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Abstract: We consider a partially linear single-index model Y = η(ZTα0)+XTβ0+ε

when X is measured with additive error. Estimators in the literature are biased

when the measurement errors are ignored. We propose two estimators in this

setting and develop their asymptotic normality. We apply the proposed estimators

to the analysis of dietary data, and provide the results of a simulation experiment

to illustrate our approach.
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1. Introduction

We consider the partially linear single-index model

Y = η(ZTα0) + XTβ0 + ε with ‖α0‖ = 1, (1.1)

where Y is response variable, Z = (z1, . . . , zp)
T and X = (x1, . . . , xd)

T are co-

variates, α0 and β0 are parametric vectors to be estimated, η(·) is an unknown

smooth function, E(ε|Z,X) = 0 and E(ε2|Z,X) < ∞. The restriction ‖α0‖ = 1

assures identifiability.

Model (1.1) is a generalization of single-index models. Single-index models,

β0 = 0 in (1.1), have been studied in detail by Ichimura (1987) and Härdle, Hall

and Ichimura (1993). When Z is a scalar quantity and α0 = 1, (1.1) is the

partially linear model, introduced by Engle, Granger, Rice and Weiss (1986) to

study the effect of weather on electricity demand, and was further investigated

by Speckman (1988) and Severini and Staniswalis (1994). Härdle, Liang and Gao

(2000) gave a comprehensive summary of statistical inference for partially linear

models. A more general case of (1.1), generalized partially linear single index

models, was studied by Carroll, Fan, Gijbels and Wand (1997), in which (1.1)

is replaced by g−1{E(Y |Z,X)} = η(ZTα0) + XTβ0, with g being a known link

function.

In this paper, we are interested in estimating β0, α0 and the unknown func-

tion η(·) in (1.1) when the covariate X is measured with error-instead of observing
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X, we observe its surrogate W . We assume an additive measurement error model

to relate W and X:

W = X + U, (1.2)

where the measurement error U , independent of (Y,Z,X), is a symmetric random

error with a covariance matrix Σuu. We term (1.1) and (1.2) the partially linear

single-index measurement error model (PLSMeM).

The literature on linear and nonlinear measurement error models has been

reviewed by Fuller (1987) and by Carroll, Ruppert and Stefanski (1995). More

recently, Liang, Härdle and Carroll (1999) considered a combination of the par-

tially linear model and (1.2), which is a special case of PLSIMeM. In this paper,

we focus on the situation that Σuu is known; the situation that Σuu is unknown

can be dealt with by incorporating the estimated Σuu into the estimation proce-

dures. Estimation of Σuu can be done based on replicates of W, as is discussed

in, for example, Section 5 of Liang, Härdle and Carroll (1999).

We first use simple derivations to illustrate why the method proposed in

Liang et al. (1999) can be easily extended to PLSIMeM. The only modification

required is to replace an original univariate nonparametric regression with a

multivariate one. The estimation procedure and the asymptotic properties of the

estimator are provided in Section 2. To avoid the “curse of dimensionality” in

nonparametric regression, a new estimator that uses local estimating equations

is proposed in Section 3. Section 4 explores a theoretical comparison of the two

classes of estimators. An analysis of data from the Women’s Interview Survey

of Health and a small simulation study are presented in Section 5. Concluding

comments are given in Section 6. All proofs are given in the Appendix.

2. Pseudo-β Method

Assume that (Xi, Zi, Yi,Wi, Ui) for i = 1, . . . , n are independent and identi-

cally distributed, (Zi, Xi, Yi) generated from (1.1), and Wi generated from (1.2).

Note that E(ε|Z,X) = 0. It follows that E(Y |Zi) = η(ZT
i α0) + E(X|Zi)

Tβ0.

This, along with (1.1), yields

Yi − E(Y |Zi) = {Xi − E(X|Zi)}Tβ0 + εi, (2.1)

where the nonparametric term η(ZT
i α0) is canceled from both sides of the original

model. Note that based on the same principle, the partially linear model can also

be maneuvered into (2.1) with a one dimensional Z. That is, when the regression

functions E(Y |Z) and E(X|Z) are smooth and the Xi are completely observable,

estimation of β0 in both the partially linear and the partially linear single-index

models can be obtained by the following algorithm.
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Using the usual nonparametric smoothing methods, such as kernel regression,

to approximate these two regression functions, a commonly used estimator is

β̂∗
n =

[ n∑

i=1

{Xi − Ê(X|Zi)}{Xi − Ê(X|Zi)}T
]−1

n∑

i=1

{Xi − Ê(X|Zi)}{Yi − Ê(Y |Zi)}, (2.2)

where Ê(Y |Z) and Ê(X|Z) denote the kernel estimators of E(Y |Z) and E(X|Z).

Because the Xi are measured with error, it is well known that if one ignores

measurement error and replaces Xi by Wi, the resulting estimator is inconsistent

for β0. Since (2.1) holds for the partially linear models and the partially linear

single-index models, we note that the structure of (2.2) is identical to that of

(3) in Liang et al. (1999). As a result, the correction for attenuation approach

proposed by Liang et al. (1999) in the partially linear models remains applicable

with a straightforward modification. More precisely, β0, the parameter of interest

in the PLSIMeM, is estimated by

β̂P =
[ n∑

i=1

{Wi − Ê(W |Zi)}{Wi − Ê(W |Zi)}T − nΣuu

]−1

n∑

i=1

{Wi − Ê(W |Zi)}{Yi − Ê(Y |Zi)}. (2.3)

Here Ê(·|Z) denotes a p-dimensional kernel regression instead of the original 1-

dimensional one in Liang et al. Deducting nΣuu from the first term of the right-

hand side of (2.3) and verifying that n−1∑n
i=1{Wi− Ê(W |Zi)}{Wi− Ê(W |Zi)}T

and n−1∑n
i=1{Wi−Ê(W |Zi)}{Yi−Ê(Y |Zi)}T converge to ΓX|Z+Σuu and ΓX|Zβ,

respectively, we can prove that β̂P is consistent. Here ΓX|Z is the expectation of

the covariance matrix of X given Z, and its exact expression is provided in

condition 1 (i) below. We shall give the conditions that warrant this consistency

as well as the asymptotic normality of β̂P.

