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Abstract: We discuss a robust data sharpening method for rendering a standard

kernel estimator, with a given bandwidth, unimodal. It has theoretical and nu-

merical properties of the type that one would like such a technique to enjoy. In

particular, we show theoretically that, with probability converging to 1 as sample

size diverges, our technique alters the kernel estimator only in places where the lat-

ter has spurious bumps, and is identical to the kernel estimator in places where that

estimator is monotone in the correct direction. Moreover, it automatically splices

together, in a smooth and seamless way, those parts of the estimator that it leaves

unchanged and those that it adjusts. Provided the true density is unimodal our

estimator generally reduces mean integrated squared error of the standard kernel

estimator.
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1. Introduction

Motivation for the assumption of unimodality usually has a Bayesian con-

nection. It expresses a prior belief that the sampled distribution is homogeneous.

Imposing it as a constraint, when constructing a nonparametric density estima-

tor, is arguably the most effective way of incorporating knowledge of homogeneity

into the final result, without sacrificing the particularly advantageous adaptivity

conferred by nonparametric methods. The constraint of unimodality also makes

the estimator particularly robust against undersmoothing, which, in the absence

of a restriction on the number of modes, can seriously impair the qualitative

appearance of the estimator.

There is an extensive literature on function estimation under shape con-

straints. Recently treated methods for unimodal density estimation include those

considered by Wang (1995), Bickel and Fan (1996), Birgé (1997), Cheng, Gasser

and Hall (1999) and Hall and Presnell (1999). A technique based on data sharp-

ening was suggested by Braun and Hall (2001), but without any theoretical sup-

port and in the absence of clear guidance as to choice of distance function. In the
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present paper we demonstrate, both theoretically and in numerical terms, that

a version of data sharpening based on L1 loss, or using closely related distance

functions, performs particularly well. It produces smooth estimators with very

good mean squared error performance, and with aesthetically attractive features

which few other approaches enjoy.

When used for unimodal density estimation, data sharpening usually starts

from a conventional kernel density estimator. It involves modifying the sample

so as to ensure the standard estimator, applied to the altered rather than the

original sample, is unimodal. In particular, for a given bandwidth and kernel

the data are moved the least amount subject to the kernel estimator having the

unimodal property. Provided the kernel is a probability density, altering the

sample does not affect the basic properties that make standard kernel methods

so attractive, for example the fact that they are nonnegative and integrate to 1.

If the sampled density truly is unimodal then, at least for moderately large

samples, we expect the standard kernel estimator to depart from unimodality only

in the tails and in the vicinity of the true mode. These are the places where the

true density is relatively flat. There, a standard kernel density estimator tends

to suffer from spurious wiggles that prevent it from reflecting qualitative features

of the sampled density. Hence, in principle it is necessary only to modify the

estimator in such places. We shall show that these are exactly the places where

the data sharpening algorithm adjusts the data, and that with high probability

it does not alter any data that are not very close to the mode or some distance

out in one or other of the tails. Likewise, it alters the standard kernel estimator

itself only very close to the mode or out in the tails. And it automatically splices

together the adjusted and original forms of the kernel estimator at points where

they join. The final estimator is very smooth; it enjoys as many derivatives as

the kernel that was used in its construction.

Of course, these goals could be achieved in other ways, using more explicit

techniques. One such approach would be to draw horizontal lines at appropriate

heights across unwanted “valleys” in the conventional kernel estimator, so as to fill

them in; to incorporate a degree of monotone smoothing at places where the lines

met the graph of the conventional estimator, so as to ensure the final estimator

was smooth; and to renormalise the result, so it integrated to 1. However, on

account of the normalisation step this approach does not have the property that

it equals the standard kernel estimator in places where the latter does not need

adjustment. That can lead to significant performance difficulties, as we shall

explain shortly.

Moreover, the fact that the explicitly “linearised” density estimator has per-

fectly flat sections means that it conveys the unwanted visual impression that

there is something intrinsically special and interesting about those parts of the
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true density. This can be a particular problem in the tails of the linearised den-

sity estimator, where a graph of the estimator will often decrease to zero in an

eye-catching sequence of flat steps with curved edges. These and other aspects

of the explicitly linearised estimator are of course no more than artifacts of the

technique employed to construct it, although that is usually far from obvious

to the casual observer. Such issues might be unimportant if the use to which

the final estimate was put was a purely quantitative one, not influenced by the

qualitative appearance of a graph of the estimator, but that is often not the case

in practice.

The majority of these difficulties can be removed by appropriately tuning

the explicitly constructed estimator. However, the total number of subsidiary

smooths and tapers that are required can be large, and developing a totally

objective and effective procedure for implementing them produces an inelegant

and tedious procedure, involving methodology that is aesthetically unattractive.

Moreover, in the case of relatively heavy-tailed densities the linearisation step

can add significantly to the probability mass of the density estimator. While

this problem is eliminated by the normalisation step, the latter often creates

difficulties of its own, by significantly increasing or reducing the height of the

density estimator in the body of the distribution. That can impair performance,

for example by seriously increasing mean squared error.

A related phenomenon occurs in the case of unimodal density estimation

using data tilting methods (Hall and Huang (2002)), where the need to remove

spurious wiggles in the tails of a conventional density estimator can result in

a detrimental increase in the density estimator at other places, leading to poor

mean squared error performance. Numerical results illustrating this point will be

summarised in Section 4, and related phenomena can be observed for unimodal

density estimators constructing using linearisation and related techniques.

In principle, data sharpening can be used to ensure unimodality for other

estimator types. However, the extreme simplicity of standard kernel estima-

tors, and the fact that they can be readily used with a fixed bandwidth, make

them especially attractive on both aesthetic and computational grounds. By

way of contrast, local likelihood methods for density estimation, which usually

require spatially varying bandwidths in order to be implemented effectively, are

unattractive.

The distance, D̂ say, through which the dataset has to be moved in order

to ensure unimodality, can be used to test the null hypothesis that the density

is unimodal. The hypothesis would be rejected if D̂ were too large. The null

distribution could be estimated using bootstrap methods, by resampling from a

unimodal distribution. One candidate for the latter would be the constrained

distribution of the test statistic, although other options are available.
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Multivariate applications of our method are also possible. Indeed, in the

setting of two or more dimensions there are relatively few alternative approaches.

Again, the distance through which the data have to be moved could be used as

the basis for a test of unimodality.

Some early methods for density estimation under qualitative constraints,

starting from Grenander’s (1956) introduction of the technique that is now often

referred to as nonparametric maximum likelihood, employed data tilting. See

Prakasa Rao (1969) for an application to unimodal density estimation. Recent

applications of related ideas include work of Bickel and Fan (1996) and Hall and

Huang (2002), on unimodal density estimation. Fougères (1997) has shown that

the method of monotone rearrangement, suggested by Hardy, Littlewood and

Pólya (1952) and applied to a kernel density estimator, produces a consistent

unimodal estimator when the true density is unimodal. Methods for estimat-

ing regression functions under qualitative constraints include those suggested by

Friedman and Tibshirani (1984), Ramsay (1988), Kelly and Rice (1990), Qian

(1994), Tantiyaswasdikul and Woodroofe (1994), Delecroix, Simioni and Thomas-

Agnan (1995), Mammen and Thomas-Agnan (1999) and Hall and Huang (2001).

