2, 3, . . .

(A.2)

where α1, α2, α3, β1, β2 are constants, C is the constant of integration, and r(x) is
a rational function. Note that the inverse tangent satisfies the addition formula

tan−1 a + tan−1 b =





tan−1 a+b
1−ab

− π if a < 0 and b < 0,

tan−1 a+b
1−ab

+ π if a > 0 and b > 0,

tan−1 a+b
1−ab

if ab ≤ 0.

Combining this with (A.1) and (A.2), we have
∫

ω′(x)

ω(x)
dx = log |ω(x)| + C

=

∫
s(x) +

k1∑

i=1

mi∑

j=1

Aij

(x − Ai)j
+

k2∑

i=1

ni∑

j=1

Bijx + Cij

(x2 + Bix + Ci)j
dx

= log |r1(x)| + r2(x) + tan−1 r3(x) + C,

the desired result.
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