Consider nonparametric estimates of E(Y |Z = z) that are of a linear form,

i.e., Ê(Y |Z = z) =
∑

i wni(z)Yi with wni(z) = wni(z;Z1, . . . , Zn). Common

choices are kernel weights for which wni(z) is defined as wni(z) = n−1KH(Zi−z),

where KH(u) = |H|−1/2K1(H
−1/2u), K1(·) is a bounded p-variate kernel with a

compact support and a bounded Hessian matrix,
∫

K1(u)du = 1, and H is a p×p

symmetry positive definite bandwidth matrix depending on n; see, e.g., Ruppert

and Wand (1994). For ease of presentation we assume here that H is a diagonal

matrix, and take K1 as the product of p symmetric univariate kernels.
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We need the following.

Condition 1.

(i) ΓX|Z = E[{X − E(X|Z)}{X − E(X|Z)}T] is a positive-definite matrix.

(ii) Each entry of the Hessian matrices of E(X|Z) and E(Y |Z) is continuous

and squared integrable, where the (i, j) entry of a Hessian matrix of g(z) is

defined as ∂2g(z)
/

∂zi∂zj .

(iii)The diagonal elements of H1/2 are of the same order O(h1), and h1 ∈
[C1n

−1/(p+4), C2n
−1/(p+4)] for 0 < C1 < C2, where p is the dimension of

Z.

(iv) Weight functions ωni(·) satisfy (a) max1≤i≤n
∑n

j=1 ωni(Zj) = OP(1); (b)

max1≤i,j≤n ωni(Zj) = OP(bn); and (c) max1≤i≤n
∑n

j=1 ωnj(Zi)I(|Zj − Zi|
> cn) = OP(cn), where bn = n−1+p/(p+4), cn = n−1/(p+4) log n, and |Zj − Zi|
denotes the Euclidean distance between the two vectors.

Condition 1 provides equivalent conditions to those behind Theorem 3.1 in

Liang et al. (1999). In (iii), each univariate element in Z can have its own

bandwidth, but all these p bandwidths share the same rate, as function of n and

p. Condition 1 (iv) on the kernel weights is similar to Assumption 1.3 of Liang

et al. (1999), but adapted to the current multivariate situation.

Theorem 2.1. Suppose that Condition 1 holds and E(ε4 + ‖U‖4) < ∞. Then

β̂P is asymptotically normal: n1/2(β̂P − β0) → N(0,Γ−1
X|ZΣβPΓ−1

X|Z), where ΣβP =

E[(ε − UTβ0){X − E(X|Z)}]⊗2 + E{(UUT − Σuu)β0}⊗2 + E(UUTε2) and A⊗2

denotes AAT.

If ε is homoscedastic and independent of (X,Z), ΣβP can be simplified to

σ2
∗ΓX|Z+ΣM, where σ2

∗ = E(ε−UTβ0)
2 and ΣM = E{(UUT−Σuu)β0}⊗2+Σuuσ2.

The proof of Theorem 2.1 follows the proof of Theorem 3.1 in Liang et

al. (1999), to which we refer for details. The key step is to obtain

√
n(β̂P − β0) = n−1/2Γ−1

X|Z

n∑

i=1

[{Xi + Ui − E(Xi|Zi)}(εi − UT
i β0) + Σuuβ0]+oP(1)

= n−1/2Γ−1
X|Z

n∑

i=1

[{Xi − E(Xi|Zi)}(εi − UT
i β0)

−(UiU
T
i − Σuu)β0 + Uiεi] + oP(1), (2.4)

which leads directly to the result.

Theorem 2.1 indicates that theoretically, when proper orders of bandwidths

are chosen, the asymptotic distribution of the estimated coefficient, β̂P, of X
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has the same structure regardless of the dimension of Z. However, one should

note that, in practice, if the dimension of Z is high, a large n is required for the

asymptotics to apply. When p is small, β̂P provides a simple consistent estimator.

Without the assumption that U is symmetric, one must take into account the

covariance between U and UUT. The exact asymptotic covariance in a more

complicated form can be obtained by using (2.4).

After obtaining the estimate of β0, we pretend it is fixed and use the following

modified models Yi − XT
i β̂P = η(ZT

i α0) + εi and Wi = Xi + Ui to estimate α0

and η(·). It is actually a single-index model.

In the literature, there are several methods to estimate α0 at the
√

n−rate

and η(·) at the usual nonparametric rate. For an example of single-index esti-

mation see Härdle, Hall and Ichimura (1993), for projection pursuit regression

see Friedman and Stuetzle (1981), for an average derivative estimate (ADE) see

Härdle and Stoker (1989), and for sliced inverse regression see Li (1991).

We estimate η(·) and α0 by a nonparametric kernel method. Suppose α is

a unit p-vector and define η(u, α, β) = E(Y − XTβ|ZTα = u). Equality holds

when replacing X by W in the right-hand-side. Because of this, the need for a

measurement error correction arises when estimating β, but not when estimating

η. The same phenomenon is observed in the estimation procedure proposed in

the next section.

