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Abstract: Data-driven lack-of-fit tests are derived for parametric regression models
using fit comparison statistics that are based on nonparametric linear smoothers.
The tests are applicable to settings where the usual bandwidth/smoothing parame-
ter asymptotics apply to the null model, which includes testing for nonlinear models
and some linear models. Large sample distribution theory is established for tests
constructed from both kernel and series type estimators. Both types of smoothers
are shown to give consistent tests that are asymptotically normal under the null
model after appropriate centering and scaling. However, the projection nature of
series smoothers results in a simplified scaling factor that produces computational
savings for the associated tests.
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1. Introduction

An area of recent research interest concerns the use of nonparametric regres-
sion techniques for testing the lack-of-fit of parametric regression models. See,
e.g., Aerts, Claeskens and Hart (2000), Baraud, Huet and Laurent (2003), Barry
and Hartigan (1990), Cox, Koh, Wahba and Yandell (1988), Dette (1999), Eu-
bank and Hart (1992), Fan (1996), Fan and Linton (2003), Fan, Zhang and Zhang
(2001), Härdle and Mammen (1993), Hart (1997), Lee and Hart (2000) and Zheng
(1998). Most of this work (with the notable exception of Müller (1992)) concerns
the use of kernel or series type smoothers to assess the lack-of-fit of parametric
null models for which the usual smoothing parameter asymptotics do not apply.
In this paper we focus on situations where this is not the case, and smooth-
ing parameters can be expected to exhibit standard asymptotic behavior. The
large sample properties of fit comparison type tests are found to be substantially
different in this setting from others that have been treated in the literature.

Assume that responses y1, . . . , yn are observed at nonstochastic design points
0 ≤ t1n < · · · < tnn ≤ 1. The responses and design points are related by

yi = µ(tin) + ei, i = 1, . . . , n, (1.1)
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where µ is an unknown regression function and e1, . . . , en are independent and

identically distributed (i.i.d.) random errors with E(e1) = 0 and var(e1) =

σ2 < ∞. We are interested in the case where a parametric model µ(·; θ) has

been postulated for µ in (1.1) and, accordingly, want to test the composite null

hypothesis

H0 : µ(·) = µ(·; θ), θ ∈ Θ. (1.2)

Here θ is an unknown vector of p parameters that must be estimated and Θ is

some subset of IRp.

Let θ̂ be an estimator of θ0, the true value of θ under the null model, and for

µT
n (θ) = (µ(t1n; θ), . . . , µ(tnn; θ)) define µ̂0n = µn(θ̂) as a parametric estimator of

µ0n = µn(θ0). Then, a number of proposed tests for H0 have been based on fit

comparison statistics of the form

‖µ̂n − µ̂0n‖2 =
n∑

i=1

{
µ̂(tin) − µ(tin; θ̂)

}2
,

with µ̂T
n = (µ̂(t1n), . . . , µ̂(tnn)) representing a nonparametric fit to the data.

Statistics of this nature have the intuitive appeal of providing omnibus, across

the design, comparisons of a fit under the null model with a more flexible fit (i.e.,

µ̂n) that should be closer to the true mean function when H0 is false.

Typically µ̂n is from a linear smoother. This entails that there is an associ-

ated smoother matrix Sλ, depending on a smoothing parameter λ, with

µ̂n = SλYn (1.3)

for Y T
n = (y1, . . . , yn) the response vector. The fit comparison statistic can then

be expressed as

Tnλ = ‖SλYn − µ̂0n‖2. (1.4)

Examples of linear smoothers that have been used in this context include kernel

and orthogonal series regression estimators for which the parameter λ corre-

sponds to the bandwidth and number of terms in the estimator, respectively.

A question of interest concerns practical methods for selecting a value for λ

in (1.4). In this paper we focus on a case where it is possible to choose λ from

the data in a way that produces globally consistent tests that are asymptotically

distribution-free under H0. Specifically, we treat the case where, under H0,

Mn = inf
λ

E‖SλYn − µ0n‖2 → ∞ as n → ∞.

This condition means that the selected smoother can only estimate the null mean

function at a nonparametric rate. It will generally be satisfied when the null

regression function is nonlinear and, in particular, not a polynomial of order less
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than or equal to that of the smoother. It can also be satisfied for a polynomial

null model if the order of the smoother is less than the order of the polynomial.

(See, e.g., Sections 3 and Example 1.2 below.)

When the condition Mn → ∞ holds, it is often possible to asymptotically

characterize the null mean squared error optimal choice λ0n of the smoothing

parameter λ to an extent that it can be estimated directly from the data with√
n-consistency. This produces a data-driven choice for the level of smoothing

λ̂0n and our proposed test will be based on (re-centered and re-scaled versions

of)

Tn = ‖Sλ̂0n
Yn − µ̂0n‖2. (1.5)

To clarify the above discussion and illustrate the basic idea behind our pro-

posed methodology it will be useful to consider the following two specific examples

that will be revisited throughout the paper.

Example 1.1. Suppose that the design is uniform over [0, 1] and consider testing

the composite null hypothesis H0 : µ(t) = 5e−θt, for all t ∈ [0, 1] and some

unknown θ > 0. If Sλ corresponds to a boundary corrected kernel estimator with

bandwidth λ and quadratic kernel K(u) = 0.75(1−u2)I[−1,1](u) for I[−1,1](u) the

indicator function for the interval [−1, 1], then it is known (e.g., Müller (1988)

and Eubank (1999)) that, under H0 and certain other restrictions,

n−1E‖SλYn − µ0n‖2 ∼ 3σ2

5nλ
+ λ4J(µ(·; θ0))

for J(µ(·; θ0)) = 0.125θ3
0(1 − e−2θ0) and θ0 the true, null value of θ. Thus, the

asymptotically optimal choice of the bandwidth is λ0n = (3σ2/20J(µ(·; θ0))n)1/5.