Data sharpening methods were surveyed by Braun and Hall (2001).

The remainder of this paper is organised as follows. Section 2 introduces

methodology. Main theoretical results are summarised in Section 3, and numer-

ical properties are outlined in Section 4. Technical arguments for Section 3 are

given in Section 5.

2. Methodology

A density f defined on the real line is said to be unimodal if there exists a

point mf , called a mode of f , such that f is increasing on (−∞,mf ) and decreas-

ing on (mf ,∞). (Here and below we use the terms “increasing” and “decreasing”

to mean “nondecreasing” and “nonincreasing”, respectively.) Assuming f has a

continuous derivative on the real line we say that f is uniquely unimodal, or

equivalent that it is unimodal with a unique mode, if there exists a unique point

mf in the interior of the support of f such that f ′(mf ) = 0. Note that the def-

inition of unique unimodality excludes densities with shoulders, as well as those

with more than one turning point.

Let X = {X1, . . . , Xn} denote the original dataset drawn from the population

with density f . The conventional kernel estimator of f is

f̂X (x) = (nh)−1
n∑

i=1

K

(
x−Xi

h

)
, (2.1)

where h is a bandwidth and K a kernel function. We wish to perturb the data as

little as possible such that the constraint of unimodality is satisfied. To this end,
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let Y = {Y1, . . . , Yn} and f̂Y be respectively a sharpened dataset derived from

X , and the corresponding kernel density estimator obtained on replacing X by Y

at (2.1). We take Y to be the minimiser of D(X ,Y) =
∑

i Ψ(Xi − Yi) subject to

f̂Y being unimodal, where Ψ denotes a distance function. Examples of functions

Ψ include Ψ(x) = |x|p, to which we shall refer as Lp distance, and more general

distance measures analogous to those used in the theory of M estimation, such

as Ψ(x) =
∫ x
0 ψ(y) dy where ψ denotes an antisymmetric function that is positive

on the positive half line.

Forcing f̂Y to be unimodal means ensuring the existence of a quantity m̂

such that f̂ ′Y(x) ≥ 0 for x ≤ m̂, and f̂ ′Y(x) ≤ 0 for x ≥ m̂. In practical nu-

merical terms we first choose a candidate m for m̂, and then choose Y(m) to

minimise
∑

i Ψ(Xi − Yi) subject to f̂Y being unimodal. Finally, writing ∆(m)

for the corresponding value of
∑

i Ψ(Xi − Yi), we select m̂ to minimise ∆(m).

(In practice, we found that m̂ did not depend on the starting candidate.) Thus,

our method produces an estimator of the mode as well as a unimodal density

estimator. However, we shall not explore properties of m̂ here, except to note

that, while its bias and error about the mean are of the same orders as those of

the conventional mode estimator (defined as the point at which f̂X attains its

global maximum), our m̂ is not asymptotically normally distributed.

As we in Section 4, excellent statistical performance, especially for heavy

tailed distributions, is obtained very generally using distance measures such as

L1. In particular, for all the distributions with which we have experimented, this

approach equals or outperformed methods based on Lp distance for p > 1. The

excellent statistical properties of our methods based on L1-type distances arise

from the distance function being asymptotically linear, rather than increasing

at a faster rate, for large values of its argument. This feature implies that only

a relatively small penalty is imposed for moving an outlying data value a long

distance to the main body of the sample, in order to ensure unimodality. In

contrast, when using L2 distance the algorithm tends to move data from the

middle of the distribution to the tails, as well as moving them in the opposite

direction; it shifts many data by small amounts, rather than a small number of

data by a large amount, and this almost invariably impairs performance.

However, the fact that the distance function |x| has a discontinuous deriva-

tive at the origin means that when using L1 distance one tends to experience

numerical difficulties in 10% to 20% of samples, depending on distribution type,

when attempting to minimise
∑

i |Xi − Yi| subject to f̂Y being unimodal. This

problem can be overcome by smoothing the loss function at its vertex.

One approach is to use a function such as Ψ = Ψtan, constructed with ψ(x) =

arctan(x). This Ψ is asymptotically linear, and perfectly convex, but has a

smooth bowl shape at the origin, so its statistical performance is close to that for
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L1 distance, without the latter’s numerical drawbacks. As in the setting of robust

statistical methods, there are many opportunities for improving performance, for

instance by using a non-convex loss function corresponding to a redescending

weight. An example is the function Ψ based on ψ(x) = sin(x/a) I(|x| < πa).

(Here, the parameter a would have to be chosen.) For discussion of this and

many other opportunities for choosing ψ, see, for example, Andrews et al. (1972).

In numerical work in Section 4 we compare the above data sharpening meth-

ods with a data tilting approach suggested by Hall and Huang (2002), based on

ideas discussed by Hall and Presnell (1999). To construct a unimodal density

estimator by tilting the empirical distribution, we change the data weights in-

stead of altering the data themselves. Accordingly, the kernel density estimator

becomes

f̂(x|p) = h−1
n∑

i=1

piK

(
x−Xi

h

)
,

where p1, . . . , pn are chosen to minimise a measure D(p) of the distance between

the multinomial distribution p = (p1, . . . , pn) on n points, and the correspond-

ing uniform distribution, subject to f̂(x|p) being unimodal. The resulting con-

strained density estimator will be denoted by f̂tilt.

In Section 4 we take D1(p) = n
∑

i pi log(npi), this being a particular form of

power divergence (Cressie and Read (1984)). It gives relatively good performance

in the context of unimodal density estimation, largely because it is robust against

aberrations caused by reducing one or more weights pi to 0. That operation

is frequently necessary in order to eliminate outlying data that cause spurious

bumps in the tails of unconstrained kernel density estimators. In comparison, the

more conventional power divergence measure, D0(p) = −
∑

i log(npi), which is

infinite when one or more values of pi vanish, often leads to undefinable density

estimators if the imposed constraint is unimodality. Nevertheless, even when

data tilting uses D1 it is outperformed by data sharpening based on Ψtan.

3. Theoretical Properties

There is a variety of approaches to establishing theory for data sharpening

unimodal density estimators, many of them tailored to specific distance mea-

sures D. In most instances the theory shows that in the case of compactly sup-

ported kernels, with high probability and away from the mode and the tails of the

sampled distribution, the sharpened estimator f̂Y is identical to its conventional

counterpart. For brevity and simplicity we shall describe only one approach

here, developed for the case of L1 distance; see (3.1) below. It has the advantage

that, under a mild and straightforward condition, (3.3), the algorithm based on

minimising L1 distance guarantees not only that f̂Y = f̂X along “most” of the

support of f , but also that specific convergence rates are achieved uniformly on
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the line. See Theorem 3.1. Alternative approaches, based on more general loss

functions, do not appear to allow such a simple and elegant description of the

properties of f̂Y .

