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Abstract: Suppose that an observed count X is of the form X = B + S, where

the background B and the signal S are independent Poisson random variables with

parameters b and θ, b is known, but θ is not. The model arises in astronomy and

high-energy physics, and some recent articles have suggested conditioning on the

observed bound for B; that is, if X = n is observed, then the suggestion is to base

the inference on the conditional distribution of X given B ≤ n. This suggestion

is used here to derive an estimator of the signal, and the estimator is shown to be

admissible and minimax.

Key words and phrases: Admissible, Confidence and credible interval, coverage

probability, mean square error, minimax, signal plus background.

1. Introduction

In some problems, a signal S may be combined with a background B, leaving

an observed count X = B + S. Here we suppose that B and S are independent

Poisson random variables with means b and θ respectively, so that X has a Poisson

distribution with mean b + θ. Further b is assumed known and θ is unknown, as

might be appropriate if there were historical data on the background. Models

of this nature arise in astronomy and high energy physics. For example, the

KARMEN 2 Group has been searching for a neutrino oscillation reported from

an earlier experiment at the Los Alamos Neutrino Detector. They had expected

to see about 9.3 background events, Eitel (2000), and had observed seven events

total. This example and others have sparked interest in statistical inference

when maximum likelihood estimators are on or near a physical boundary of

the parameter space. Recent work along these lines is reviewed by Mandelkern

(2002) and discussants. Here we investigate the filtering problem, estimating (or

filtering) S from X. This formulation, estimating S instead of θ, is not the usual

one. Its motivation is that S exists in the physical world, while θ only exists

within a mathematical model (although θ is used in the estimation of S). This

is in the spirit of predictive inference (Geisser (1993)). An example in which

interest centers on signals, as opposed to their expectations, is presented in the

next section.
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Thus, suppose that X = n is observed and consider the problem of estimating

S. If θ were known, then the optimal estimator of S (for squared error loss) is the

conditional expectation Ŝθ := Eθ(S|n) = nθ/(b + θ). Substituting the maximum

likelihood estimator θ̂ = max(0, n − b) into this expression, then leads to

Ŝ
θ̂

= θ̂ = max(0, n − b).

That is, the maximum likelihood estimator subtracts the expected background

from the observed count and then takes the positive part. Let us call B an

ancillary variable, since its distribution is known. It is not observed, but a

bound is. For if X = n, then B ≤ n. In this spirit, let B̂(n) = E(B|B ≤ n),

Ŝ(n) = n− B̂(n), and observe that B̂(n) is computable, since b is known. Thus,

Ŝ(n) subtracts the conditional expected background, given the observed bound

B ≤ n; and 0 < Ŝ(n) < n for all n ≥ 1. In the example, b = 9.3, X = 7,

E(B|B ≤ 7) = 5.80, Ŝ = 1.20, and Ŝ
θ̂

= 0. In this example, Ŝ
θ̂

effectively

estimates B by n = 7, leaving Ŝ
θ̂

= 0. This seems excessive for B can be at most

7, and P [B = 7|B ≤ 7] is only 0.376.

After the example in Section 2, the main results of the paper appear in

Sections 3 and 4: It is shown that Ŝ is an admissible, minimax predictor of S

for squared error loss and that Ŝ
θ̂

is inadmissible. In the process, it is shown

that Ŝ is generalized Bayes with respect to the uniform prior over 0 ≤ θ < ∞.

Confidence intervals for S are discussed in Section 5, and some implications of

our results for estimating parameters is described briefly in Section 6. Section 6

also contains some additional references.

2. Fornax

Irwin and Hatzidimitriou (1995) report densities of star counts in elliptical

annuli for several dwarf spheroidal galaxies near to the Milky Way, along with an

overall background density for each galaxy. Selected values for the galaxy Fornax

are listed in Table 1 and used to illustrate the difference between the MLE and

Ŝ. Each line of the table corresponds to the annulus in which the distance r

from the center is between the values listed on the line and the previous one.

Each X is regarded as the sum of a Poisson signal with an unknown mean and

an independent background with mean listed under b. The counts are complete

out a given magnitude (which depends on color) and, so, constitute a census

of a well-defined portion of the star population. Regarding the latter stars as

a finite population, there is interest in estimating the population totals within

annuli for Fornax. For over half of the annuli there is no real difference between

the MLE and Ŝ, and most of these lines have been omitted. There are some

substantial differences in the remaining lines, however. Especially, the MLE has
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many null values, even in cases where there are significant estimated counts at

larger distances. It can be seen that the MLE and Ŝ are almost identical when

the estimated values are large, since P (B ≤ n) is very close to 1 when the MLE

is large.

