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Abstract: Much research has been done on the asymptotic distributions of likelihood

ratio statistics for complete data. In this paper we consider the situation in which

the data are time censored and the distribution of the likelihood ratio statistic is a

mixture of continuous and discrete distributions. We show that the distribution of

a signed square root likelihood ratio statistic can be approximated by its bootstrap

distribution up to second order accuracy. Similar results are shown to hold for

likelihood ratio statistics with or without a Bartlett correction. The main tool used

is a continuous Edgeworth expansion for the likelihood-based statistics, which may

be of some independent interest. Further, we use a simulation study to investigate

the adequacy of the approximation provided by the theoretical result by comparing

the finite-sample coverage probability of several competing confidence interval (CI)

procedures based on the two parameter Weibull model. Our simulation results show

that, in finite samples, the methods based on the bootstrap signed square root like-

lihood ratio statistic outperform the bootstrap-t and BCa methods in constructing

one-sided confidence bounds (CBs) when the data are Type I censored.
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1. Introduction

The asymptotic distributions of likelihood ratio statistics have been studied

for decades. Most previous work has focused on the situations where the data

are given by a random sample of complete observations from a continuous dis-

tribution. For censored data, approximations to the distributions of likelihood

ratio statistics are less well studied. A major technical problem in generalizing

the results for the complete data case to time-censored data is that under cen-

soring, the log-likelihood function and its derivatives become a mixture of partly

discrete and partly continuous random variables, making the derivation of the

relevant Edgeworth expansions difficult. In a series of important papers, Jensen

(1987, 1989, 1993) developed Edgeworth expansions of the log-likelihood ratio

(LLR) statistic when the underlying distribution is partly discrete. Because of
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the more complicated nature of the resulting expansions, however, the accuracy

of certain likelihood-based procedures, that are second and higher order accurate
in the complete data case, remains unexplored in the censored data case. In this

paper, we investigate higher-order properties of some of these inference proce-

dures under censoring and also investigate accuracy of bootstrap approximations

to many common likelihood-based procedures under censoring.
The main results of the paper give continuous Edgeworth expansions of a

general order for the multivariate maximum likelihood estimators (MLEs) under

time censoring (also known as type I censoring). Validity of continuous third

order expansions for the likelihood ratio statistic, its Bartlett-corrected version,
and the signed square root likelihood ratio statistic are also established. Using

the continuous Edgeworth expansion results, we study the accuracy of approx-

imations generated by a parametric bootstrap method. It is shown that if the

MLE is Studentized using the Cholesky decomposition of a consistent estimator
of the Fisher information matrix, the bootstrap approximation to the distribu-

tion of the multivariate Studentized MLE is second order accurate. Thus, the

superiority of the bootstrap continues to hold for censored data, although under
censoring the likelihood function and its partial derivatives involve discrete vari-

ables arising from the random number of failures of time censoring. One-term

Edgeworth correction by the bootstrap is also established for the likelihood ratio

statistic and its variants, confirming its superiority over the classical χ2- and
normal approximations.

We also carry out an extensive simulation study to investigate the finite sam-

ple properties of the parametric bootstrap method under censoring. We consider

a number of different likelihood-based approaches for constructing confidence
intervals (CIs) and study the accuracy of coverage probabilities for one- and

two-sided CIs as a function of sample size and the expected number of failures.

The bootstrap-t and BCa methods are known to be second order accurate when

the data are complete (cf., Hall (1992)). Our simulation results show that the
methods based on bootstrap signed square root likelihood ratio statistics out-

perform the bootstrap-t and BCa methods in constructing one-sided confidence

bounds when the data are time (or Type I) censored. For the two sided CIs, the

bootstrap signed square root likelihood ratio statistics has the best performance.
We conclude this section with a brief literature review. For independent and

identically distributed (i.i.d.) complete data, Box (1949) derives an infinite series

expansion for the distribution of the LLR statistic Wn (say) in terms of the χ2

distribution and with terms decreasing in powers of 1/n. Lawley (1956) derives
the Bartlett correction term for Wn. Doganaksoy and Schmee (1993) compare

several CI procedures using the Wn and its Studentized modifications. Chandra

and Ghosh (1979) derive a valid Edgeworth expansion for Wn to order o(1/n).

For the signed root LLR statistic Rn (say), expansions for different versions of
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Rn have been derived by Lawley (1956), McCullagh (1984), Efron (1985) and
Nishi and Yanagimoto (1993). In two important papers, Barndorff-Nelson (1986,
1991) shows that a particular modification of Rn is asymptotically normal up
to an error of the order O(n−3/2) conditionally on an appropriate ancillary, and
hence also unconditionally.