For estimating η, we use the local linear estimator investigated by Sev-

erini and Staniswalis (1994) and Carroll et al. (1997). The idea there is to

approximate η(v), for v in a neighborhood of u, by a linear function: η(v) ≈
η(u) + η′(u)(v − u) ≡ a + b(v − u), where a = η(u) and b = η ′(u). Note that we

can also use local linear estimates to replace the Nadaraya-Watson kernel regres-

sion estimates, Ê(W |Z) and Ê(Y |Z), in (2.3). The comparison, and equivalence,

between these two type of estimators were studied in detail by Fan and Gijbels

(1996). Theorem 2.1 still holds when local linear estimates are used. Putting

Λi = ZT
i α, the iterative estimation procedure can be described as follows.

Step 2.0. Obtain an initial value α̂0, for example by sliced inverse regression

(Li, 1991) using Y − W Tβ̂P as responses, and set α̂ = α̂0/‖α̂0‖.

Step 2.1. Let Λ̂i = ZT
i α̂ and find η̂(u, α̂, β̂P) = â by minimizing

n∑

i=1

{a + b(Λ̂i − u) + W T
i β̂P − Yi}2K2h(Λ̂i − u)

with respect to a and b. Here, K2h(·) = 1/h2K2(·/h2), K2(·) is a one-

dimensional kernel function and h2 is the corresponding bandwidth.
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Step 2.2. Update α̂ by

arg min
α

1

n

n∑

i=1

{η̂(Λi, α, β̂P) + W T
i β̂P − Yi}2. (2.5)

Iterate Steps 2.1 and 2.2 until convergence is achieved.

The estimate β̂P is fixed in (2.3) throughout the iterations, as has often been

done for the pseudo-likelihood estimators in the literature on parametric methods

(Gong and Samaniego (1981)). We therefore call the foregoing estimators the

pseudo-β estimators and denote them by α̂P, β̂P and η̂P, respectively (P stands

for pseudo).

We need the following.

Condition 2.

(i) The density function of Z, f(z), is bounded away from 0 and has two bounded

derivatives on its support.

(ii) η(·) and the density function of ZTα0, γ(·), have two bounded, continuous

derivatives on their supports.

(iii)K2(·) is supported on the interval (−1, 1) and is a symmetric probability

density, with a bounded derivative.

For simplicity of notation, we denote S − E(S|Λ) by S̃; for example, Z̃i =

Zi − E(Z|Λi) and X̃i = Xi − E(X|Λi).

Theorem 2.2. Under Conditions 1 and 2 and with nh2 → ∞ and nh4
2 → 0 as

n → ∞,
√

n(α̂P−α0) converges in distribution to N(0,Γ−1
αP

ΣαPΓ−1
αP

), where ΓαP =

E{Z̃η′(Λ)}⊗2 and ΣαP = E
[
{Z̃η′(Λ) − Γ1Γ

−1
X|ZX̃}(ε −UTβ0) + Γ1Γ

−1
X|Z{(UUT −

Σuu)β0 − Uε}
]⊗2

. When ε is independent of (Z,X), ΣαP = Γ2σ
2
∗ + Γ1Γ

−1
X|Z

ΣMΓ−1
X|ZΓT

1 , where Γ2 = E{Z̃η′(Λ) − Γ1Γ
−1
X|ZX̃}⊗2 = ΓαP − Γ1Γ

−1
X|ZΓT

1 and Γ1 =

E{Z̃X̃Tη′(Λ)} with Λ = ZTα0.

When Z and X are independent given Λ, we have Γ1 = 0 and ΣαP =

E{Z̃η′(Λ)(ε − UTβ0)}⊗2. This suggests that the asymptotic variance of α̂P is

the same regardless of whether β0 is estimated or not. From (A.3) in the Ap-

pendix it can be seen that Γ1 determines the extra variation due to estimation

of the unknown β0. When Γ1 equals 0, this extra variation is zero.

The outline of the proof of Theorem 2.2 is given in the Appendix, with the

exact influence function of α̂P given by (A.8). Due to space limitations, we focus

on reporting the properties of the estimated α and β, but not of the estimated η.

The reasons are two-fold: when estimating η, there is no need for a measurement

error correction — the estimation of the parameters is the main interest; when

α and β are
√

n consistently estimated, the regular convergence rate of η̂ can be
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reached. The equivalent findings under different models have been investigated

and reported by Carroll et al. (1997) and by Lin and Carroll (2001).

3. Modified Quasilikelihood Method

In Section 2 we first derived an estimate of β0 directly, then estimated α0 and

η(·). Although this method is simple and intuitive, the estimator of β0 does not

fully use the information given in (1.1), but instead relies on a high dimension

nonparametric estimation. It is therefore expected that a more efficient estimator

can be derived. If η(·) were known and there were no measurement errors, the

quasilikelihood estimator of (α0, β0) is the argument that minimizes

QL(η, α, β, Y, Z,X) =
1

n

n∑

i=1

{η(ZT
i α) + XT

i β − Yi}2. (3.1)

A quasilikelihood principle to account for measurement errors, as given in

Chapter 7 of Carroll et al. (1995), is to focus on modeling the relationship between

Y and (W,Z). This type of approach is different from the regression calibration

idea in which X is replaced by the estimate of E(X|W,Z). When replacing X

by W in (3.1), we note that (3.1) and QL(η, α, β, Y, Z,W ) − βTΣuuβ share the

same asymptotic limit. That is, we can use the latter to replace the former as

the objective function. We call this a modified quasilikelihood approach.