All our results extend easily to the case of estimating f under the constraint

that it has k ≥ 1 modes, assuming this condition is incorporated into the basic

algorithm and that the modes of f̂Y are required to be at least a certain fixed,

sufficiently small distance apart.

We initially assume the kernel K is a symmetric, compactly supported,

uniquely unimodal probability density with two bounded derivatives. Call this

condition (CK,1). Theorems 3.1–3.3 below hold without change if K is taken

to be the Gaussian kernel, although the proofs are more elaborate in that case.

However, if K is not compactly supported then it is not generally true that

f̂Y = f̂X , with high probability, for most of the support of f .

Given a data sharpening algorithm A that takes the original dataset X =

{X1, . . . , Xn} to Y = {Y1, . . . , Yn}, where Yi denotes the image of Xi, we define

D(X ,Y) =
n∑

i=1

|Xi − Yi| . (3.1)

We apply subscripts to A and Y to denote specific algorithms and the sharpened

datasets that they produce, respectively. In particular, let A0 denote the version

of A that selects Y = Y0 to minimise D(X ,Y) subject to f̂Y being unimodal.

Let F0 be the class of unimodal densities f with the properties: the support

of f is an interval with endpoints af < bf (not necessarily finite), the mode mf of

f is unique and lies in (af , bf ), f has a bounded, uniformly continuous derivative

on (−∞,∞), and |f ′| is bounded away from 0 on the set S(c) = [c1, c2] ∪ [c3, c4]

whenever c = (c1, . . . , c4) satisfies

af < c1 < c2 < mf < c3 < c4 < bf . (3.2)

Put h0 = n−1/5. The notation h � h0 means that the ratio h/h0 is bounded

away from zero and infinity as n→ ∞.

Theorem 3.1. Let f ∈ F0, and assume D is given by (3.1), that (CK,1) holds

and that h � h0 as n → ∞. Suppose too that there exists a particular data

sharpening algorithm A1, not necessarily A0, which with probability 1 produces a

unimodal density estimator f̂Y , and which moves X a distance D(X ,Y1) to Y1,

where

h2
0D(X ,Y1) → 0 (3.3)

with probability 1. Then when A0 is used instead of A1, c satisfies (3.2) and

n→ ∞,

Pf{Yi = Xi for each i such that either Xi or Yi is in S(c)} → 1, (3.4)
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sup
−∞<x<∞

|f̂Y(x) − f̂X (x)| = op(h0) , sup
−∞<x<∞

|f̂ ′Y(x) − f̂ ′X (x)| = op(1) . (3.5)

The algorithm A0 is not necessarily uniquely defined, and results such as

(3.4) should be interpreted as holding uniformly in all versions of A0. That is,

the probability that there is a version of A0 for which Yi 6= Xi for some i such

that either Xi or Yi is in S(c), converges to zero as n → ∞. Non-uniqueness of

A0 can occur with positive probability when n = 2, although we conjecture that

when (CK,1) is satisfied and n ≥ 3, A0 is uniquely defined with probability 1.

We may paraphrase (3.4) by saying that with probability converging to 1, A0

leaves unaltered each data value Xi that is neither very close to the true mode

nor very far out in the tails. Since K is compactly supported, and (3.4) holding

for Y1 implies the same for Y0, then if Y is produced by either A0 or A1 we have,

for each vector c such that (3.2) holds,

Pf{f̂X (x) = f̂Y(x) for all x ∈ S(c)} → 1 (3.6)

as n → ∞. Therefore, away from the mode and the tails, f̂Y and its derivatives

have all the weak convergence properties of f̂X and the latter’s derivatives. Hence,

in terms of integrated squared error, we cannot expect improved performance of

f̂Y over f̂X in those regions.

Note that we have assumed only one derivative of f . This explains the

somewhat slow convergence rate at (3.5). However, (3.6) implies that if Y = Y0

is produced by A0, and if f has two bounded derivatives, then (3.5) has a more

conventional form away from the mode and the tails, as follows. Using the

data sharpening algorithm A0, we have for each vector c such that (3.2) holds,

|f̂Y(x) − f(x)| = Op(h
2
0) and |f̂ ′Y(x) − f ′(x)| = Op(h0) whenever x ∈ S(c), and

sup
x∈S(c)

|f̂Y(x)−f(x)| = Op(h
2
0 `

1/2) , sup
x∈S(c)

|f̂ ′Y(x)−f ′(x)| = Op(h0 `
1/2) , (3.7)

where ` = log n. In fact, under mild additional conditions these results also

extend to neighbourhoods of the mode, as we show following Theorem 3.2. It is

only in the extreme tails, beyond locations that themselves move further out into

each tail as n increases, that f̂Y and f̂ ′Y may not enjoy the convergence rates of

the conventional estimators f̂X and f̂ ′X , respectively.

In principle (3.4) does not exclude the possibility of “cross mappings”, where

a datum Xi in one tail is mapped to Yi in the opposite tail or in a close neigh-

bourhood of the mode; or where Xi near the mode is mapped to Yi in a tail.

However, it is easy to see that the probability that this occurs tends to 0 as

n→ ∞. Indeed, if a cross mapping were to arise then with probability converg-

ing to 1 we could produce a lesser value of D(X ,Y0) by instead moving X to a
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point in S(c) and then moving another point in S(c) to the original image of Xi.

However, for any given c satisfying (3.2), result (3.4) states that the probability

of this occurring converges to 0.

Result (3.4) implies that when D(X ,Y) is defined by (3.1), and (3.3) holds,

the algorithm A0 is in effect constructed quite separately near the mode and in

either tail. In the next two theorems we note that it is possible to find algorithms

for the mode and the tails, respectively, such that f̂Y is unimodal and (3.3) holds.

Following Theorem 3.3 we describe how to combine these two algorithms into a

single algorithm that satisfies (3.3).

Assume f ∈ F0 has two bounded derivatives in a neighbourhood of the mode,

f ′′ is continuous at the mode, and f ′′(mf ) < 0. Call this condition (Cf ). Suppose

too that K is a compactly supported, symmetric, uniquely unimodal probability

density with three bounded derivatives; denote this constraint by (CK,2).

Theorem 3.2. Assume (Cf ) and (CK,2) hold, and h � h0. Then there exists a

data sharpening algorithm A1 which, when applied to data on (mf − ε,mf + ε)

for ε > 0 sufficiently small, ensures that f̂Y is unimodal on (mf − ε,mf + ε) and

also guarantees that for each 0 < δ < ε, as n → ∞, Pf{Yi = Xi for each i such

that either Xi or Yi is in (mf − ε,mf − δ) ∪ (mf + δ,mf + ε)} → 1 and

∑

i : |Xi−mf |≤ε

|Xi − Yi| = Op(h
−1
0 ). (3.8)

Result (3.8) implies a rate of convergence in the neighbourhood of the origin.