Table 1. Star counts from fornax.

r d n b mle Ŝ ” ” r d n b mle Ŝ

1.05 29.33 71 3.2 67.8 67.80 100.72 1.43 662 620.0 42.0 44.50

2.10 30.57 222 9.7 212.3 212.30 101.77 1.32 617 626.5 0 16.37

3.15 31.31 380 16.2 363.8 363.80 102.82 1.31 619 633.0 0 15.20

4.20 28.98 492 22.7 469.3 469.30 103.87 1.32 630 639.5 0 16.57

· · · · · · 104.92 1.37 660 646.0 14.0 26.03
71.34 1.44 471 438.2 32.8 35.38 105.97 1.29 628 652.5 0 12.98

72.39 1.30 431 444.7 0 12.13 107.01 1.35 658 652.7 5.3 22.08

73.44 1.54 519 451.2 67.8 67.86 108.06 1.38 685 665.5 19.5 29.28

74.49 1.45 495 457.7 37.3 39.25 109.11 1.34 672 672.0 0 20.27
75.54 1.51 523 464.2 58.8 59.03 110.16 1.29 653 678.5 0 13.14

76.59 1.49 523 470.7 52.3 52.80 111.21 1.42 726 685.0 41.0 44.23

77.64 1.40 499 477.2 21.8 27.97 112.26 1.32 681 691.5 0 17.07

78.69 1.43 516 483.7 32.3 35.48 113.31 1.34 698 697.9 0.1 20.70

79.74 1.37 501 490.2 10.8 21.94 114.36 1.33 699 704.4 0 18.86
80.79 1.51 560 496.7 63.3 63.47 115.41 1.39 737 710.9 26.1 33.84

81.83 1.55 576 498.4 77.6 77.63 116.46 1.37 734 717.4 16.6 28.40

82.88 1.34 510 509.6 0.4 17.75 117.51 1.28 692 723.9 0 12.50

83.93 1.48 570 516.1 53.9 54.47 118.56 1.32 720 730.4 0 17.67
84.98 1.46 569 522.6 46.4 47.61 119.61 1.41 775 736.9 38.1 42.45

86.03 1.29 509 529.1 0 12.05 120.65 1.33 731 736.3 0 19.36

87.08 1.50 600 535.6 64.4 64.61 121.70 1.35 755 749.9 5.1 23.44

88.13 1.47 595 542.1 52.9 53.64 122.75 1.44 813 756.4 56.6 57.97

89.18 1.35 553 548.6 4.4 20.02 123.80 1.35 769 762.9 6.1 24.05
90.23 1.57 650 555.1 94.9 94.90 124.85 1.30 746 769.4 0 14.85

91.28 1.44 604 561.6 42.4 44.38 125.90 1.36 787 775.9 11.1 26.47

92.33 1.44 611 568.1 42.9 44.86 126.95 1.28 747 782.4 0 12.62

93.38 1.46 626 574.6 51.4 52.40 128.00 1.31 771 788.9 0 16.43
94.43 1.30 564 581.1 0 13.59 129.05 1.36 807 795.4 11.6 26.97

95.47 1.35 586 582.0 4.0 20.41 130.10 1.34 802 801.9 0.1 22.21

96.52 1.43 634 594.0 40.0 42.65 131.15 1.31 790 808.3 0 16.60

97.57 1.28 574 600.5 0 11.82 132.20 1.41 857 814.8 42.2 46.27

98.62 1.33 603 607.0 0 17.81 133.24 1.26 765 813.5 0 10.95
99.67 1.29 591 613.5 0 12.84 134.29 1.36 840 827.8 12.2 27.70

3. (In) Admissibility

It is convenient to let fµ and Fµ be the probability mass function and dis-
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tribution function of the Poisson distribution with mean µ. Then

B̂(n) = E(B|B ≤ n) = b
Fb(n − 1)

Fb(n)
= b

[

1 − fb(n)

Fb(n)

]

. (1)

It is also convenient to abbreviate B̂(X) and Ŝ(X) by B̂ and Ŝ. Now let S̃ =

S̃(X) be any estimator for which 0 ≤ S̃ ≤ X. Then the risk of S̃ is

R(S̃, θ) = Eθ[(S̃ − S)2] = Eθ[(B̃ − B)2], (2)

where B̃ = X − S̃. Recall that S̃(X) is inadmissible if there is an S̃′ for which

R(S̃′, θ) ≤ R(S̃, θ) for all θ ≥ 0 with strict inequality for some θ and that S̃ is

admissible otherwise.