To estimate α0, β0 and η(·), we first estimate η(·) as a function of α and β,

using a local linear smoother, and obtain η̂(·, α, β). Letting η(·) = η̂(·, α, β), we

then use the modified quasilikelihood idea to estimate the parametric component.

The procedure may be described as the following iterative algorithm.

Step 3.0 Given initial values (α̂1, β̂L), set α̂L = α̂1/‖α̂1‖ and Λ̂i = ZT
i α̂L.

Step 3.1. Find η̂(u, α̂L, β̂L) = â by minimizing

n∑

i=1

{a + b(Λ̂i − u) + W T
i β̂L − Yi}2K3h(Λ̂i − u) (3.2)

with respect to a and b. As in Step 2.1, K3h(·) = 1/h3K3(·/h3).

Step 3.2. Update (α̂L, β̂L) by maximizing

1

n

n∑

i=1

{η̂(ZT
i α, α̂L, β̂L) + W T

i β − Yi}2 − βTΣuuβ (3.3)

with respect to α and β.

Step 3.3. Iterate Steps 3.1 and 3.2 until convergence is achieved.
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We select the initial estimates of α̂L and β̂L to be consistent and have con-

vergence rates faster than
√

nh3 + h2
3, where h3 is the bandwidth used in Step

3.1. This choice ensures that the asymptotic properties of η̂ obtained in Step 3.1

remain the same as those constructed with the true α0 and β0. This can be seen

from evaluating the rates of convergence of the terms on the right hand side of

(A.1). The estimates established in the previous section are
√

n consistent and

can serve as the initial estimates here.

Theorem 3.1. Under Conditions 1 and 2 and with nh3 → ∞ and nh4
3 → 0 as

n → ∞,
√

n(α̂L−α0) converges in distribution to N(0,Γ−1
αL

ΣαLΓ−1
αL

), and
√

n(β̂L−
β0) converges in distribution to N(0,Γ−1

βL
ΣβLΓ−1

βL
), where ΓX|Λ = E(X̃iX̃

T
i ),

ΓαL = ΓαP−Γ1Γ
−1
X|ΛΓT

1 , ΓβL = ΓX|Λ−ΓT
1 Γ−1

αP
Γ1, ΣαL = Γ∗

2σ
2
∗ +Γ1Γ

−1
X|ΛΣMΓ−1

X|ΛΓT
1 ,

Γ∗
2 = ΓαP−Γ1Γ

−1
X|ΛΓT

1 , and ΣβL = E{X̃−ΓT
1 Γ−1

αP
Z̃η′(Λ)}⊗2σ2

∗+ΣM = ΓβLσ2
∗+ΣM,

with σ2
∗ and ΣM defined in Theorem 2.1.

4. A Comparison of Two Estimators

In this section we compare the asymptotic variances of the two classes of

estimators proposed in Sections 2 and 3. In general, this is difficult to do. In-

tuitively, the modified likelihood method should gain efficiency in comparison to

the pseudo−β method due to the reduction in dimension, but this is not always

true. However, when ε is homoscedastic and independent of (Z,X), some insight

is possible.

Let avar(·) denote the asymptotic variance of an estimator. Then avar(β̂P) =

σ2
∗Γ

−1
X|Z + Γ−1

X|ZΣMΓ−1
X|Z and avar(β̂L) = σ2

∗Γ
−1
βL + Γ−1

βLΣMΓ−1
βL . We simplify the

problem of comparing avar(β̂L) and avar(β̂P) to comparing Γ−1
βL and Γ−1

X|Z.

Note that ΓX|Z = E{var(X|Z)}, ΓX|Λ = E{var(X|Λ)}, and that

var(X) = var{E(X|Z)} + ΓX|Z = var{E(X|Λ)} + ΓX|Λ,

var{E(X|Z)} = var[E{E(X|Z)|Λ}] + E[var{E(X|Z)|Λ}]
= var{E(X|Λ)} + E[var{E(X|Z)|Λ}]. (4.1)

The last equality is due to the fact that Λ = ZTα0 projects the space spanned

by the original p dimensional vector Z onto a one-dimensional subspace. That

is, with the second term in (4.1) being non-negative, we have

var{E(X|Z)} ≥ var{E(X|Λ)}, (4.2)

where “A ≥ B” means A − B is semi-positive definite. When the dimension of

Z is high, the difference can be large.
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Now ΓX|Λ − ΓX|Z is semi-positive definite because (4.2) holds. Recall that
ΓβL = ΓX|Λ − ΓT

1 Γ−1
αP Γ1, and that ΓT

1 Γ−1
αPΓ1 is semi-positive definite, indication

of the cost of estimating α in the local likelihood approach. This implies that
avar(β̂P) ≥ avar(β̂L) when ΓX|Λ−ΓX|Z ≥ ΓT

1 Γ−1
αPΓ1, that is, when the reduction in

variation due to the reduction in dimension is larger than the cost of estimating

α simultaneously.
Recall that avar(α̂L) = Γ−1

αLΣαLΓ−1
αL and avar(α̂P) = Γ−1

αPΣαPΓ−1
αP. Some

straightforward but burdensome calculation gives Γ−1
αL − Γ−1

αP = Γ−1
αPΓ1(ΓX|Λ −

ΓT
1 Γ−1

αPΓ1)Γ
T
1 Γ−1

αP, and ΣαL − ΣαP = Γ1(Γ
−1
X|Z − Γ−1

X|Λ)ΓT
1 + Γ1(Γ

−1
X|ΛΣMΓ−1

X|Λ −
Γ−1

X|ZΣMΓ−1
X|Z)ΓT

1 . We see that, even if Γ−1
X|Z > Γ−1

X|Λ, avar(α̂P) could still be smaller

than avar(α̂L). It is difficult to say which of avar(α̂L) and avar(α̂P) is smaller.
When Z and X are independent, the two variances are exactly the same.