The only unknowns in this bandwidth are σ and θ0. There are numerous
√

n-

consistent variance estimators (e.g., Rice (1984), Gasser, Sroka and Jennen-

Steinmetz (1986), Hall, Kay and Titterington (1990) and Hall and Marron

(1990)) and θ0 can be estimated with
√

n-consistency under H0 via nonlinear

least-squares, for example. By plugging such estimators into the formula for λ0n

we obtain a data-driven bandwidth that can be used to compute the test statistic

(1.5).

Example 1.2. Now suppose that we wish to test for a linear regression function,

i.e., H0 : µ(t) = θ1 + θ2(t − 0.5) for all t ∈ [0, 1] and θ1, θ2 unknown intercept

and slope coefficients. If we used a second (or higher) order smoother, such as

the second order kernel estimator of Example 1.1, then under H0, n−1E‖SλYn −
µ0n‖2 ∼ n−1E‖Sλεn‖2 for εn = (e1, . . ., en)T the vector of random errors. In

the case of the Example 1.1 kernel estimator, n−1E‖Sλεn‖2 ∼ 3σ2/5nλ, while

n−1E‖Sλεn‖2 ∼ σ2λ/n for a second order regression series smoother with λ

terms. Consequently, the optimal bandwidth and number of terms are ∞ and 0,
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for second order kernel and series smoothers respectively, so Mn → ∞ does not

hold.

In order to have Mn → ∞ one can use a first order kernel (see, e.g., Müller

(1992)) or series estimator. One example of a first order series estimator is

provided by cosine series regression where one regresses on the constant function

and cosine functions of increasing frequency. If the design is uniform and θ02

is the true slope under H0, then (cf., Section 3) one finds that, under the null

model, the cosine regression smoother satisfies

n−1E‖SλYn − µ0n‖2 ∼ σ2λ

n
+

23θ2
02

π4

∞∑

j=[(λ/2)+1]

(2j − 1)−4,

and an asymptotically optimal choice for the number of terms is λ0n =

(4nθ2
02/π

4σ2)1/4. As in the previous example, this can be estimated by replacing

the unknown parameters with
√

n-consistent estimators with the slope being es-

timated by ordinary least-squares, for example. The resulting data-driven choice

for the number of terms can then be used to compute (1.5) in the case of a cosine

series smoother.

The condition that Mn → ∞ represents a departure from much of the liter-

ature on lack-of-fit testing using nonparametric function estimation techniques.

Much of this work, such as Eubank and Spiegelman (1990) and Härdle and Mam-

men (1993, Proposition 1) can be viewed as smoothing residuals from parametric

fits. Thus, one considers a statistic of the form

T̃nλ = ‖Sλ(Yn − µ̂0n)‖2. (1.6)

Note that Tnλ = T̃nλ + 2 < Sλ(Yn − µ̂0n), Sλµ̂0n − µ0n > +‖Sλµ̂0n − µ0n‖2 with

< · , · > representing the Euclidean vector inner product. This expression makes

T̃nλ seem somewhat simpler since it avoids the “bias” term ‖Sλµ̂0n − µ0n‖2 that

appears in Tnλ. However, under standard regularity conditions, T̃nλ behaves like

‖Sλεn‖2 under H0 which means that one is essentially smoothing the zero func-

tion in the null case. The optimal level of smoothing is therefore fixed under

H0 (e.g., λ = ∞ and λ = 0 for kernel and series type smoothers as in Examples

1.1 and 1.2) so that the usual smoothing parameter asymptotics (e.g., λ → 0 as

n → ∞ for kernel smoothers and λ → ∞ as n → ∞ for series estimators) will not

obtain in the null case. This makes conditions which require decay of bandwidths

for kernel estimators (e.g., condition (K2) of Härdle and Mammen (1993) or The-

orem 2 of Eubank and Spiegelman (1990)) or growth in the number of terms of

series smoothers (e.g., Theorem 1 of Eubank and Spiegelman (1990)) hard to im-

plement from a practical viewpoint. In any case, such conditions will not be met

by smoothing parameter estimators that derive from applying cross-validation
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type methodology to Sλ(Yn − µ̂0n). Instead such stochastic choices of λ will tend
to have non-degenerate limiting distributions which cause data-driven versions of

T̃nλ to have non-standard and, in particular, non-normal, limiting null distribu-
tions. Examples of this can be found in Eubank and Hart (1992), Hart ((1997),

Section 8.2) and Härdle and Kneip (1999), all of whom deal with the simpler
situation where the parameters enter the model linearly which allows tabulation

of percentage points for the tests. However, in more complicated scenarios where
the null model is nonlinear in the parameters, the limiting null distribution can
depend on the unknown parameters (Kuchibhatla and Hart (1996) and Hart

(1997), Section 8.3.1) so that the tests are not even asymptotically distribution
free in the null case. This then requires bootstrapping or some other method to

obtain approximate critical values for the tests on a case-by-case basis.
In contrast to smoothing residuals or, equivalently, comparing a smoothed

fit of the data to a smoothed fit of the null mean function estimator, our statistic
Tn in (1.5) compares the nonparametric fit to the data with the (non-smoothed)

mean function estimator under the null hypothesis. We will show that this statis-
tic is asymptotically distribution-free in that it can be re-centered and scaled in

a fashion that gives it a standard normal limiting null distribution. While some
computational effort is necessary to obtain the requisite re-centering and scaling
factors, this may be preferable to bootstrapping or other measures needed to

obtain critical values for practical, and hence, data-driven versions of statistics
like (1.6).

The remainder of the paper is organized as follows. In Section 2, we study
the behavior of the data-driven statistic Tn for kernel type smoothers, while in

Section 3 we develop parallel results for series type smoothers. The limiting
distribution of Tn is shown to be asymptotically standard normal under H0,

after appropriate centering and scaling, for both types of smoothers. However,
the projection nature of series smoothers produces a useful simplification in the
re-scaling factor for Tn. Proofs and technical conditions are collected in Section

4. Empirical studies involving kernel smoother based tests in a related setting
can be found in Li (2001).

2. Kernel Type Smoothers

In this section we study the case where Sλ in (1.3) corresponds to a kernel

type smoother. By this we mean that there is a value m ≥ 1 and a constant C
such that if λ � n−1/(2m+1) (i.e., λ is exactly of order n−1/(2m+1)), then under

H0,

E‖SλYn − µ0n‖2 =
C

λ
+ nλ2mJ1(µ(·; θ0)) + o(n1/(2m+1)) (2.1)

for J1(·) a known functional. We will be concerned with the case where

J1(µ(·; θ)) 6= 0 for all θ in a neighborhood of θ0, which entails that λ0n =
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[C/(2mnJ1(µ(·; θ0)))]
1/(2m+1) provides an asymptotically optimal choice for the

“bandwidth” parameter λ in (2.1).