Inadmissibility of the MLE. If π is a finite measure over [0,∞), write Eπ for

integration with respect to the joint distribution of θ and X when θ ∼ π; and

write Eπ(·|n) for conditional expectation given X = n. Further, let

R̄(S̃, π) =

∫ ∞

0
R(S̃, θ)π{dθ} = Eπ[(B̃ − B)2]

for estimators S̃, where B̃ = X − S̃; and let R̄(π) = inf S̃ R̄(S̃, π).

The inadmissibility of Ŝ
θ̂

will be deduced from Stein (1955), the applicability

of which is discussed in the Section 7.

Theorem 1. If b > 0, then Ŝ
θ̂

= max[0, X − b] is inadmissible.

Proof. From Stein (1955), a necessary and sufficient condition for Ŝ
θ̂

to be

admissible is that, for every θ0 ∈ [0,∞) and ε > 0, there exist a finite prior π for

which π{θ0} ≥ 1 and R̄(Ŝ
θ̂
, π)− R̄(π) ≤ ε. In particular, if Ŝ

θ̂
is to be admissible,

then there must be a sequence πk of finite priors for which πk{1} ≥ 1 for every

k = 1, 2, . . . and

lim
k→∞

R̄(Ŝ
θ̂
, πk) − R̄(πk) = 0. (3)

Supposing that this is the case, let B̂k(n) = Eπk(B|n) = Eπk [nb/(b + θ)|n] and

B̂0(n) = b ∧ n. Then

R̄(Ŝ
θ̂
, πk) − R̄(πk) =

∞
∑

n=0

[B̂0(n) − B̂k(n)]2
∫ ∞

0

1

n!
(b + θ)ne−(b+θ)πk{dθ}

≥ e−(b+1)
∞
∑

n=0

1

n!
(b + 1)n[B̂0(n) − B̂k(n)]2.

So, limk→∞ B̂k(n) = B̂0(n) = b ∧ n for all n = 0, 1, 2, . . .. Now

B̂k(n) =

[
∫ ∞

0
fb+θ(n)πk{dθ}

]−1 ∫ ∞

0

nb

b + θ
fb+θ(n)πk{dθ}.
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After some simple algebra, this may be written as B̂k(n) = nbµk,n−1/µk,n, where

µk,n =
∫ ∞
0 (b + θ)nπ∗

k{dθ}, π∗
k{dθ} = (1/Ck)e−θπk{dθ}, and Ck =

∫ ∞
0 e−θπk{dθ},

so that each π∗
k is a probability measure and µk,0 = 1. So, if πk exist, then

lim
k→∞

µk,n−1

µk,n

=
1

nb
(b ∧ n) =

1

b ∨ n

for n = 1, 2, . . .. This requires

lim
k→∞

µk,n =

{

bn, if n ≤ m,

bmn!/m!, if n > m,
(4)

where m = bbc is the greatest integer that is less than or equal to b. In turn,

(4) requires that the distribution functions Gk(ω) = π∗
k{θ : b + θ ≤ ω} converge

weakly to a distribution function G that is supported by [b,∞) and has moments

µn = bn or bmn!/m! for n ≤ m or n > m. See, for example, Billingsley (1995,

Chap.30). Such a G cannot exist, however, if b is positive − For if b ≥ 1, then G

must be degenerate at b, since µ1 = b, and the higher moments of the degenerate

distribution are not bmn!/m!. On the other hand if 0 < b < 1, then µn = n! are

the moments of the standard exponential distribution, which is not supported by

[b,∞). So, the assumed existence of πk in (3) leads to a contradiction.

Admissbility of Ŝ. The admissibility of Ŝ will be deduced from a Bayesian ap-

proximation. Consider the (unnormalized) priors πα(dθ) = e−αθ, θ ≥ 0 for

α ≥ 0. Thus, πα is finite if α > 0, and π0 is the (infinite) uniform distribution

over [0,∞). Write Eα for integration with respect to πα, Eα(·|n) for posterior

expectation (which is proper), and

R̄(S̃, α) = Eα[(S − S̃)2] =

∫ ∞

0
R(S̃, θ)e−αθdθ

for the integrated risk of a predictor S̃. This is minimized by Ŝα(n) = Eα(S|n).