Therefore, one may prefer the pseudo−β method over the local quasilikelihood
approach, because of its simplicity, when Z and X are weakly correlated or when

the dimension of Z is of low.

5. Numerical Examples

5.1. Simulation

We run a small simulation experiment with n = 200 and use data generated

from the model

Yi = XT
i β0 + sin(ZT

i α0) + εi Wi = Xi + Ui,

where the errors εi are normally distributed with mean 0 and variance 0.22.

The random vector Xi and the measurement error Ui are of dimension two; the

distribution of Ui is N(0, 0.152I2), with I2 denoting the 2 × 2 identity matrix.
We consider three cases: Case 1, in which Zi is of dimension two, and Xi and Zi

are independent; Case 2, in which Zi is also of dimension two but is correlated
with Xi; and Case 3, in which Zi is of dimension three and independent of Xi.

In Cases 1 and 2, where Zi is of dimension two, α0 = (0.2,−0.7)/
√

0.53. In Case
3, α0 = (0.2,−0.7, 1)/

√
1.53. For all cases, β0 = (0.8, 0.9). The distributions of

X and Z in these three cases are described in detail below.

Case 1. The Xi are bivariate independent uniform (0, 1) and the Zi are bivariate
N(0, I2); X and Z are independent.

Case 2. We generate X and Z from N(0, VX,Z), where X and Z are of dimension

two and VX,Z =




1.00 −0.52 0.87 0.55
−0.52 1.00 −0.71 −0.53

0.87 −0.71 1.00 0.71
0.55 −0.53 0.71 1.00


. We use this case to show the

effect of moderate to strong correlation between Z and X on the variation

of the two estimation procedures.
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Case 3. The setup is identical to Case 1 except that the dimension of Z is now
three. We use this to get a basic understanding of the effect of increasing
dimensionality of Z.

In this experiment and in the following data analysis, three estimators are
considered: the naive estimator obtained by ignoring measurement errors; pseudo
−β; the modified quasilikelihood (MQL) estimates of the parameters α0 and β0.
We use the quartic kernel K(u) = 15/16(1 − u2)2I(|u|≤1). We generated 1,000
data sets in each of the three cases. The computation of the proposed estimates
was conducted in XploRe — an advanced statistical environment developed by
Härdle’s team (http://www.xplore-stat.de/index js.html). The estimated results
are summarized in Table 1. Three estimates η̂(·) in Case 1, are given in Figure
1. The outcomes η̂(·) for Cases 2 and 3 are similar to η̂(·) in Case 1 and are not
reported.

Table 1. The estimates with standard error (s.e.) of the parameters α0 and
β0 obtained by three different methods for the simulated data.

Case Parameter True Naive Pseudo−β MQL

1 β1 0.8 0.65 (0.083) 0.73 (0.12) 0.75 (0.10)

β2 0.9 0.71 (0.081) 0.84 (0.09) 0.86 (0.09)

α1 0.275 0.315 (0.41 ) 0.281 (0.44) 0.278 (0.43)

α2 -0.962 -0.94 (0.38 ) -0.95 (0.39) -0.953 (0.42)

2 β1 0.8 0.648 (0.125) 0.722 (0.42) 0.761 (0.24)

β2 0.9 0.724 (0.203) 0.831 (0.38) 0.867 (0.29)

α1 0.275 0.323 (0.43 ) 0.285 (0.53) 0.281 (0.41)

α2 -0.962 -0.925 (0.56 ) -0.948 (0.48) -0.952 (0.39)

3 β1 0.8 0.649 (0.114) 0.726 (0.19) 0.754 (0.12)

β2 0.9 0.712 (0.142) 0.835 (0.13) 0.86 (0.16)

α1 0.162 0.134 (0.41 ) 0.181 (0.54) 0.178 (0.45)

α2 -0.566 -0.49 (0.36 ) -0.42 (0.49) -0.543 (0.40)

α3 0.808 0.69 (0.47 ) 0.76 (0.51) 0.78 (0.45)

The results correspond fairly well to our theory. As in the conventional
measurement error models, the naive estimator of β0 is biased and the estimates
of η(·) are far from their true values. Both the pseudo−β and the modified
likelihood methods reduce the biases observed in the naive method. However, the
variances obtained by using these two methods are larger than that of the naive
estimator. In Case 1, the pseudo−β and modified local likelihood estimators
perform similarly and it is hard to decide which is preferable. In Case 2 where X
and Z are correlated, and in Case 3 where the dimension of Z is 3, the variances of
the pseudo−β estimators are in general larger than those of the MQL estimators.
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Figure 1. The true and estimated curves for the simulated data of Case

1. The dotted, short-dashed and long-dashed lines were obtained by using

pseudo−β, MQL and naive methods. The true curve is indicated by the

solid line.

5.2. Dietary data

The assessment of an individual’s diet is difficult, but important in studying

the relation between diet and cancer, and in monitoring dietary behavior. Several

dietary instruments are used in nutrition research. Food Frequency Question-

naires (FFQ) are frequently administrated and from these, usual intake, Body

Mass Index (BMI), and Age are recorded. Because of measurement errors and

other sources of variability, one cannot observe true intake and other instruments,

such as the 24-hour Food Recall or the multiple-day Food Record (both called

FR), are used to obtain error-prone measurement of intake.