Indeed, suppose we use the algorithm A0, instead of A1, to sharpen data. Assume

too that the conditions of Theorems 3.1 and 3.2 hold. Then it follows from (3.4),

(3.8) and the fact that the probability of cross-mappings converges to 0, that for

any ε > 0, (3.8) holds when the Yi’s are produced by A0 rather than A1. Now,

a Taylor expansion gives

|f̂X (x) − f̂Y(x)| ≤
sup |K ′|

nh2

∑

i : |Xi−mf |≤ε

|Xi − Yi| ,

uniformly in x satisfying |x − mf | ≤ δ, for all sufficiently large n. Therefore,

by (3.8), |f̂X − f̂Y | = Op(h
2
0 `

1/2) uniformly in a neighbourhood of the mode. It

follows from this result and the fact that |f̂X − f | = Op(h
2
0 `

1/2) uniformly in a

neighbourhood of the mode, that |f̂Y−f | = Op(h
2
0 `

1/2) there. The latter property

enables us to replace the supremum over x ∈ S(c), in the first result at (3.7), by

the supremum over x ∈ [c1, c4], where c1 and c4 satisfy (3.2). Similarly it may be

proved that an identical change can be made to the second result at (3.7). The

particular construction of A1 that we give in the proof of Theorem 3.2 actually
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ensures that |f̂X − f | = Op(h
2
0) in an Op(h0)-neighbourhood of mf , and f̂X = f̂Y

outside that neighbourhood and away from the extreme tails.

Finally we discuss a data sharpening algorithm that produces monotone tails

and at the same time ensures (3.3). We consider the case of tails that decrease

only polynomially fast, of which those of Student’s t density are an example.

Densities with tails that decrease exponentially quickly are more easily treated.

It suffices to consider data sharpening in the right hand tail.

Let α > 1 be given and assume K is a symmetric, compactly supported,

uniquely unimodal density with να,K bounded derivatives, that f ∈ F0 has να,f

derivatives on (C,∞) for some C > 0, and that |f (j)(x)| � x−α−j as x → ∞

for 0 ≤ j ≤ να,f , where να,f , να,K ≥ 2. Call this condition (Cα). The values

of να,K and να,f depend only on α; details are given by (5.14) in the proof of

Theorem 3.3.

Theorem 3.3. If (Cα) holds for α > 8, and h � h0, then there exists a data

sharpening algorithm A1 which, when applied to data on (C,∞) for C > 0 suffi-

ciently large, ensures f̂Y is decreasing on (C,∞) and also guarantees that for all

C ′ > C, Pf{Yi = Xi for each i such that either Xi or Yi is in (C,C ′)} → 1 and

h2
0

∑
i : Xi>C |Xi − Yi| → 0 in probability as n→ ∞.

The constraint α > 8 can be weakened by using a longer argument. More-

over, our numerical work will focus particular attention on performance of data

sharpening when α is as small as 3/2.

Assume f ∈ F0, and suppose in addition that the conditions of Theo-

rems 3.1–3.3 apply to f and K, with the conditions of Theorems 3.3 holding

in both tails, possibly for different values of α. Theorems 3.2 and 3.3 imply

that we may construct a single data sharpening algorithm A1 that produces an

estimator f̂Y which is unimodal, and such that (3.3) and (3.4) both hold.

Indeed, (3.4) itself enables us to splice together the separate data sharpening

algorithms for the tails, and that for the mode, into a single algorithm that applies

to the whole dataset, in the knowledge that unimodality of f̂Y will take care of

itself at all places that are intermediate between either tail and the mode. This

is guaranteed by the fact that f̂Y = f̂X in such places; since f ′ does not vanish

there then f̂ ′X is monotone at the intermediate places, with high probability. Of

course, once (3.3) has been proved for A1 then we know from Theorem 3.1 that

both (3.3) and (3.4) hold for A0.

4. Numerical Properties

In the work summarised here we drew datasets of size n = 25 from the

standard Normal distribution (distribution 1), Student’s t distribution with three
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degrees of freedom (distribution 2), the Normal mixture

0.2N(0, 1) + 0.2N
(

1
2 , (

2
3)2

)
+ 0.6N

(
13
12 , (

5
9)2

)

(distribution 3), and the Normal mixture

0.35N
(
− 1, ( 3

5)2
)

+ 0.5N
(
1, ( 5

2 )2
)

+ 0.15N
(
5, ( 3

2)2
)

(distribution 4). All are unimodal and are depicted in Figure 1. Distributions 1
and 2 were chosen because they represent opposite extremes in terms of tail
weight, distribution 3 represents moderately skewed densities (it is density #2
of Marron and Wand (1992)), while distribution 4 is highly skewed with a long
and relatively flat part, and therefore presents particular challenges to methods
for unimodal density estimation.

Nevertheless, out of the four densities the second is arguably the most dif-
ficult for which to construct unimodal estimators. Standard kernel estimators,
computed using data from the second distribution, usually have quite a few spu-
rious bumps in the tails. Ideally, these should be removed without increasing
mean integrated squared error. We therefore devote much of our attention to the
relative performance of methods applied to distribution 2.
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Figure 1. Four true densities. Density 1 is standard normal, density 2 is
Student’s t with three degrees of freedom, density 3 is moderately skewed,
and density 4 is highly skewed with a long, relatively flat portion.

For the results presented here the Gaussian kernel was used throughout, since
it is a favourite of statisticians in problems involving mode analysis. However,
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very similar results were obtained using, for example, the biweight kernel. In-

deed, the Gaussian kernel is so light tailed that, even though it is not compactly

supported, it produces density estimates which visually satisfy the properties re-

ported in Section 3. That is, except on very fine scales, the constrained density

estimates are usually visually indistinguishable, in places away from the modes

and the tails, from their conventional, unconstrained counterparts. We return to

this point in our discussion of Figure 4 below.

We discuss results for estimators constrained by data sharpening using ei-

ther L2 distance or the distance Ψtan. Similar results are obtained using Lp

rather than L2 distance, for p > 1. As expected, the efficiency advantages of

Ψtan distance decrease as p decreases to 1, although Ψtan retains its competitive

edge. For comparison we also give results for the standard, unconstrained kernel

estimator; for the estimator f̂tilt obtained by data tilting, this time using the

distance measure D1. See Section 2 for details of the construction of f̂tilt. A

comparison with the “kernel rearrangement” method of Fougères (1997) will be

made later in this section.