The computation of Ŝα is straightforward. First observe that Ŝα(n) = n −
B̂α(n), where B̂α(n) = Eα(B|n). From Pθ[B = k,X = n] = bkθn−ke−(b+θ)/[k!(n

−k)!], follows, for n ≥ 0,

Pα[B = k,X = n] =

∫ ∞

0
Pθ[X = n,B = k]e−αθdθ =

bke−b

k!(1 + α)n−k+1
,

(5)

Pα[X = n] =
n

∑

k=0

Pα[B = k,X = n] =
eαb

(1 + α)n+1
F(1+α)b(n),

B̂α(n) := Eα(B|n) = (1 + α)b
F(1+α)b(n − 1)

F(1+α)b(n)
. (6)
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Thus B̂0(n) = B̂(n) in (1). Let

δα,n =
f(1+α)b(n)

F(1+α)b(n)
=

(1 + α)nbn/n!
∑n

k=0(1 + α)kbk/k!
, (7)

and denote δ0,n by δn. Then, B̂α(n) = b(1 + α)(1 − δα,n) and B̂(n) = b(1 − δn).

Theorem 2. If B̂α and B̂ are as in (6) and (1), then limα→0 Eα[B̂α − B̂]2 = 0.

Proof. For 0 ≤ α ≤ 1,

Eα[(B̂α − B̂)2] =

∫ ∞

0
Eθ(B̂

α − B̂)2e−αθdθ

=

∫ ∞

0

∞
∑

n=0

{αb − [(1 + α)bδα,n − bδn]}2 (b + θ)n

n!
e−(b+θ)e−αθdθ

≤ 2

∫ ∞

0
α2b2e−αθdθ + 2

∞
∑

n=0

∫ ∞

0
[(1 + α)δα,n − δn]2

(b + θ)n

n!

×e−(b+θ)e−αθdθ

≤ 2αb2 + 2
∞
∑

n=0

[(1 + α)δα,n − δn]2.

Clearly, αb2 → 0 and (1 + α)δα,n − δn → 0 as α → 0 for fixed n. That the

summation approaches 0 then follows from the Dominated Convergence Theorem,

since

|(1 + α)δα,n − δn|2 ≤ 2[(1 + α)δα,n]2 + 2δ2
n ≤ 10

22nb2n

n!
for 0 ≤ α ≤ 1, and the right side is summable over n ≥ 0.

Corollary 1. limα→0[R̄(Ŝ, α) − R̄(Ŝα, α)] = 0.

Proof. For α > 0, R̄(Ŝ, α) = Eα[(S − Ŝα)2 + (Ŝ − Ŝα)2] = R̄(Ŝα, α) + Eα[(B̂ −
B̂α)2], and E[(B̂ − B̂α)2] → 0 by the theorem.

Since 0 ≤ S̃(n) ≤ n for any predictor S̃ (under consideration), it is clear

from the Dominated Convergence Theorem that R(S̃, θ) is continuous in θ for

any predictor.

Corollary 2. Ŝ is admissible.

Proof. If Ŝ were inadmissible, then there would be an S̃ for which R(S̃, θ) ≤
R(Ŝ, θ) for all θ ≥ 0, and R(S̃, θ0) < R(Ŝ, θ0) for some θ0 ≥ 0. Let ε0 =

[R(Ŝ, θ0)−R(S̃, θ0)]/2. Then, there is an η > 0, such that R(Ŝ, θ) ≥ R(S̃, θ)+ε0,

for all non-negative θ such that |θ − θ0| < η; and then

R̄(Ŝ, α) − R̄(Ŝα, α) ≥
∫ θ0+η

θ0

[R(Ŝ, α) − R(S̃, α)]e−αθdθ
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≥ ε0
e−αθ0 − e−α(θ0+η)

α
→ ε0η > 0

as α → 0, contradicting Corollary 1.

Corollary 3. Ŝ(n) = E0(S|n).

Proof. This is clear from the proof of Theorem 2.