A canonical example of where (2.1) applies is for Sλ corresponding to an mth

order, boundary corrected Gasser-Müller kernel smoother with m ≥ 2 now an in-

teger. If K(·) denotes the kernel for the estimator, supported on [−1, 1], then the

estimator is of order m when the kernel satisfies
∫ 1
−1 K(u)du = 1,

∫ 1
−1 ujK(u)du =

0, j = 1, . . . ,m − 1, Bm =
∫ 1
−1 umK(u)du 6= 0 and V =

∫ 1
−1 K2(u)du < ∞.

For a design point tin in [λ, 1 − λ] Gasser-Müller kernel weights are defined by

sijλ = λ−1
∫ uj

uj−1
K(λ−1(tin − u))du with uj = (t(j+1)n + tjn)/2 and λ > 0 the

kernel bandwidth. For estimation in the boundary region where tin ∈ [0, λ) or

tin ∈ (1 − λ, 1] these weights are modified by replacing K((tin − ·)/λ) with, re-

spectively, functions K+(tin/λ, (tin − ·)/λ) and K−((1− tin)/λ, (tin − ·)/λ). The

boundary kernel functions K+ and K− satisfy the same moment conditions as the

interior kernel K(·) except over the boundary region. More details on boundary

kernels can be found in Müller ((1988), Section 5.8) and Müller (1991).

If we now take Sλ = {sijλ} for sijλ Gasser-Müller weights with the above

indicated boundary modifications, the null regression function has m continu-

ous derivatives and p(·) is the design density, then it is known (e.g., Müller

(1988) or Eubank (1999)) that (2.1) holds with C = σ2V and J1(µ(·; θ0)) =

B2
m(

∫ 1
0 µ(m)(t; θ0)

2p(t)dt/ (m!)2), where µ(m)(t; θ) = ∂mµ(t; θ)/∂tm. If p(·) > 0

on [0, 1], then the condition J1(µ(·; θ)) > 0 is equivalent to the null regression

function not being a polynomial of order m. Similar expressions hold for local

polynomial regression smoothers as a result of, e.g., Müller ((1988), Section 4.6).

Another instance where (2.1) can be verified is for cubic smoothing splines

with a uniform design. In that case Theorems 1-2 of Rice and Rosenblatt (1983)

have the consequence that if, for example, µ(·; θ) has four continuous derivatives,

and either µ(2)(0; θ0) 6= 0 or µ(2)(1; θ0) 6= 0, then (2.1) holds with m = 2.5,

C = 3σ2/27/2 and J1(µ(·; θ0)) = [µ(2)(0; θ0)
2 + µ(2)(1; θ0)

2]/23/2.

We now wish to develop a test statistic for H0 in the case where (2.1) applies.

For this purpose we assume that we have available a
√

n-consistent estimator θ̂

for θ0 under the null model, such that µ̂0n = µn(θ̂) satisfies

µ̂0n − µ0n = Pεn + rn, (2.2a)

with εT
n = (e1, . . . , en),P an n×n projection matrix that may depend on θ0 and

rT
n = (r1n, . . . , rnn) a random vector satisfying

max1≤i≤n|rin| = op

(
n−1/2

)
. (2.2b)

Important examples of when (2.2) holds are linear and nonlinear regression

where θ̂ = arg minθ

∑n
i=1 (yi − µ(tin; θ))2. Under conditions in Seber and Wild
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(1988), (2.2) is satisfied under this choice of θ̂ with P = X(XT X)−1XT for

X = {xj(tin)} and

xj(t) =
∂µ(t; θ)

∂θj
|θ=θ0

. (2.3)

In the particular case of Example 1.1 this gives P = xxT /xT x, with x =

(x1, . . . , xn)T for xi = −5tie
−θ0ti .

We also assume here that there are estimators P̂ and Ĵ1 for P and J1(µ(·; θ0)).

For nonlinear least-squares an estimator of P can be obtained by replacing θ0

with θ̂ in the formula for the projection matrix. In the case of mth order kernel

smoothing we can use Ĵ1 = B2
m(

∫ 1
0 µ(m)(t; θ̂)2p(t)dt/(m!)2). For Example 1.1,

with θ̂ obtained from nonlinear least-squares, this produces the estimators Ĵ1 =

0.125θ̂3(1 − e−2θ̂), P̂ = x̂x̂T /x̂T x̂ with x̂ = −5(t1e
−θ̂t1 , . . . , tne−θ̂tn)T .

For the smoothing parameter λ associated with the nonparametric estimator

we require that there is an estimator λ̂0n of λ0n with the property

(λ̂0n − λ0n)/λ0n = Op(n
−1/2). (2.4)

One estimator which satisfies (2.4) in certain cases is λ̂0n = [Ĉ/(2mnĴ1)]
1/(2m+1)

with Ĉ a
√

n-consistent estimator of C in (2.1). In particular, for kernel smooth-

ing we can use λ̂0n = [σ̂2V/2mnĴ1]
1/(2m+1) for the choice of Ĵ1 described above

and σ̂, for example, the Gasser, Sroka and Jennen-Steinmetz (1986) estimator

of σ.