When constructing f̂Y the constrained optimisation step was usually imple-

mented using the NAG routine E04UCF. This routine failed only rarely (e.g., in

fewer than one per cent of simulations in the Normal case), and it can be pro-

tected against this problem in those instances where it fails. An alternative is to

use an easily-coded simulated annealing algorithm there, similar to that described

by Braun and Hall ((2001), Section 3.2), using the penalty

p(Y) =
∑

{i : ξi<m}

|f̂ ′(ξi)| I{f̂
′(ξi) < 0} +

∑

{i : ξi>m}

|f̂ ′(ξi)| {f̂
′(ξi) > 0} ,

where ξ1, . . . , ξν denote grid points on which the constraints were imposed, and

m is a candidate for the mode. In either case, the algorithm can be speeded

up by moving outlying data a little closer to the body of the distribution, right

at the start. This reflects the theoretical results discussed in Section 3. The

simulations reported below used a small subroutine of this type.

When the estimators are applied to data from the standard normal distribu-

tion it is found that a graph of MISE for the data sharpening estimator, using

distance measure Ψtan, lies below that for the other three estimators across all

values of h. However, although this estimator has a slight advantage over its un-

constrained kernel counterpart, at the optimal bandwidth it offers only negligible

improvements relative to the other two unimodal estimators. Nevertheless the

data tilting estimator, when used with a small suboptimal bandwidth, performs

quite poorly relative to both its data sharpening competitors. Analogous results

are also obtained for other very light-tailed distributions. As we see below, the
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data sharpening estimator based on Ψtan really comes into its own when applied
to distributions that have heavier tails than the normal.

In particular, Figure 2 plots the logarithm of MISE against the logarithm of
bandwidth for all four estimators when the sampled distribution is the heavy-
tailed Student’s t with three degrees of freedom. The performance advantages of
data sharpening using distance measure Ψtan are obvious. Note too that, in terms
of optimal MISE performance, the unconstrained kernel method lies between the
two data sharpening approaches.
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Figure 2. Plots of MISE for distribution 2. The vertical axis gives to the
logarithm of MISE, and the horizontal axis gives the logarithm of bandwidth.
Solid, bold-dashed, dotted and dashed lines correspond to the unconstrained
estimate, data sharpening estimates constrained using distances Ψtan and
L2, and the constrained estimate using data tilting, respectively.

Figure 2 also shows that the optimal bandwidth for data sharpening, using
Ψtan, is smaller than that for the standard kernel estimator. This reflects the fact
that this form of data sharpening produces an estimator with smaller integrated
variance, and slightly larger integrated squared bias. The optimal tradeoff be-
tween the two therefore occurs at a smaller bandwidth. The main contribution
to reduced integrated variance comes from the tails of the distribution, where
data sharpening reduces the considerable stochastic variability of the standard
kernel estimator by removing all the bumps there. Variance actually increases in
the middle of the distribution; see Figure 3. However, the latter property is not
characteristic of data sharpening, which often reduces variance in the vicinity of
the mode. In particular this is the case for distributions 1 and 3.

Figure 3, which gives pointwise mean squared error, squared bias and vari-
ance in the case of data from distribution 2, shows that in this instance data
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sharpening tends to reduce bias towards the centre of the distribution. This

is also observed for distribution 1, but for distributions 3 and 4 bias slightly

increases at the centre.
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Figure 3. Plots of pointwise mean squared error, squared bias and variance
for distribution 2. Line types are as for Figure 2. In each case the bandwidth
was chosen to be that which minimises MISE, and the vertical axis is marked
in units of 100.

Figure 2 revealed that, while data tilting outperformed L2 data sharpening

for the second distribution, it was not competitive with the unconstrained kernel

estimator in MISE terms. Figure 3 indicates why. The only way tilting can

remove spurious modes in the tails of the standard kernel estimator is to give

outlying data zero weight. This forces relatively high weights to be used near

the centre of the distribution, with a corresponding large increase in bias, which

is clearly evident from the second panel of Figure 3. The data tilting estimator

commonly suffers from this difficulty for distributions with one or more relatively

heavy tails.

Sampling from the third distribution, which has the skewed density shown

in the third panel of Figure 1, one again finds that the data sharpening estimator

based on distance measure Ψtan has lowest minimum MISE. For this distribution
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the data tilting method has highest MISE of all four estimators. This is again

a result of its relatively large bias towards the centre of the distribution, which

occurs for the reasons noted in the previous paragraph; in the case of the third

distribution the left hand tail is relatively heavy.

Performance advantages of data sharpening are even more clearly evident

for the fourth distribution, where the MISE curve for the estimator based on

Ψtan lies below that for any of the other two estimators over much of its range

on either side of its minimum. On this occasion, since the right hand tail of the

distribution is relatively heavy, the technique based on data tilting again performs

poorly. However, in MISE terms L2 data sharpening produces an estimator which

performs almost as well when sharpening is based on Ψtan, and which performs

better than the unconstrained kernel estimator.
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Figure 4. Kernel estimates, and results of data sharpening, for a dataset
from the second distribution. Line types are as in Figure 2. The bold solid

line represents the true density. In the lower panel the top and bottom
graphs show how data are moved in the cases of data sharpening based on
L2 and Ψtan distance, respectively.

Figure 4 shows individual curve estimates, and the manner in which data

are sharpened, in the case of a dataset drawn from the second distribution. The

dataset chosen was that for which ISE was at its 75th percentile, when the band-

width was chosen to be optimal for minimising MISE of the unconstrained kernel
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estimator. This particular dataset produces a markedly asymmetric density esti-

mate regardless of estimator type. There are several outliers in the left hand tail,

with the result that the unconstrained estimate has two spurious modes there.

However, data in the right hand tail are distributed in a manner which suggests

properties of a light tailed distribution, rather than the heavy tailed distribution

from which they came. As a result the standard kernel estimate has no unwanted

bumps in the right hand tail. Neither does it have any spurious modes in the

neighbourhood of the point at which the global maximum is achieved. Therefore,

except for the left-hand tail, the estimate based on Ψtan coincides almost exactly

with its unconstrained counterpart. In the left-hand tail it produces a better fit

than data tilting.

The lower panel of Figure 4 shows how data are sharpened to produce a

unimodal estimate, when the distance function is either L2 or Ψtan. In each

instance the data in the right hand tail are virtually unaltered, and in the case

of Ψtan distance, excepting the two most extreme values, data are altered in only

minor ways in the left hand tail. (If the kernel used is compactly supported, for

example the biweight, there are no changes at all except for the four data furthest

to the left.) However, when distance is measured in L2 terms the changes to data

in the left hand tail are much more widespread.

We also examined the effect of data-driven bandwidth selection on the per-

formance of our data-sharpened estimators. In particular, for each sample of size

n = 25 we chose the bandwidth using the method suggested by Sheather and

Jones (1991), and compared the unconstrained estimates with those constructed

by sharpening based on Ψtan-distance. Mean integrated squared error was ap-

proximated by averaging integrated squared error over 200 simulations. Data

sharpening reduced MISE by 13%, 18%, 12% and 8% in the cases of distribu-

tions 1–4, respectively.