To illustrate the method, we consider data from the Women’s Interview Sur-

vey of Health (WISH). We study a subset of the data consisting of 271 partici-

pants who completed an FFQ and six 24-hour food recalls on randomly selected

days for at least two weeks. We want to analyze the relation between FFQ and

usual intake. Experience indicates that FFQ depends nonlinearly on BMI and

age. In our notation, Z = (BMI, age)T, X is the usual intake, measured with

error, and Y is the FFQ. We have two replicates of W , the error prone measure-

ment of the usual intake, and we use them to estimate the measurement error

variance. The exact procedures, including the modified asymptotic variance for-
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mulae for α̂ and β̂, are described in Section 5 of Liang et al. (1999). The estimate

for σ2
uu is σ̂2

uu =
∑n

i=1

∑2
j=1(Wij − W̄i)

2/n. The reliability ratio, σ2
W/σ2

X , is 1.35.

The estimated values of parameters of interest by using the naive, pseudo−β

and modified likelihood methods are presented in Table 2. The corresponding

nonparametric estimates are provided in Figure 2.

Table 2. The estimates (s.e.) of the parameters α and β obtained by three

different methods from the WISH data.

Parameter naive Pseudo−β MQL

β (s.e) 0.397 (0.072) 0.527 (0.089) 0.531 (0.09 )

α1 0.362 (0.609) 0.387 (0.645) 0.383 (0.637)

α2 0.086 (0.158) 0.142 (0.156) 0.138 (0.149)

Accounting for measurement errors, the estimates of β increase about 30%.

The corresponding standard errors also increase by about 24%. The curve struc-

tures of the three estimated nonparametric functions are similar, with shifts

reflecting the differences in XTβ̂. We also fit a linear regression model to the

dataset without considering measurement errors; the estimated mean function

was FFQ = 4.234 + 0.397FR + 0.215BMI + 0.076Age. Here, the estimated coef-

ficient of FR is 0.397, and the positive coefficients of BMI and age suggest that

FFQ increases with Age and BMI.
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Figure 2. Estimated curves for the WISH data. The solid, dotted and dashed

lines were obtained by using the naive, pseudo−β and MQL methods.
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6. Discussion

To handle measurement errors of parametric components in PLSIMeM, we

have proposed two classes of estimators. One is based on a modified likelihood

function; the other uses the method of moment (which we called the pseudo−β

method). The first method tends to give a more efficient estimator for the para-

metric component when the nonparametric component covariate, Z, is of high

dimension. However, the implementation of this method requires the use of an

iterative algorithm. The pseudo−β estimator of the parametric component is

easily understood and implemented without iteration. When the nonparametric

and parametric components are independent, the two estimators are equivalent

for large samples.

Fan and Troung (1993) examined the effect of measurement errors in non-

parametric regression estimation. They proposed a class of kernel estimators

based on deconvolution and showed that the optimal local and global rates of

convergence of the kernel estimators were controlled by the tail behavior of the

error distribution. In this paper we have not considered the case in which the

nonparametric variables, Z, were measured with errors but the parametric vari-

ables, X, were measured exactly. This is a future research topic. Our present

study has not considered models of general link functions, such as logit or probit,

as in Carroll et al. (1997). Measurement error problems under this scenario is

another topic that requires further study.

Appendix

The proofs of Theorems 2.2 and 3.1 follow a technique similar to that used by

Carroll et al. (1997) to prove their Theorem 4. Only the key steps and departures

from their procedure are given here. Details can be found in an earlier version

of this article (Liang and Wang (2003)). Let Λi = ZT
i α0 and Λ̂i = ZT

i α̂P. We

will need the asymptotic expansions of η̂(u0, α̂P, β̂P), which we state below and

prove after the statement.

η̂(u0, α̂P, β̂P)−η(u0) =
1

nf(u0)

n∑

i=1

K2h(Λi − u0)(εi − UT
i β0)

−(β̂P−β0)
TE(X|Λ = u0)−(α̂P−α0)

TE{Zη′(Λ)|Λ = u0}
+oP(n−1/2) + OP(h2

2). (A.1)

Let â and b̂ be the arguments that minimize the objective function given in

Step 2.1 and a = η(u0) and b = η′(u0). The local linear estimates solve

0 =
1

n

n∑

i=1

K2h(Λ̂i − u0)

(
1

Λ̂i − u0

)
{Yi − W T

i β̂P − â − b̂(Λ̂i − u0)}.
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Focus on the top equation. â = η̂(u0, α̂P, β̂P) solves 0 = 1/n
∑n

i=1 K2h{Λ̂i −
u0)(Yi −W T

i β̂P − â− b̂(Λ̂i −u0)}. Using Taylor expansion and eliminating higher
order terms, we obtain

0 =
1

n

n∑

i=1

K2h(Λi − u0){Yi − W T
i β0 − η(Λi)} − Bn1{â − η(u0)}

−(β̂P − β0)
TBn2 − (α̂P − α0)

TBn3 + oP(n−1/2) + OP(h2
2), (A.2)

where Bn1 = n−1∑n
i=1 K2h(Λi−u0), Bn2 = n−1∑n

i=1 K2h(Λi−u0)Wi and Bn3 =
n−1∑n

i=1 K2h(Λi − u0)Ziη
′(u0). Note that Bn1 = f(u0) + oP(1). Divide all

terms in (A.2) by f(u0) to get Bn2/f(u0) = E(X|Λ = u0){1 + oP(1)}, and

Bn3/f(u0) = E{Zη′(u0)|Λ = u0}{1 + oP(1)}. We thus obtain equation (A.1).