The specific test statistic we now propose for H0 is

Tn = ‖ŜYn − µ̂0n‖2 (2.5)

with Ŝ = Sλ̂0n
and λ̂0n as in (2.4). The asymptotic properties of Tn follow from

results in Section 4 where we show that Tn −σ2tr(Ŝ− P̂)T (Ŝ− P̂)−nλ̂2m
0n Ĵ1 can

be approximated by

‖(Sλ0n
−P)εn‖2−σ2tr(Sλ0n

−P)T (Sλ0n
−P)−2〈(Sλ0n

−P)εn, (I−Sλ0n
)µ0n〉. (2.6)

Expression (2.6) is a sum of a linear and (re-centered) quadratic form in εn which

has asymptotic variance 2σ4tr[(Sλ0n
− P)T (Sλ0n

− P)]2 + 4σ2‖(Sλ0n
− P)T (I −

Sλ0n
)µ0n‖2. Similar to condition (2.1), we assume that there is a functional J2(·)

such that if λ � n−1/(2m+1) we have

‖(Sλ −P)T (I− Sλ)µ0n‖2 = nλ2mJ2(µ(·; θ0)) + o(nλ2m) (2.7)

under H0, and that there is an estimator Ĵ2 available for J2(µ(·; θ0)).
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In the case of kernel regression with Gasser-Müller weights and nonlinear

least-squares estimation of θ one finds that the functional J2 in (2.7) has the

form

J2(g) =
B2

m

(m!)2

∫ 1

0

{
g(m)(t) − g̃(m)(t)

}2

p(t)dt

for

g̃(m)(·) =

{∫ 1

0
g(m)(z)x(z)p(z)dz

}T {∫ 1

0
x(z)xT (z)p(z)dz

}−1

x(·)

with x(·)T = (x1(·), . . . , xp(·)) as in (2.3), and we can take Ĵ2 = J2(µ(·; θ̂)). In

the particular case of Example 1.1 this produces the estimator

Ĵ2 = 0.0025

∫ 1

0
{5θ̂2e−θ̂t − (

∫ 1

0
25θ̂2se−2θ̂s ds)(

∫ 1

0
25s2e−2θ̂s ds)−15te−θ̂t}2 dt

= Ĵ1 − 0.0625θ̂3{1 − (1 + 2θ̂)e−2θ̂}2/{1 − (1 + 2θ̂ + 2θ̂2)e−2θ̂}.

Our principle asymptotic result for Tn can now be stated as follows.

Theorem 1. Let σ̂2 be a
√

n-consistent estimator of σ2 and assume that (2.2),

(2.4), (2.7) and conditions (A1)−(A6) in Section 4.1 are satisfied. Define

Vn =
Tn − σ̂2tr(Ŝ− P̂)T (Ŝ − P̂) − nλ̂2m

0n Ĵ1
[
2σ̂4tr

{
(Ŝ− P̂)T (Ŝ − P̂)

}2
+ 4σ̂2nλ̂2m

0n Ĵ2

]1/2
. (2.8)

Then, Vn
d→ N(0, 1) under H0 and, for any α ∈ (0, 1), the test obtained by

rejecting H0 if Vn > zα, for zα the 100(1−α)th percentile of the standard normal

distribution, has asymptotic significance level α.

Under some additional regularity restrictions one may show that the test

based on Vn in (2.8) is consistent against fixed alternatives. For this we need

a parallel of condition (2.2) to hold for the alternative model wherein the pa-

rameter vector θ0 now represents a value that gives an approximation to the

true regression function from the functions in {µ(·; θ); θ ∈ Θ}. For example,

if θ̂ is a nonlinear least-squares estimator we can take θ0 to be the minimizer

over Θ of
∫ 1
0 (µ(t) − µ(t; θ))2p(t)dt. One then finds that for a specific (fixed)

alternative vector µn, Vn will behave asymptotically like a constant multiple of

n−1/(4m+2)‖µn − µn(θ0)‖2, which diverges at the rate n(4m+1)/(4m+2) . This indi-

cates an ability to detect local alternatives that converge only at nonparametric

rates (e.g., n−9/20 for the second order kernel case of Example 1.1) and could

be perceived as a drawback when these tests are compared to others capable of

detecting local alternatives of orders 1/
√

n. However, this viewpoint appears to

be incorrect in general since, in certain cases, tests which detect local alternatives
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converging at nonparametric rates have been shown to be more efficient asymp-

totically than others that can detect alternatives of order 1/
√

n. See, e.g, Inglot

and Ledwina (1996) and Eubank (2000).

The following corollary states that the conclusions of Theorem 1 apply to

the test statistic Vn in (2.8) in the specific case of kernel regression smoothing

and nonlinear least-squares estimation of θ0.

Corollary 1. Assume that θ̂ satisfies (2.2) for P, the projection matrix obtained

from (2.3), and that conditions (B1)−(B8) of Section 4.2 are satisfied. Then the

results in Theorem 1 apply to Vn in the case where the nonparametric smoother

is obtained from boundary corrected kernel estimation.

Test statistics similar in form to Vn in the kernel case have been considered

by Härdle and Mammen (1993) in the case of random designs and nonstochastic

(i.e., not data-driven) choices for the bandwidth. Somewhat more closely related

to our work is that of Müller (1992) who uses a data estimated bandwidth like

λ̂0n to develop pointwise diagnostic tests with kernel estimators. In contrast to

Müller’s procedure our test is global being, in effect, an average across the design

of Müller’s pointwise tests with a global, rather than local, bandwidth. We note

however that Müller’s results do not imply ours, and conversely.

3. Series Type Estimators

In this section we study the properties of Tn in (1.5) for cases where the

smoother matrix Sλ is from a series type regression estimator. Thus, we take λ

to be a positive integer and define

Sλ = n−1
λ∑

j=1

ΦjnΦT
jn, 1 ≤ λ ≤ n, (3.1)

for ΦT
jn = (φjn(t1n), . . . , φjn(tnn)), and φjn(·), j = 1, . . . , n, functions that satisfy

〈Φjn,Φkn〉 = nδjk (3.2)

for δjk = 1 if j = k and δjk = 0 if j 6= k. Examples of smoothers which can

be treated in this fashion include polynomial and trigonometric regression esti-

mators. The orthogonality conditions imposed here are for theoretical develop-

ments, and the test statistic below can be computed using standard least-squares

methodology regardless of whether or not (3.2) holds.