Of course, the main source of improvement comes from the tails and from the

vicinity of the mode. As one would expect, given that asymptotic performance of

the data-sharpened estimator becomes increasingly like that of its unconstrained

counterpart as n increases (see Section 3), the margin of MISE improvement

offered by data sharpening narrows for large n.

Figure 5 compares our method with that of Fougères (1997) for distribu-

tion 2 (Student’s t with three degrees of freedom). Here, and for distribution 4,

Fougères’ approach has a marginal advantage. However, the method generally

gives a relatively rough estimate, especially in sample sizes that are larger than

that (n = 25) used here. A clearer idea of the roughness problem, for larger

sample sizes, is obtainable from the figures of Fougères (1997).

For distribution 1, Fougères’ approach gives the largest minimum mean

squared error of all shape-constrained methods studied; in the case of distribu-
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tion 3, it occupies the rank between the data tilting method and data sharpening,

and in particular is behind the latter.
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Figure 5. Comparison of Fougères’ method with data sharpening using dis-

tance Ψtan. In the context of Figure 2 (i.e., for distribution 2) the upper

panel graphs the logarithm of MISE. Kernel estimates, for the same sample

as in Figure 4, are shown in the lower panel. In both panels the dotted

line corresponds to Fougères’ estimate, while the bold-dashed line shows the

result for the data-sharpened estimate. In the upper panel the (light) solid

line shows results for the unconstrained estimate, while in the lower panel

the (bold) solid line depicts the true density.

Finally, we applied the sharpening approach based on Ψtan distance, and data

tilting, to the Buffalo snowfall dataset, which is frequently used to explore the

effect of bandwidth choice on density estimate shape; see e.g., Silverman (1986,

p. 45) and Scott (1992, p. 137). The dataset consists of the annual snowfalls,

measured in inches, at Buffalo, New York, from 1910 to 1972. Figure 6 illustrates

the unconstrained kernel estimate, and the results of data sharpening and data

tilting, applied to these data using the bandwidth h = 6. Silverman (1986)

discussed the use of this bandwidth, for these data, noting that it gave a trimodal

estimate when applied to a standard kernel estimator. He observed that doubling

the size of the bandwidth gave a unimodal estimator in the unconstrained case.
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Figure 6. Unconstrained kernel estimates, and results of data sharpening

and data tilting, for Buffalo snowfall data. The upper panel graphs kernel

estimates whose line types are as in Figure 2. The middle panel indicates

how data are moved in the case of data sharpening based on Ψtan distance.

Data weights for the tilting approach are shown in the lower panel.

5. Technical Arguments

5.1. Proof of Theorem 3.1.

Consider a general data sharpening algorithm in which X is moved a distance

D(X ,Y) to Y. By a Taylor expansion,

|f̂ ′Y(x) − f̂ ′X (x)| ≤
1

nh2

n∑

i=1

∣∣∣K ′
(x−Xi

h
+
Xi − Yi

h

)
−K ′

(x−Xi

h

)∣∣∣

≤
sup |K ′′|

nh3
D(X ,Y) . (5.1)

Given a particular algorithm Aj, let Yj denote the corresponding sharpened

dataset, and let f̂Y j be the version of f̂Y produced from Yj. By assumption, we

can construct A1 such that f̂Y 1 is unimodal and h2
0D(X ,Y1) → 0 in probability
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as n→ ∞. Hence, by the definition of A0, f̂Y 0 is unimodal and

h2
0D(X ,Y0) → 0 (5.2)

in probability.

Let c = (c1, . . . , c4) and c′ = (c′1, . . . , c
′
4) be vectors such that

af < c′1 < c1 < c2 < c′2 < mf < c′3 < c3 < c4 < c′4 < bf .

Then both c and c′ satisfy (3.2). Consider the algorithm A2 constructed from A0

by putting Yi = Xi for Xi ∈ S(c) and taking Yi to be defined by A0 otherwise.

Then

D(X ,Y2) ≤ D(X ,Y0) . (5.3)

It is readily proved that for f ∈ F0,

sup
−∞<x<∞

|f̂ ′X (x) − f ′(x)| = op(1) . (5.4)

Since h → 0 and K is compactly supported then for all sufficiently large n,

f̂Y 2 = f̂Y 0 outside S(c′); call this result (R1). Properties (5.1), employed in the

case Y = Y2, (5.3) and (5.4), and the fact that h2
0D(X ,Y0) → 0 in probability,

imply that sup |f̂ ′Y 2 − f ′| → 0 in probability. It follows from this result and the

fact that |f ′| is bounded away from 0 on an open set containing S(c′), that with

probability converging to 1 as n → ∞, f̂ ′Y 2 is positive on [c′1, c
′
2] and negative

on [c′3, c
′
4]. In conjunction with (R1) this implies that with probability tending

to 1, f̂Y 2 is unimodal on the whole real line; call this result (R2).

It follows from (R2) that if the probability that the inequality (5.3) is strict

does not converge to 0, then with strictly positive probability, for arbitrarily

large n, the algorithm A2 produces a unimodal density estimator and at the

same time strictly reduces the distance D(X ,Y0). However, by definition of A0

this is impossible. Therefore, with probability converging to 1 the inequality at

(5.3) is actually an identity. It follows from this result and the definition of A2

that the probability that A0 fixes Xi for each i such that Xi ∈ S(c), converges

to 1 as n→ ∞.

This is equivalent to Pf{Yi = Xi for each i such that Xi ∈ S(c)} → 1 , which

is a weaker form of (3.4). To obtain the full force of (3.4), observe that if A0

involves mapping Xi /∈ S(c) to Yi ∈ S(c), then with probability converging to 1

we may produce a lesser value of D(X ,Y) by instead mapping Xi to a point

in S(c′)\S(c), while retaining unimodality of f̂Y . However, this contradicts the

definition of A0 as an algorithm that minimises D(X ,Y), and so the probability

that Xi /∈ S(c) is mapped to Yi ∈ S(c) must converge to 0.
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The second part of (3.5) follows from the three conditions (5.1), employed in

the case Y = Y0, (5.2) and (5.4). The first part of (3.5) may be derived similarly.

5.2. Proof of Theorem 3.2.

Write Yi = Xi − h3∆i and observe that by a Taylor expansion,

f̂ ′Y(x) = f̂ ′X (x) +
1

n

n∑

i=1

∆iK
′′
(x−Xi

h

)
+Op

(
h2

n

n∑

i=1

∆2
i

)

where, here and at (5.5) below, the remainder is of the stated form uniformly

in x. Applying Theorem 3 of Komlós, Major and Tusnády (1975) we deduce that

f̂ ′X (x) = E{f̂ ′X (x)} + (nh3)−1/2 U(x) +Op{(nh
2)−1 log n} , (5.5)

where U(x) = h−1/2
∫
W0{F (x − hy)}K ′′(y) dy, W0 is a standard Brownian

bridge whose construction relative to the data depends on n, and F denotes the

distribution function for which f is the density. Therefore, noting that h � h0,

and assuming for the present that
n∑

i=1

∆2
i = Op(nh) , (5.6)

we deduce that

f̂ ′Y(x) = E{f̂ ′X (x)} + (nh3)−1/2 U(x) +
1

n

n∑

i=1

∆iK
′′
(x−Xi

h

)
+Op(h

3
0 log n)

(5.7)

uniformly in x.