Of course, it does not follow that Ŝ dominates Ŝ
θ̂
. The mean squared errors

of the two predictors are shown in Figure 1 for selected b. The graphs show

that the MSEs for Ŝ are less than the MSEs for Ŝ
θ̂

for large θ but greater than

the MSEs for Ŝ
θ̂

for small θ. Ŝ does dominate Ŝ
θ̂

in terms of conditional risk,

however, for the equations

Eθ[(Ŝ − S)2|B ≤ n] = Var(B|B ≤ n), (8)

Eθ[(Ŝθ̂
− S)2|B ≤ n] = Var(B|B ≤ n) + [b ∧ n − B̂(n)]2 (9)

do not depend on θ, and (8) is less than (9). Graphs of the two conditional risks

are included in Figure 2 for selected b.
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Figure 1. The MSE for Ŝ(n) (solid) and Ŝ
θ̂
(n) (dotted) for selected b.
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Figure 2. The conditional MSE for Ŝ(n) (solid) and Ŝ
θ̂
(n) (dashed) for

selected b.

4. Minimaxity

Recall that an estimator S̃ is minimax if it minimizes supθ R(S̃; θ). In show-

ing that Ŝ is minimax, it is necessary to consider randomized predictors, because

the use of a randomized predictor could reduce the minimax risk in principle.

Let IN denote the non-negative integers and B+ the Borel sets of [0,∞). Then

a randomized predictor is a function γ : IN × B+ → [0, 1] for which γ(n, ·) is a

probability measure on B+ for each n; and the risk of a randomized predictor is

r(γ, θ) = Eθ{
∫

[0,∞)
[a − S]2γ(X; da)}

= Eθ{
∫

[0,∞)
{[a − Xθ

b + θ
]2 + [S − Xθ

b + θ
]2}γ(X; da)}.

A (non-randomized) predictor S̃ then corresponds to γ(n;A) = 1A[S̃(n)] in which

case r(γ, θ) = R(S̃, θ) in (2).

Recalling the optimal predictor for known θ, Ŝθ(n) = nθ/(b + θ), it is clear

that r(γ, θ) ≥ Eθ[(S−Ŝθ)
2] = bθ/(b+θ), so that supθ r(γ, θ) ≥ b for any predictor

γ. So, minimaxity of Ŝ means that supθ R(Ŝ, θ) = b. Again recalling the optimal
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predictor for known θ,

Eθ[(S − Ŝ)2|N = n] = [B̂(n) − nb

b + θ
]2 +

nbθ

(b + θ)2
.

Then, using B̂(n) = b(1 − δn) and some simple algebra (essentially, summation
by parts), it follows that R(Ŝ, θ) = b + hb(θ), where

hb(θ) = b2
∞
∑

n=0

[δ2
n − 2(δn − δn+1)]fb+θ(n); (10)

and minimaxity of Ŝ is equivalent to hb(θ) ≤ 0 for all θ ≥ 0.

Lemma 1. δn and δn+1/δn are both decreasing in n ≥ 0.

Proof. Since b(1 − δn) = E(B|B ≤ n), it is clear that δn is decreasing. So, the
issue is δn+1/δn; and since

δn+1

δn
=

Fb(n)

Fb(n + 1)

b

n + 1
,

it suffices to show that Fb(n − 1)Fn(n + 1) > (n/(n + 1))Fb(n)2. For this,

(n + 1)Fb(n − 1)Fb(n + 1) − nFb(n)2

= Fb(n)2 + (n + 1)fb(n + 1)Fb(n − 1) − (n + 1)fb(n)Fb(n)

= [
n

∑

j=0

n
∑

k=0

bj+k

j!k!
+

bn+1

n!

n−1
∑

k=0

bk

k!
− (n + 1)

bn

n!

n
∑

k=0

bk

k!
]e−2b.

Let c` denote the coefficient of b` in [· · ·]. Then clearly c` ≥ 0 for 0 ≤ ` < n; and
for n ≤ ` ≤ 2n,

c` =
∑

k=`−n

1

k!(` − k)!
+

1

n!(` − n − 1)!
− n + 1

n!(` − n)!

=
∑

k=`−n

1

k!(` − k)!
− 2n − ` + 1

n!(` − n)!

≥ 0,

since (k!(`−k)!)−1 ≥ (n!(`−n)!)−1 for all k = `−n · · · , n (because n× (n− 1)×
· · · × (k + 1) ≥ (` − k) × · · · × (` − n + 1)).

Lemma 2. As a function of n, δ2
n + 2δn+1 − 2δn has at most one sign change;

and any change of sign is from + to −.