In Example 1.2 we discussed the use of cosine series regression under a uni-

form design tin = (2i − 1)/2n, i = 1, . . . , n. In that instance we take φ1n(t) = 1

and φjn(t) =
√

2 cos {π(j − 1)t}, j = 2, . . . , n, and condition (3.2) is satisfied due

to Lemma 3.4 in Eubank (1999).
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For series estimators we can no longer expect condition (2.1) to hold since

the rate of decay for the null model mean squared error is linked to the rate of

decay of the null Fourier coefficients n−1〈Φjn, µ0n〉 (Cox (1988) and Eubank and

Jayasuriya (1993)). Instead we assume that there exists a sequence of integers

λ0n which satisfies

λ0n � 〈µ0n, (I − Sλ0n
)µ0n〉, (3.3a)

λ0n → ∞ and λ0n/nδ → 0 for some δ < 1. (3.3b)

Conditions of this type can be shown to hold under various assumptions about

the rate of decay of the null Fourier coefficients.

In the specific case of cosine series regression with a uniform design one finds

that (see, e.g., Eubank (1999), Section 3.4) if µ(·; θ0) ∈ C1[0, 1], then

n−1〈Φjn, µ0n〉 = aj(θ0) + O(n−1) (3.4a)

uniformly in j = 1, . . . , n for a1(θ0) =
∫ 1
0 µ(t; θ0) dt and aj(θ0) =

√
2

∫ 1
0 µ(t; θ0)

cos{(j − 1)πt}dt, j = 2, . . . , n. Condition (3.3) can then be established by com-

puting integers λ0n that asymptotically minimize the null mean squared error. A

simple but important special case occurs when the aj(θ0) exhibit algebraic decay

in the sense that

aj(θ0) = C(θ0)j
−τ + o(j−τ ) (3.4b)

uniformly in j for some τ ≥ 1 and C(·) is a function with C(θ0) 6= 0. When (3.4)

holds, we can take λ0n = [{nC2(θ0)/σ
2}1/2τ ] and this choice satisfies (3.3).

For the linear regression function µ(t; θ0) = θ01 +θ02(t−0.5) of Example 1.2,

the even frequency null cosine Fourier coefficients vanish. The remaining coeffi-

cients exhibit algebraic decay, given explicitly by a2j−1(θ0) = −(23/2θ02)/(π
2(2j

−1)2) for θ02, the null model slope coefficient. Combining this with the previous

discussion on algebraic decay produces the asymptotically mean squared error

optimal number of terms for fitting the linear model that was given in Section 1.

We now wish to develop a version of the Vn test statistic in (2.8) for the series

estimator setting. As in Section 2 we assume that (2.2) holds and, since P is a

projection operator, we write P = n−1 ∑p
j=1 xjnxT

jn for n-vectors xjn satisfying

〈xjn, xkn〉 = nδjk, j, k = 1, . . . , p. The xjn are required to satisfy certain mild

smoothness conditions discussed in Section 4.3. For example, in the particular

case of cosine series regression with a uniform design and θ̂ from nonlinear least-

squares, it is enough to assume that the functions in (2.3) satisfy xk(·) ∈ C1[0, 1],

k = 1, . . . , p, and that there exists finite constants A1, . . . , Ap such that

∣∣∣∣
∫ 1

0
cos(jπt)xk(t)dt

∣∣∣∣ < Akj
−η (3.5)
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for some η ≥ 1. This condition holds, for example, with η = 2 when x′
k is abso-

lutely continuous with x′′
k square integrable. In the case of the linear regression

function of Example 1.2, parameter estimation reduces to ordinary least-squares

with x1(t) = 1 and x2(t) = (t − 0.5). Conditions (3.4)−(3.5) are then satisfied

with τ = η = 2.

The sequence λ0n in (3.3) will be assumed to satisfy (2.4) for some estimator

sequence λ̂0n. Setting Ŝ = Sλ̂0n
, we then require that there is an estimator Ĵ

such that

〈µ0n, (I − Ŝ)µ0n〉 − Ĵ = op(
√

λ0n). (3.6)

Under some additional restrictions on θ̂ one may show that Ĵ = 〈µ̂0n, (I− Ŝ)µ̂0n〉
satisfies (3.6). However, there are often more direct estimators. For example, in

the cosine regression case with algebraically decaying Fourier coefficients, we can

use Ĵ = nC2(θ̂)
∑n

j=λ̂0n+1
j−2τ in estimating λ0n. This then produces the esti-

mator λ̂0n = [{nC2(θ̂)/σ̂2}1/2τ ] for the null mean squared error optimal number

of terms, with σ̂2 some
√

n-consistent estimator of σ2.

Our principle result concerning Tn = ‖ŜYn − µ̂0n‖2 can be stated as follows.

Theorem 2. Assume that conditions (2.2), (2.4), (3.3), (3.6) and (S1)−(S4) of

Section 4.3 hold, and that σ̂2 is a
√

n-consistent estimator of σ2. Then,

Vn =
Tn − σ̂2λ̂0n − Ĵ

σ̂2

√
2λ̂0n

d→ N(0, 1). (3.7)

An asymptotic α level test for H0 is then obtained by rejecting the null hypothesis

if Vn > zα.

Comparison of Theorems 1 and 2 reveals that the centering and scaling

factors for Tn are simpler in the series estimator setting. The most important

difference is that the series estimator statistic does not involve the J2 functional

in (2.7). This occurs because the linear term in (2.6) now satisfies 〈(Sλ0n
−P)εn,

(I−Sλ0n
)µ0n〉 = −〈(I−Sλ0n

)Pεn, (I−Sλ0n
)µ0n〉 and, as a result, the projection

property of the series smoother allows it to simultaneously exploit smoothness in

both P and µ0n to make this term negligible.

Arguments similar to those for the kernel case can be used to establish con-

sistency for tests with series estimators. For a fixed alternative Vn behaves like

a constant multiple of nλ
−1/2
0n , which diverges as a result of (3.3b).

As an application of Theorem 2 we state the following result for cosine series

regression with a uniform design and nonlinear least-squares estimation of θ0.