Without loss of generality the true mode is 0. Let L be a bounded, compactly

supported function with a continuous derivative, put ∆i = L(Xi/h), and define

t = x/h and a(t) =
∫
K ′′(u)L(t+ u) du. Then (5.6) holds and

1

n

n∑

i=1

∆iK
′′
(x−Xi

h

)
= h a(t) f(x) + op(h0)

uniformly in x. Furthermore, (3.8) follows from the construction of the data

sharpening algorithm. It remains to show that L can be chosen such that f̂Y is

unimodal.

To this end, observe that E{f̂ ′X (x)} = f ′(x) + o(h) = ht f ′′(0) + o(h) and

f(x) = f(0)+o(1) uniformly in x such that |x| ≤ C1h, for any C1 > 0. Combining

(5.7) and the results in this paragraph we see that

f̂ ′Y(x) =





ht f ′′(0) + h a(t) f(0) + (nh3)−1/2 U(x) + op(h0)

uniformly in |x| ≤ C1h

E{f̂ ′X (x)} + h a(t) f(x) + (nh3)−1/2 U(x) + op(h0)

uniformly in x .

(5.8)
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Note too that for any C2 > 0,

{
sup
|x|≤y

|U(x)|
}/(

max [1, {log+(y/h)}1/2]
)

= Op(1) (5.9)

for 0 ≤ y ≤ C2.

Since K ′(0) = 0, K ′ ≤ 0 on the positive real line, and L has a bounded

derivative, then

a(t) =

∫ ∞

0
{L′(t+ u) − L′(t− u)} |K ′(u)| du .

Let the support of K be [−C3, C3], let C4 > 0 be much larger than C3, and let

C5 > 0 be much larger than C4. Given −∞ < A1 <∞ and A2 < 0, choose L such

that L(u) = A1u
2/4 +A2u

3/12 for u ∈ [−C4, C4], and L redescends very slowly,

and with very small values of the first three derivatives, to 0 to the left of −C4 and

to the right of C4, vanishing outside [−C5, C5]. Put Bj = Aj
∫
u>0 u |K

′(u)| du.

Then a(t) = B1 +B2t on [−C4 +C3, C4−C3], and a redescends slowly to 0 to the

left of −C4+C3 and to the right of C4−C3, vanishing outside [−C5−C3, C5+C3].

As A2 increases, so too does the curvature of f̂Y near its global maximum,

modulo the effect of the additive noise term (nh3)−1/2 U(x) at (5.8). However, in

neighbourhoods of width O(h) of the origin, the noise is of the same order as the

gradient of f̂ ′Y ; but the size of noise does not depend on A2, whereas the absolute

value of the gradient increases with A2. Arguing thus it follows from (5.8) and

(5.9) that if η > 0 is given, then A1, B1, C4 and C5 may be chosen such that the

probability that f̂Y is unimodal on (−ε, ε) exceeds 1−η for all sufficiently large n.

Taking L to be a random function, with Op(1) bounds applying to |L′| and the

support of L, we deduce that the probability that f̂Y is unimodal converges to

1 as n → ∞. This is sufficient to ensure existence of the claimed algorithm A1;

in cases where this particular construction does not produce a unimodal f̂Y we

instead translate all data to a single point and rely on the unimodality of K to

ensure that of f̂Y . Note too that f̂Y = f̂X outside an Op(h)-neighbourhood of

the origin.

5.3. Proof of Theorem 3.3.

Let mf < C < ∞, put β = 2/(α + 2), and let δ ∈ (0, (4/α) − β) be a small

positive number. We take Yi = Xi for C ≤ Xi ≤ ξ1 ≡ Z1h
−β
0 , where Z1 = Z1(n)

denotes a random function of the data with the property

lim
ε→0, λ→∞

lim inf
n→∞

P (ε < Z1 < λ) = 1 . (5.10)
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Data Xi ∈ (ξ1, ξ2], where ξ2 = h
δ−(4/α)
0 , will be sharpened respectively to Yi =

F−1(i/n), while dataXi > ξ2 will be sharpened in a manner that we shall describe

three paragraphs below. We call ξ1 and ξ2 the first and second breakpoints,

respectively.

The size of the first breakpoint is that of values x at which the order of

the stochastic error of f̂ ′X (x) is the same as the order of the quantity f ′(x)

being estimated; note that the bias of f̂ ′X (x) is always of strictly smaller order

than f ′(x). To appreciate why the critical size is h−β
0 , note that the variance

of f̂ ′X (x) is asymptotic to vn(x) ≡ h2
0 x

−α as both n and x increase, in the

sense that the ratio of the variance and vn(x) is bounded away from zero and

infinity. Moreover, |f ′(x)|/x−α−1 is bounded away from zero and infinity as

x → ∞. Therefore the relative stochastic error of the estimator f̂ ′X (x) of f ′(x)

is of order 1 for values x such that vn(x) is of size x−2(α+1), i.e., for x such

that x � h−β
0 . More concisely, using methods developed during the proof of

Theorem 3.2, particularly the argument based on the Komlós-Major-Tusnády

(1975) approximation, it may be proved that if Z2 = Z2(n) denotes the supremum

of values z such that f̂ ′X (x) < 0 for C ≤ x ≤ z, then (5.10) holds with Z1 replaced

there by Z2.

Therefore, at the very least, values of Xi that exceed Z2h
−β
0 must be sharp-

ened if the density estimator f̂Y is to have negative gradient at all points to the

right of C. We take Z1 < Z2 in order to effect a slight taper, to ensure the

gradient remains negative on both sides of the first breakpoint.

The size of the second breakpoint is chosen for technical reasons that will

become clear in the proof at (5.15) below. Tapering beyond the second break-

point, used to ensure that the density estimator has negative gradient there,

does not require any data value Xi to be moved by more than Op(Xi), uni-

formly in i. For example it is sufficient, modulo minor tapering in the neigh-

bourhood of ξ2, to equally space the Yi’s to the right of ξ2, using the spacing

F−1(i/n)−F−1{(i−1)/n} where F−1(i/n) is the supremum of values F−1(j/n) ≤

ξ2. The density of data at any point x, where x ≥ C, is by assumption bounded

by a constant multiple of x−α. Therefore the total contribution to h2
0D(X ,Y)

from sharpening those Xi’s for which Xi > ξ2, equals

Op

(
nh2

0

∫ ∞

ξ2
x · x−α dx

)
= Op(nh

2
0 ξ

2−α
2 ) = op(1) , (5.11)

provided α > 8 and δ in the definition of ξ2 is sufficiently small.