Proof of Theorem 2.2. To prove Theorem 2.2, we first derive the following

expression:

√
nΓαP(α̂P −α0) =

1√
n

n∑

i=1

Z̃iη
′(Λi)(εi −UT

i β0)−
√

nΓ1(β̂P −β0)+ oP(1). (A.3)

Recall that α̂P is the solution of (2.5). Taking a derivative of the objective

function given in (2.5) on α, and some straightforward calculations, show that
α̂P solves

1

n

n∑

i=1

Ziη
′(Λi)

[
εi+{η(Λi)− η̂(Λ̂i, α̂P, β̂P)}−W T

i (β̂P−β0)−UT
i β0

]
{1+oP(1)} = 0.

(A.4)
By Taylor expansion and the continuity of η ′(·), η̂(Λ̂i, α̂P, β̂P) − η(Λi) can be

approximated by

η′(Λi)Z
T
i (α̂P − α0) + η̂(Λi, α̂P, β̂P) − η(Λi) + oP(n−1/2). (A.5)

It follows from (A.5) and (A.4) that

1

n

n∑

i=1

Ziη
′(Λi)

[
(εi − UT

i β0) + ZT
i η′(Λi)(α̂P − α0) − W T

i (β̂P − β0)

+η̂(Λi, α̂P, β̂P) − η(Λ0)
]
{1 + oP(1)} = 0.

This equation can be further expressed by using (A.1) and the conditions on h2

as follows:

1

n

n∑

i=1

Ziη
′(Λi)

[
εi − ZT

i η′(Λi)(α̂P − α0) −
1

nf(Λi)

n∑

j=1

K2h(Λj − Λi)(εj − UT
j β0)

+E(XT|Λi)(β̂P − β0) + E{ZTη′(Λ)|Λi}(α̂P − α0)

−W T
i (β̂P − β0) − UT

i β0

]
= oP(n−1/2).
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This may be written as

n−1/2
n∑

i=1

Ziη
′(Λi)(εi−UT

i β0) − n−1/2
n∑

i=1

Ziη
′(Λi)

nf(Λi)

n∑

j=1

K2h(Λj−Λi)(εj−UT
j β0)

= n−1/2
n∑

i=1

Ziη
′(Λi)

{
Z̃iη

′(Λi)

X̃i + Ui

}T(
α̂P − α0

β̂P − β0

)
+ oP(1). (A.6)

Note that the second term of the left-hand side of (A.6) is

n−1/2
n∑

i=1

(εi − UT
i β0)

1

n

n∑

j=1

Zjη
′(Λj)

K2h(Λj − Λi)

f(Λj)
.

Furthermore, we have

1

n

n∑

j=1

Zjη
′(Λj)

K2h(Λj − Λi)

f(Λj)
= E{Zη′(Λ)|Λi} + oP(1).

The left-hand side of (A.6) is therefore shown to be

n−1/2
n∑

i=1

(εi − UT
i β0)Z̃iη

′(Λi) + oP(1). (A.7)

Replacing the left-hand side of (A.6) by (A.7) and noting that the terms in the

right-hand side of (A.6) converge to Γ1 and ΓαP , respectively, (A.3) follows.

From the asymptotic influence function of β̂P given in (2.4), we deduce the

asymptotic expression of α̂P as follows:

√
nΓαP(α̂P − α0) =

1√
n

n∑

i=1

[
{Z̃iη

′(Λi) − Γ1Γ
−1
X|ZX̃i}(εi − UT

i β0)

+Γ1Γ
−1
X|Z{(UiU

T
i − Σuu)β0 − Uiεi}

]
+ oP(1). (A.8)

The proof of Theorem 2.2 follows from the Central Limit Theorem.

Proof of Theorem 3.1. To complete the proof of Theorem 3.1, we derive

√
nΓαL(α̂L − α0) = n−1/2

n∑

i=1

[
{Z̃iη

′(Λi) − Γ1Γ
−1
X|ΛX̃i}(εi − UT

i β0)

+Γ1Γ
−1
X|Λ(UiU

T
i − Σuu)β0 − Γ1Γ

−1
X|ΛUiεi

]
+ oP(1), (A.9)

√
nΓβL(β̂L − β0) = n−1/2

n∑

i=1

[
{X̃i − ΓT

1 Γ−1
αPZ̃iη

′(Λi)}(εi − UT
i β0)

−(UiU
T
i − Σuu)β0 + Uiεi

]
+ oP(1). (A.10)



114 HUA LIANG AND LAISYIN WANG

As in the proof of Theorem 2.2, we have the following asymptotic expansion of

η̂(u0, α̂L, β̂L):

η̂(u0, α̂L, β̂L)−η(u0) =
1

nf(u0)

n∑

i=1

K3h(Λi − u0)(εi − UT
i β0)

−(β̂L−β0)
TE(X|Λ = u0) − (α̂L−α0)

TE{Zη′(Λ)|Λ = u0}
+oP(n−1/2) + OP(h2

3); (A.11)

Note that (A.11) and (A.1) share the identical structure, as expected. We also

note that for both equations, the second and the third terms on the right-hand

side of the equation (A.11) go to zero faster than the first term, provided that the