Corollary 2. Assume that µ(·; θ0), x1, . . . , xp are all in C1[0, 1] and that (3.4)−
(3.5) hold with (η−1/4)/τ > 1/2. Then if the design is uniform, C(·) is differen-
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tiable in a neighborhood of θ0 and Ee4
1 < ∞, the conclusions of Theorem 2 apply

to the cosine series smoother.

4. Proofs

The basic approach to proving both Theorems 1 and 2 begins with the use

of (2.2) to obtain

Tn = ‖µ̂n − µ0n‖2 − 2〈µ̂n − µ0n, µ̂0n − µ0n〉 + ‖Pεn‖2 + Op(1). (4.1)

The proofs of Theorems 1-2 then contain analyses of the terms in (4.1) that

specialize to the specific type of smoother under consideration.

4.1. Proof of Theorem 1.

To establish Theorem 1 we require the following assumptions.

(A1) There is a value m ≥ 1 and constants Ci > 0, i = 1, 2, 3, such that if

λ � n−1/(2m+1), then

(a) trST
λ Sλ ∼ C1/λ;

(b) tr{(Sλ −P)T (Sλ −P)}j ∼ Cj+1/λ, j = 1, 2;

(c) ‖(I − Sλ)µ0n‖2 = nλ2mJ1(µ(·; θ0)) + o(n1/(2m+1)).

(A2) For λ0n and λ̂0n satisfying (2.4) and Ŝ = Sλ̂0n
:

(a) ‖(Ŝ−P)εn‖2 −σ2 tr (Ŝ−P)T (Ŝ−P)−‖(Sλ0n
−P)εn‖2 +σ2 tr (Sλ0n

−
P)T (Sλ0n

−P) = op

(
n1/(4m+2)

)
;

(b) 〈(Ŝ−P)εn, (I−Ŝ)µ0n〉−〈(Sλ0n
−P)εn, (I−Sλ0n

)µ0n〉 = op

(
n1/(4m+2)

)
;

(c) tr
{
(Ŝ−P)T (Ŝ−P)

}j
− tr

{
(Sλ0n

−P)T (Sλ0n
−P)

}j
= op

(
n1/(4m+2)

)
,

j = 1, 2;

(d) ‖(Sλ0n
−P)T (I − Sλ0n

)µ0n‖2 = nλ2m
0n J2(µ(·; θ0)) + op

(
n1/(4m+2)

)
;

(e) ‖(I − Ŝ)µ0n‖2 = nλ̂2m
0n J1(µ(·; θ0)) + op

(
n1/(4m+2)

)
;

(f) parallels of conditions (a)−(d) continue to hold if P = 0.

(A3) There exists P̂ such that

(a) tr(Ŝ − P̂)T (Ŝ− P̂)− tr(Ŝ −P)T (Ŝ −P) = op

(
n1/(4m+2)

)
;

(b) tr
{
(Ŝ− P̂)T (Ŝ − P̂)

}2
− tr

{
(Ŝ−P)T (Ŝ −P)

}2
= op

(
n1/(2m+1)

)
.

(A4) There exist Ĵ1 and Ĵ2 such that Ĵ1 − J1(µ(·; θ0)) = op

(
n−1/(4m+2)

)
and

Ĵ2 − J2(µ(·; θ0)) = op(1).

(A5) Set W = {wij} = (Sλ0n
− P)T (Sλ0n

− P). Then,
∑n

j=1

(
e2
j − σ2

)
wjj =

op

(
n1/(4m+2)

)
.
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(A6) Define Ln = (`1, . . . , `n)T = (Sλ0n
− P)T (I − Sλ0n

) µ0n, W (n) =

2
∑n

k=1

∑k−1
j=1 wkjekej and σ2(n) = 2σ4 tr{W2} + 4σ2‖Ln‖2. Then,

(a) max1≤k≤n
∑n

j=1 w2
kj/σ

2(n) → 0;

(b)
∑n

j=1 `4
j/σ

4(n) → 0;

(c) EW (n)4/[varW (n)]2 → 3;

(d)
∑n

j=1(
∑n

k=j+1 wkj`j)
2/σ4(n) → 0.

Assumption (A1) is sufficient to imply the risk behavior stated in (2.1).

Assumptions (A5)−(A6) are required to establish asymptotic normality for the

random variable T (n) = 〈εn, Wεn〉 − 2LT
n εn. Specifically, under (A6) we have

the following lemma.

Lemma 1. (W (n) − 2LT
n εn)/σ(n)

d→ N(0, 1) if (A6) holds.

Proof. Define Qkn = 2
∑k−1

j=1 wkjej/σ(n), Lkn = −2`k/σ(n) and ukn = ek(Qkn +

Lkn). Then, as a result of Heyde and Brown (1970), the Lemma will be verified

once we show that
∑n

k=1 E|ukn|4 → 0 and E|∑n
k=1 E

(
u2

kn|e1, . . . , ek−1

)
−1|2 → 0.

The first of these two conditions follows from (A6b) and de Jong (1987), who

shows that (A6a) and (A6c) imply that
∑n

k=1EQ4
kn/σ4(n) → 0. The second

condition is equivalent to E
(∑n

k=1E
(
u2

kn|e1, . . . , ek−1

))2
= 1 + o(1). Thus, if we

write E
(
u2

kn|e1, . . . , ek−1

)
= σ2(Q2

kn + 2LknQkn + L2
kn) and sum by parts, (A6d)

gives E(
∑n

k=1 LknQkn)2 = o(1). Consequently, E
(∑n

k=1 E
(
u2

kn|e1, . . . , ek−1

))2
=

σ4E(
∑n

k=1{Q2
kn + L2

kn})2 + o(1), and the Lemma now follows from results in de

Jong (1987) where it is shown that σ4(n)E(
∑n

k=1 Q2
kn)2/[varW (n)]2 → 1 when

(A6a) and (A6c) hold.