Proof. Clearly, δ2
n + 2δn+1 − 2δn < 0 iff

δn ≤ 2(1 − δn+1

δn
). (11)
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By Lemma 1, the left side of (11) is decreasing, and the right side is increasing.
So, if δ2

n + 2δn+1 − 2δn < 0 for some n, then δ2
n + 2δn+1 − 2δn < 0 for all large

values of n, and the lemma follows.

Theorem 3. Ŝ is minimax.

Proof. As noted above, it suffices to show that hb(θ) ≤ 0 for all θ ≥ 0. By
Lemma 2 δ2

n + 2δn+1 − 2δn has at most one sign change in (10), and any change
of sign is from + to −. By Theorem 5.1 of Karlin (1966), the same is then true of

hb(θ), regarded as a function of θ. Clearly limn→∞ B̂(n) = b. So, B−B̂ converges
in distribution to B − b as θ → ∞. Since 0 ≤ B − B̂ ≤ B, it then follows that
limθ→∞ R(Ŝ, θ) = limθ→∞ E[(B − B̂)2] = b and, therefore, limθ→∞ hb(θ) = 0. It

is shown below that hb(0) < 0, and it then follows from the sign regularity of
hb(θ) that hb(θ) ≤ 0 for all θ. To see that hb(0) < 0, simply observe that

∞
∑

n=0

δ2
nfb(n) =

∞
∑

n=0

δ2
n[Fb(n) − Fb(n − 1)]

=
∞
∑

n=0

[δ2
n − δ2

n+1]Fb(n)

=
∞
∑

n=0

[δn + δn+1][δn − δn+1]Fb(n)

<
∞
∑

n=0

2δn[δn − δn+1]Fb(n)

=
∞
∑

n=0

2[δn − δn+1]fb(n),

so that hb(0) < 0 by (10) and Lemma 1.

5. Confidence and Credible Interval for S

The confidence or credible interval [`(n), u(n)] for S can be directly obtained

through the confidence and the credible interval [a(n), b(n)] for B by subtracting
[a(n), b(n)] from n. The confidence interval of B can be calculated from the
conditional distribution of B on the event B ≤ n when X = n is observed. The
conditional mass function of B on B ≤ n is

fb|n(k) =
P [B = k]

P [B ≤ n]
=

fb(k)

Fb(n)
(12)

if 0 ≤ k ≤ n, and fb|n(k) = 0 if k > n. Let Fb|n be the corresponding conditional

cumulative distribution function of B on B ≤ n. Then, the 1 − α confidence
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interval [a(n), b(n)] for B on B ≤ n can be computed by solving

[a(n), b(n)] = {k : fb|n(k) ≥ cn},
Fb|n[b(n)] − Fb|n[a(n)−] ≥ 1 − α,

(13)

for some cn ≥ 0. Therefore, the 1 − α confidence interval for S is

[`(n), u(n)] = [n − b(n), n − a(n)]. (14)

Then we have
∑u(n)

k=`(n) fb(n − k)/Fb(n) ≥ 1 − α.

Alternatively under the uniform prior on [0,∞) for θ, the Bayesian credible
interval for S can be computed from the posterior conditional Bayesian mass
function of S on X = n, which is

P 0[S = k|X = n] =
P 0[B = n − k,X = n]

P 0[X = n]
, (15)

where P 0[B = n− k,X = n] and P 0[X = n] are given in (5). It is clear that the
Bayesian conditional mass function of B given X = n under the uniform prior
on [0,∞) for θ is exactly the same as the conditional mass function of B given
in (12). Therefore, the Bayesian credible interval and the conditional confidence
interval for S are identical if the prior is uniformly distributed on [0,∞). Figure
3 displays the numerical results of estimated value Ŝ(n), the 90% confidence
bounds `(n) and u(n) as functions of n for selected b.
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Ŝ

C
o
n
fi
d
e
n
c
e

B
o
u
n
d
s

fo
r

Ŝ
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Figure 3. The estimated values (solid) and their 90% confidence intervals
(dashed) for S as functions of n for selected b.
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The frequentist coverage probability of the confidence interval for S is the

probability of the interval [`(n), u(n)] in (14) to contain S, i.e.,

Pθ[`(n) ≤ S ≤ u(n)] =
∞
∑

n=0

u(n)
∑

k=`(n)

θke−θ

k!

bn−ke−b

(n − k)!
. (16)

The numerical results of the frequentist coverage probabilities of the 90%

confidence interval for S as functions of θ for selected b are given in Figure 4. As

suggested by Figure 4, the coverage probabilities in (16) are continuous in θ but

discontinuous in b. This is an effect of the discreteness of the Poisson, since `(n)

and u(n) depend on b.
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Figure 4. The coverage probabilities of the 90% confidence intervals for S

as functions of θ for selected b.