The sum of the distances, multiplied by h2
0, through which data Xi that lie

between the first and second breakpoints are sharpened, equals

h2
0

∑

Xi∈(ξ1,ξ2]

|Xi − F−1(i/n)| = Op

{
nh2

0

∫ ξ2

ξ1
(xα/n)1/2 x−a dx

}
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= Op(n
1/2h2

0 ξ
1−(α/2)
1 )

= Op(h
(α−6)/2(α+2)
0 ) = op(1),

since α > 6. Combining this result with (5.11) we deduce that h2
0D(X ,Y) =

op(1).

It remains to show that the data sharpening step that takes Xi to Yi =

F−1(i/n), forXi ∈ (ξ1, ξ2] modulo the tapers, produces a monotone decreasing es-

timator, at least for all sufficiently large n. We may confine attention to deriving

monotonicity in x ∈ (ξ1 +C2h, ξ2 −C2h), where C2 > 0 is so large that [−C2, C2]

contains the support of K. The case where x lies outside (ξ1 + C2h, ξ2 − C2h)

may be accommodated by modifying the tapers.

Put G = F−1. Assume K has s+2 bounded derivatives, and f has r+ s+1

bounded derivatives in the far right hand tail. We shall prove that the function

ψ1(x) =
1

nh2

n∑

i=1

K ′
(x−G(i/n)

h

)

may be approximated by

ψ2(x) =

∫
K(u) f ′(x− hu) du =

1

nh2

n∑

i=1

∫ 1/2

−1/2
K ′

(x−G{(i + u)/n}

h

)
du ,

(5.12)

in the sense that

|ψ1(x) − ψ2(x)| = O(h
αδ(s+1)−1
0 + hr−2

0 ) (5.13)

uniformly in x = O(ξ2). Now, ψ2(x) < 0 and |ψ2(x)| � x−α−1 as x → ∞.

Furthermore, provided

min{αδ(s + 1) − 1, r − 2} ≥ 4(α + 1)/α , (5.14)

h
αδ(s+1)−1
0 + hr−2

0 is of strictly smaller order than x−α−1 uniformly in C3 ≤

x ≤ C4 ξ2, for any 0 < C3, C4 < ∞. It follows that ψ1(x) < 0, uniformly in

C3 ≤ x ≤ C4 ξ2 for all sufficiently large n, as had to be proved.

We conclude by deriving (5.13). Note that by a Taylor expansion, and for

|u| ≤ 1
2 , G{(i + u)/n} = G(i/n) + Si(u) + (u/n)r+1Ri1(u), where

Si(u) =
r∑

j=1

(u/n)j

j!
G(j)(i/n) ,

Ri1(u) =
1

(r − 1)!

∫ 1

0
tr−1(1 − t)G(r+1){(i + tu)/n} dt .
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Now, |G(j)(i/n)| = O(xjα−j+1) uniformly in indices i such that |x−(i/n)| ≤ C5h,

and in x ≥ C6 > C, where C5 > 0 may be arbitrarily large. Hence for C7, C8 > 0,

and uniformly in |u| ≤ 1/2, in x ∈ [C6, ξ2], and in i such that |x− (i/n)| ≤ C5h,

we have ∣∣∣
G{(i + u)/n} −G(i/n)

h

∣∣∣ ≤
C7 x

α

nh
≤ C8 h

αδ
0 . (5.15)

Therefore, assumingK has s+2 derivatives, we may Taylor-expand the argument

of K in the integral on the right hand side of (5.12), obtaining

∫ 1/2

−1/2
K ′

(x−G{(i + u)/n}

h

)
du

=
s∑

k=0

(−1)k

k!
K(k+1)

(x−G(i/n)

h

) ∫ 1/2

−1/2

(Si(u) + (u/n)r+1Ri1(u)

h

)k
du+R2i ,

where |R2i| ≤ C9 h
αδ(s+1)
0 I{|x−G(i/n)| ≤ C10h}. It follows that

∫ 1/2

−1/2
K ′

(x−G{(i + u)/n}

h

)
du

=K ′
(x−G(i/n)

h

)
+

s∑

k=1

(−1)k

k!
K(k+1)

(x−G(i/n)

h

)

×

∫ 1/2

−1/2
{Si(u)/h}

k du+R3i (5.16)

where, uniformly in i such that |x−(i/n)| ≤ C5h, and in x for which C6 ≤ x ≤ ξ2,

|R3i| ≤ C11 {h
αδ(s+1)
0 + h−1

0 n−(r+1) x(r+1)α−r} I{|x−G(i/n)| ≤ C12h} . (5.17)

Carrying out the integration over u on the right hand side of (5.16), we see

that the kth term of the series in k there may itself be expressed as a series in

terms of the form

h−k C(k; j1, . . . , jk)n
−(j1+···+jk)K(k+1)

(x−G(i/n)

h

)
G(j1)(i/n) · · ·G(jk)(i/n) ,

where each j` ∈ [1, r] and the constant C(k; j1, . . . , jk) depends only on its argu-

ments, not on either i or n. Now divide this quantity by nh2 and sum over i; we

obtain h−k C(k; j1, . . . , jk)n−(j1+···+jk) S(k; j1, . . . , jk) , where

S(k; j1, . . . , jk) =
1

nh2

n∑

i=1

K(k+1)
(x−G(i/n)

h

)
G(j1)(i/n) · · ·G(jk)(i/n) .

Approximate this series by the corresponding integral,

1

nh2

n∑

i=1

∫ 1/2

−1/2
K(k+1)

(x−G{(i+u)/n}
h

)
G(j1){(i+u)/n} · · ·G(jk){(i+u)/n}du,
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using the method in the previous paragraph. When performing the integration,

use integration by parts to reduce the derivative exponent k + 1 of K (k+1) to 0.

Iterating this procedure we see that the error in the approximation at (5.13)

is reduced by the factor xα/n for each occasion on which the function G is

differentiable. At the same time it is increased by a factor h−k, appearing in the

denominator of the integral on the right hand side of (5.16), but this is altered

to h−k × hk+1 = h after k + 1 subsequent integrations by parts, provided G has

at least r + s+ 1 derivatives. Thus we may deduce from (5.16) and (5.17) that

1

nh2

n∑

i=1

∫ 1/2

−1/2
K ′

(x−G{(i + u)/n}

h

)
du

=
1

nh2

n∑

i=1

K ′
(x−G(i/n)

h

)
+O{h

αδ(s+1)−1
0 + h−3

0 (xα/n)r+1} , (5.18)

uniformly in x ∈ [C6, ξ2]. Since x = O(ξ2) = O(h
δ−(4/α)
0 ), and n = h−5

0 , then

(5.18) implies (5.13).
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