To prove Theorem 1 we begin by using (2.4), (A1), (A2e) and (A2f) to

obtain ‖µ̂n − µ0n‖2 = Op

(
n1/(2m+1)

)
. Thus, by the Cauchy-Schwarz inequality

and (2.2), 〈µ̂n −µ0n, µ̂0n −µ0n〉 = 〈µ̂n −µ0n,Pεn〉+ op

(
n1/(4m+2)

)
. Using (A2e)

leads to

Tn = ‖(Ŝ−P)εn‖2−2〈(Ŝ−P)εn, (I− Ŝ)µ0n〉+nλ̂2m
0n J1(µ(·, θ0))+op

(
n1/(4m+2)

)
.

Therefore, by (A2a)−(A2c), (A3a), (A4) and (A5), we obtain that

Tn − σ2tr(Ŝ − P̂)T (Ŝ − P̂) − nλ̂2m
0n Ĵ1

= ‖(Sλ0n
−P)εn‖2 − σ2tr(Sλ0n

−P)T (Sλ0n
−P)

−2〈(Sλ0n
−P)εn, (I − Sλ0n

)µ0n〉 + op

(
n1/(4m+2)

)

=
∑

i6=j

wijeiej − 2
n∑

j=1

`jej + op

(
n1/(4m+2)

)
.
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Since by (A1b) and (A2d) σ2(n) = 2σ4 C3 / λ0n + 4σ2 nλ2m
0n J2 (µ (·; θ0))

+ o(n1/(2m + 1)), we now see from Lemma 1 that {Tn − σ2tr(Ŝ − P̂)T (Ŝ − P̂)

−nλ̂2m
0n Ĵ1}/σ(n)

d→ N(0, 1). Finally, σ2(n) may be consistently estimated by

2σ4tr{(Ŝ−P̂)T (Ŝ − P̂)}2 + 4σ2λ̂2m
0n Ĵ2 due to (A2c), (A2d), (A3b) and (A4).

4.2. Proof of Corollary 1.

The proof of Corollary 1 is quite tedious, but parallels arguments in Eubank

and Wang (1994). We therefore provide only a brief sketch of the proof here,

along with an explicit set of conditions (B1)−(B8) that are sufficient to imply

(A1)−(A6) in this case. A more detailed proof is available on request from the

authors. See also Li (1999) for a detailed proof in a related scenario.

(B1) For each q ∈ [0, 1] the support of K+(q, ·) is [−1, q] and that of K−(q, ·) is

[−q, 1].

(B2) K+(q, ·) ∈ Cm(−1, q) and K−(q, ·) ∈ Cm(−q, 1) where, for finite constants c1

and c2, Cm(c1, c2) represents the class of all mth order, Lipschitz continuous

kernels with support on [c1, c2].

(B3) supq∈[0,1] |K±(q, x1)−K±(q, x2)| ≤ L1|x1 − x2| and supx∈[−1,1] |K±(q1, x)−
K±(q2, x)| ≤ L2|q1 − q2| for some finite constants L1, L2 > 0.

(B4) K+(1, ·) = K−(1, ·) = K(·).
(B5) For each θ ∈ Θ, µ(m)(t; θ) is Lipschitz continuous in t.

(B6) (∂m/∂tm)(∂/∂θ)µ(t; θ) is continuous on [0, 1] × Θ.

(B7) E|e1|8m+4+ν < ∞ for some ν > 0.

(B8) The design points satisfy
∫ tin
0 p(t)dt = i/n, i = 1, . . . , n, for a continuously

differentiable density p(·) on [0, 1].

To prove Corollary 1, first observe that under (B1)−(B8) known properties of

the bias and variance of kernel smoothers can be used to establish (A1a), (A1b),

(A2d)−(A2e) and to see that if g ∈ Cr[0, 1] for 1 ≤ r < m, then Sλgn = gn+o(λr)

for gT
n = (g(t1n), . . . , g(tnn)) and any λ = λ0n + o(λ0n). Similarly, one finds the

ith element of ST
λ gn is g(tin) + o(λr) for tin ∈ [λ, 1 − λ] and is O(1) otherwise if

λ = λ0n + o(λ0n). These facts along with (B6) give (A1c).

For verification of (A2a), it suffices, as in Eubank and Wang (1994), to

work on the set Λn = {λ : |(λ − λ0n)/λ0n| ≤ n−γ} for γ < 1/2 since P (λ̂0n ∈
Λn) → 1 as a result of (2.4). For λ ∈ Λn, (B1)−(B4) may be used to check that

‖(Sλ−P)εn‖2−‖(Sλ0n
−P)εn‖2+σ2 tr [(Sλ0n

−P)T (Sλ0n
−P)−(Sλ−P)T (Sλ−P)]

is dominated by ‖Sλεn‖2 −‖Sλ0n
εn‖2 +σ2 tr [ST

λ0n
Sλ0n

−ST
λSλ]. Then one finds

that for λ, λ′ ∈ Λn, ST
λ′Sλ′ − ST

λSλ is O(nλ) banded with nonzero elements that
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are uniformly O(|λ − λ′|/λ), and the remainder of the argument proceeds as in

the proof of Lemma 1 of Eubank and Wang (1994) using a Härdle, Hall and

Marron (1988) type partitioning argument for Λn along with inequality (8) of

Whittle (1960) and the moment condition (B7). Conditions (A2b)−(A2c) are

verified similarly.

For conditions (A5)−(A6), (B6) is seen to imply that ‖(Sλ0n
− P)εn‖2 −

σ2tr(Sλ0n
− P)T (Sλ0n

− P) is dominated by ‖Sλ0n
εn‖2 − σ2trST

λ0n
Sλ0n

and the

trace of ST
λ0n

Sλ0n
is found to be asymptotic to λ−1

0n

∫ 2
−2 K∗(u)2du with K∗(·) the

convolution kernel
∫ 1
−1 K(z)K(·−z)dz. Using these results along with the Lemma

1, (A5)−(A6) can now be verified directly. Finally, (A4) is easily seen to hold.

4.3. Proof of Theorem 2

In this section we give a proof of Theorem 2. For this purpose we first specify

the conditions that are needed for the result to hold.

(S1) ‖(I− Ŝ)µ0n‖2 = ‖(I− Sλ0n
)µ0n‖2 + op(

√
λ0n).