6. Remarks and References

Viewed as estimators of θ, neither Ŝ nor Ŝ
θ̂
is admissible for squared error loss

for essentially the same reasons in the proof of Theorem 1. However, interpreting

0/0 as 0, p̂ = Ŝ/X is an admissible estimator of p = θ/(b + θ) for the loss

function L(p, p̂, x) = (p̂−p)2x2, which depends on x as well as p and p̂, and Ŝ
θ̂

is

inadmissible. To see this simply observe that R(S̃; θ) = Eθ[(S̃−Sθ)
2]+bθ/(b+θ)

for any estimator S̃, that the second term on the right does not depend on S̃,

and that Eθ[(S̃ − Sθ)
2] = Eθ[((S̃/X) − p)2X2].

For large b, the prediction problem is closely related to the problem of

estimating a positive normal mean. To see how, let Y = 2[
√

X −
√

b] and
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µ = 2[
√

b + θ −
√

b]. If b, θ → ∞ in such manner that µ remains fixed, then

Y ⇒ Normal[µ, 1] and S/
√

b →p µ, where ⇒ and →p denote convergence in

distribution and convergence in probability. So, the asymptotic version of the

problem is to estimate µ when Y = µ+ ε, µ ≥ 0, and ε ∼ Normal[0, 1]. Like B, ε

is an ancillary variable in that its distribution is known; and if Y = y is observed,

then ε ≤ y. It is known that the maximum likelihood estimator µ̂ = max[0, Y ] is

inadmissible and that the formal Bayes estimator with respect to a uniform prior

is admissible (Katz (1961)). Moreover, the latter can be written as y−E(ε|ε ≤ y).

Shao and Strawderman (1996) provide a recent contribution to the problem of

estimating a positive normal mean.

The derivations in Sections 3 and 4 use several properties of the Poisson dis-

tribution: non-negativity, reproductivity, and the exponential family structure.

An interesting potential generalization is to marked Poisson processes where a

mark is observed with each event and the marks have different distributions for

background and signal events.

Bayesian calculations of the nature used here have appeared in the physics

literature in Helene (1984) and Zech (1989), for example. Conditioning on a

partially observed ancillary variable B ≤ n was first suggested by Roe and

Woodroofe (1999), who derived regions of high conditional likelihood for θ.

Cousins (2000) showed that this approach leads to undesirable intervals when

applied to the positive normal mean problem. Other uses of conditioning appear

in Roe and Woodroofe (2000), which shows that Bayesian credible intervals from

flat priors have nearly exact conditional frequentist coverage probabilities, and

in Woodroofe and Wang (2000) which shows that an unconditional p-value is

inadmissible but its conditional analogue is admissible.

7. More About Stein’s Condition

The applicability of Stein’s Theorem is outlined in this appendix. In the

present context, the sets A and B of Stein (1955) are, respectively, the parameter

space [0,∞) and the set of randomized predictors for which γ(n, [0, n]) = 1 for all

n; the function K of Stein (1955) is K(a, b) = r(γ, θ). Two conditions are imposed

in Stein (1955): compactness of B in the sense of Wald, and the applicability of

the Minimax Theorem. Letting d denote the Levy metric for probability mea-

sures on [0,∞), as in Billingsley (1995, p.198), for example, the set B is compact

in the topology generated by the metric d∗[β, γ] =
∑∞

n=0 2−nd[β(n, ·), γ(n, ·)].
For if γk is any sequence in B, then there are subsequences along which γk(n, ·)
converge weakly for each n. By diagnolization, there is then a subsequence along

which γk(n, ·) converges weakly for all n, and this is equivalent to convergence in

the metric d∗. When combined with the (easily verified) lower semi-continuity of

r(γ, θ) in γ for fixed θ, compactness implies compactness in the sense of Wald;
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when combined with the obvious continuity of r(γ, θ) in θ for each γ ∈ B, com-

pactness also implies the Minimax Theorem. See Ferguson (1965, pp.81ff), for

example.
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