α̂ and β̂ are consistent in a rate faster than
√

nh + h2, where h is the bandwidth

used in estimating η. This property has been used by Carroll et al. (1997) in

their proofs implicitly. It follows from (3.3) that (α̂L, β̂L) satisfies

1

n

n∑

i=1

{
Ziη

′(Λi)

Wi

}[
εi + {η(Λi) − η̂(Λ̂i, α̂L, β̂L)} − W T

i (β̂L − β0) − UT
i β0

]

+

(
0

Σuuβ̂L

)
= op(1), (A.12)

where η̂(Λ̂i, α̂L, β̂L) is given in Step 3.1. Following (A.7) and (A.8), as well as

replacing η̂(Λ̂i, α̂L, β̂L) − η(Λi) in (A.12) by (A.11), we have that

1

n

n∑

i=1

{
Ziη

′(Λi)

Xi + Ui

}[
εi − ZT

i η′(Λi)(α̂L − α0) −
1

nf(Λi)

n∑

j=1

K3h(Λj − Λi)

(εj − UT
j β0) + E(XT|Λi)(β̂L − β0) + E{ZTη′(Λ)|Λi}(α̂L − α0)

+oP(n−1/2) − W T
i (β̂L − β0) − UT

i β0

]
+

(
0 0

0 Σuuβ̂L

)
= 0.

It follows that

n−1/2
n∑

i=1

{
Ziη

′(Λi)

Xi + Ui

}
(εi − UT

i β0) − n−1/2
n∑

i=1

{
Ziη

′(Λi)

Xi + Ui

}
1

nf(Λi)

×





n∑

j=1

K3h(Λj − Λi)(εj − UT
j β0)





= n1/2

[
1

n

n∑

i=1

{
Ziη

′(Λi)

Xi + Ui

}{
Z̃iη

′(Λi)

X̃i + Ui

}T

−
(

0 0

0 Σuu

)](
α̂L − α0

β̂L − β0

)
. (A.13)
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By interchanging the summations, the second term of the left-hand side equals

n−1/2
n∑

i=1

(εi − UT
i β0)

1

n

n∑

j=1

{
Zjη

′(Λj)

Xj + Uj

}
K3h(Λj − Λi)

f(Λj)
,

which equals

n−1/2
n∑

i=1

[
E{Zη′(Λ)|Λi}

E(X|Λi)

]
(εi − UT

i β0){1 + OP(h2
3) + oP(nh3)

−1/2}. (A.14)

A combination of (A.13) and (A.14) yields

n−1/2
n∑

i=1

[
{Zi − E(Zi|Λi)}η′(Λi)

Xi + Ui − E(Xi|Λi)

]
(εi − UT

i β0) +

(
0

Σuuβ0

)

= n−1/2
n∑

i=1





ZiZ̃
T
i η′2(Λi) Zi(X̃i + Ui)

Tη′(Λi)

(Xi + Ui)Z̃
T
i η′(Λi) (Xi + Ui)(X̃i + Ui)

T − Σuu





(
α̂L − α0

β̂L − β0

)
.

A law of large numbers yields

n1/2

(
ΓαP Γ1

ΓT
1 ΓX|Λ

)(
α̂L − α0

β̂L − β0

)
= n−1/2

n∑

i=1





Z̃iη
′(Λi)(εi − UT

i β0)

(X̃i + Ui)(εi − UT
i β0) + Σuuβ0





+oP(1). (A.15)

It follows that

n1/2ΓαP(α̂L − α0) + n1/2Γ1(β̂L − β0) = n−1/2
n∑

i=1

Z̃iη
′(Λi)(εi − UT

i β0) + oP(1);

n1/2ΓT
1 (α̂L − α0) + n1/2ΓX|Λ(β̂L − β0) = n−1/2

n∑

i=1

(X̃i + Ui)(εi − UT
i β0)

+Σuuβ0 + oP(1).

A direct simplification deduces the expressions of (A.9) and (A.10). The asymp-
totic distributions follow from a Central Limit Theorem. The proof of Theorem
3.1 is complete.

Acknowledgement

The authors thank Dr. Raymond Carroll for pointing out this topic to us.
They also thank the Editor, an associate editor, and two referees for their con-
structive comments and suggestions. Liang’s research was partially supported by
the American Lebanese Syrian Associated Charities (ALSAC) and a NIH/NIAID
grant (R01-AI-62247-01). Wang’s research was supported by a grant from the
National Cancer Institute (R01-CA-74552).



116 HUA LIANG AND LAISYIN WANG

References

Carroll, R. J., Ruppert, D. and Stefanski, L. A. (1995). Measurement Error in Nonlinear

Models. Chapman and Hall, New York.
Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-

index models. J. Amer. Statist. Assoc. 92, 477-489.
Gong, G. and Samaniego, F. J. (1981). Pseudo maximum likelihood estimation: theory and

applications. Ann. Statist. 9, 861-869.
Engle, R. F., Granger, C. W. J., Rice, J. and Weiss, A. (1986). Semiparametric estimates of

the relation between weather and electricity sales. J. Amer. Statist. Assoc. 81, 310-320.
Fan, J. and Gijbels, I. (1996). Local Polynomial Modeling and Its Applications. Chapman and

Hall, London.
Fan, J. and Troung, Y. K. (1993). Nonparametric regression with errors in variables. Ann.

Statist. 21, 1900-1925.
Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. J. Amer. Statist.

Assoc. 76, 817-823.
Fuller, W. A. (1987). Measurement Error Models. Wiley, New York.
Härdle, W. and Stoker, T. M. (1989). Investigating smooth multiple regression by the method

of average derivatives. J. Amer. Statist. Assoc. 84, 986-995.
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