(S2) ‖Ŝεn‖2 − ‖Sλ0n
εn‖2 − σ2(λ̂0n − λ0n) = op(

√
λ0n).

(S3) Let P = n−1XXT for XT = (x1n, . . . , xpn) with 〈xin, xjn〉 = nδij , i, j =

1, . . . , p. Then,

(a) 〈xjn, (I− Ŝ)µ0n〉 = 〈xjn, (I− Sλ0n
)µ0n〉 + op(

√
λ0n);

(b) 〈xjn, (I− Sλ0n
)xjn〉 = o(n) for j = 1, . . . , p.

(S4) Let Sλ0n
= {sij} and set Qn =

∑ ∑
i6=j sijeiej . Then,

(a)
∑n

i=1 s2
ii = o(λ0n);

(b) EQ4
n/(2σ4λ0n)2 → 3.

Condition (S3b) is a mild smoothness condition on the elements of P. For

nonlinear least-squares this reduces essentially to requiring that the functions

in (2.3) have convergent series expansions. Condition (S4) is needed to satisfy

conditions in de Jong (1987) for asymptotic normality of the quadratic form that

dominates Tn. It implicitly requires the existence of a fourth moment for e1.

Condition (S4a) can be established using bounds on the basis functions in (3.1)

and is true, for example, if the φjn(·) are uniformly bounded.

To prove Theorem 2 we begin again with expansion (4.1). Writing µ̂n =

Ŝεn + Ŝµ0n and using Ŝ2 = Ŝ, we obtain

Tn = ‖Ŝεn‖2+‖(I−Ŝ)µ0n‖2−2〈Ŝεn, µ̂0n−µ0n〉+2〈(I−Ŝ)µ0n, µ̂0n−µ0n〉+Op(1).

Using (2.2) we have 〈(I− Ŝ)µ0n, µ̂0n −µ0n〉 = 〈(I− Ŝ)µ0n,Pεn〉+ 〈(I− Ŝ)µ0n, rn〉
and, from (2.2b), (3.3a) and (S1), 〈(I− Ŝ)µ0n, rn〉 = op(

√
λ0n). We can then write

〈(I − Ŝ)µ0n,Pεn〉 = µT
0n(I − Ŝ)X[n−1XT εn]. This quantity is op(

√
λ0n) because
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n−1XT εn is uniformly componentwise Op(n
−1/2) and, by (3.3), (S1) and (S3),

XT (I− Ŝ)µ0n is uniformly componentwise op(
√

nλ0n).

Now write ‖Sλ0n
εn‖2 =Qn+

∑n
i=1 siie

2
i and observe from (S4a) that

∑n
i=1siie

2
i

−σ2λ0n = op(
√

λ0n) and varQn = 2σ4(λ0n − ∑n
i=1 s2

ii) = 2σ4λ0n{1 + o(1)}. We

may now apply Theorem 2.1 of de Jong (1987) with conditions (a) and (b) of

that theorem following from the inequality 0 ≤ max1≤i≤n[sii−s2
ii] ≤ 1 and (S4b),

respectively. Consequently,

(‖Sλ0n
εn‖2 − σ2λ0n)/σ2

√
2λ0n

d→ N(0, 1). (4.2)

Using (2.2b), (S2) and (4.2), we see that 〈Ŝεn, rn〉 = op(
√

λ0n). Then, to

show that 〈Ŝεn, Pεn〉 = op(
√

λ0n) it suffices to show that the vector XT Ŝεn is

componentwise op(
√

nλ0n). For this purpose we need work only with orders in

Λn =
{
λ : |(λ − λ0n)/λ0n| ≤ n−γ}

(4.3)

because P (λ̂0n ∈ Λn) → 1 for any 0 < γ < 1/2 due to (2.4). However, for any

λ ∈ Λn, we have var(xT
inSλεn) ≤ σ2n, i = 1, . . . , p, and the desired result then

follows from Bonferroni’s inequality and (3.3b), since the cardinality of Λn is

O(n−γλ0n). The remainder of the proof is immediate from (3.3), (S2) and (4.2).

4.4. Proof of Corollary 2

Here we demonstrate that the conditions for Theorem 2 hold under the

assumptions made in Corollary 2. We begin by observing that the differentiability

assumption on C(·), along with the
√

n-consistency of θ̂, ensures that λ̂0n satisfies

(2.4). Using this we can see, for example, that if λ̂0n > λ0n then ‖(I− Ŝ)µ0n‖2 −
‖(I−Sλ0n

)µ0n‖2 = n−1 ∑λ̂0n

j=λ0n
〈Φjn, µ0n〉2 = Op(n

−(1−τ−1)/2) as a result of (3.4).

A similar argument using the condition (η−1/4)/τ > 1/2 shows that (S3) holds.

To establish (S2) it again suffices to work on the set Λn in (4.3). For λ ∈ Λn

define Dλ = ‖Sλεn‖2 − ‖Sλ0n
εn‖2 − σ2(λ − λ0n) and note that EDλ = 0 and

varDλ = 2|λ−λ0n|+o(|λ−λ0n|2/n) since the elements of Sλ−Sλ0n
are uniformly

bounded by a constant multiple of |λ − λ0n|/n. The result then follows upon

observing that maxλ∈Λn
|Dλ/

√
λ0n| is op(1) due to the Bonferroni and Chebychev

inequalities and the fact that Λn has cardinality n−γλ0n, for γ arbitrarily close

to 1/2.

Condition (S4b) can be verified as in Chen (1994). For (S4a), write sii =

n−1{1+2
∑λ0n

j=1 cos(jπtin)2} to see that
∑n

i=1 s2
ii ≤ (2λ0n+1)2/n. Finally, to show

(3.6), write 〈µ0n, (I − Ŝ)µ0n〉 = n
∑n

j=λ̂0n+1
(n−1〈Φjn, µ0n〉)2 and use (3.4), the

√
n-consistency of θ̂, the differentiability of C2(·) and the bound

∑n
j=λ̂0n+1

j−2τ ≤
1/{(2τ − 1)λ̂

(2τ−1)
0n }.
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