For censored data, the arguments given by Chandra and Ghosh (1979) for
finding a formal Edgeworth expansion are no longer valid. The order of accuracy
in the results mentioned above could be different. Jensen (1987, 1989, 1993)
establishes Edgeworth expansions for smooth functions of the mean when the
underling distribution is partly discrete. These expansions are used to prove the
validity of expansions for Wn. Babu (1991) and Babu and Bai (1993) establish
Edgeworth expansions for statistics that are functions of lattice and non-lattice
variables.

A large number of bootstrap methods have been suggested for testing or find-
ing CIs (Hall (1992), Efron and Tibshirani (1993) and Shao and Tu (1995)). The
theoretical arguments for the accuracy of these methods are mostly derived under
the assumption of complete data. For time-censored data, observation stops at a
predetermined point in time. In this case, some bootstrap methods can be much
less accurate, especially for one-sided CIs and small expected number of failures
(see Jeng and Meeker (2000)). Datta (1992) establishes a continuous version of
classical Edgeworth expansions for both non-lattice and lattice distributions and
uses this to unify both non-parametric and parametric bootstrap methods of a
Studentized statistic up to order O(n−1/2). Datta (1992) also gives an example
in which the bootstrap-t method is first order accurate for Type I censored data
with the exponential distribution.

The rest of the paper is organized as follows. In Section 2, we briefly de-
scribe the theoretical framework and the bootstrap method. In Section 3, we
derive continuous Edgeworth expansions for several likelihood-based statistics
and in Section 4, we use these expansions to study higher order properties of the
bootstrap approximations. In Section 5, we present a simulation study. Proofs
of the main results are given in Section 6.

2. Theoretical Framework

2.1. Likelihood-based statistics

Let X1, X2, . . . be a sequence of IRd valued independent and identically dis-
tributed random vectors with common distribution Pθ, where θ belongs to an
open subset Θ of IRk. Suppose that Pθ is absolutely continuous w.r.t some σ-
finite measure µ with density f(x; θ). Denote the cumulative distribution func-
tion (cdf) of Pθ by F (x; θ). With single Type I censoring at censor time tc, the
log-likelihood of a single observation is given by

l(Xi; θ) = log{f(Xi; θ)
δi [1 − F (tc; θ)]

1−δi}, (2.1)
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where δi = 1 if Xi ≤ tc (a failure), and δi = 0 if Xi > tc (a censored observation),

i = 1, . . .. When there are n observations, define l̄n(θ) = 1/n
∑n

1 l(xi; θ), where

xi is the data for the observation i. Let θ̂n = (θ̂1n, . . . , θ̂kn) be the MLE of the

parameter θ. Then θ̂n satisfies the equations

∂

∂θi
l̄n(θ) = 0, i = 1, . . . , k. (2.2)

Next, let θ = (θ(1), θ(2)) = (θ1, . . . , θk1 , θk1+1, . . . , θk) be a partition of the pa-

rameter vector θ where θ(2) is the parameter of primary interest and θ(1) is a vec-

tor of nuisance parameters, and let θ0 = (θ
(1)
0 , θ

(2)
0 ) = (θ10, . . . , θk10, θ(k1+1)0, . . .,

θk0), be the true parameter vector. Let θ̃n = (θ̃1n, . . . , θ̃k1n, θ(k1+1)0, . . . , θk0) =

(θ̃
(1)
n , θ

(2)
0 ) be the MLE of θ under the restricted model θ(2) = θ

(2)
0 . Then the log

likelihood ratio statistic is

Wn ≡Wn(θ0; k1) = 2n[l̄n(θ̂n) − l̄n(θ̃n)] (2.3)

and, under standard regularity conditions (e.g., Lehmann (1986)), the distribu-

tion of Wn is asymptotically χ2
(k−k1)

, where χ2
f denotes a chi-square distribution

with f degree of freedom.

The distribution of a likelihood ratio statistic with a Bartlett adjustment

can be more closely approximated by the chi-square than the distribution of a

likelihood ratio statistic without a Bartlett adjustment. Consider the modified

statistic

W1n ≡W1n(θ0; k1) = (k − k1)
Wn

Eθ0(Wn)
(2.4)

and the expansion

Eθ0(Wn) = (k − k1)

[
1 +

B(θ0)

n

]
+O

(
1

n2

)
. (2.5)

Then, operationally, a Bartlett-adjusted statistic is

WBn ≡WBn(θ0; k1) =
Wn

1 +B(θ̃(1), θ
(2)
0 )/n

, (2.6)

where (θ̃(1), θ
(2)
0 ) is the MLE for the model parameter θ(1) with the restriction

θ(2) = θ
(2)
0 .

The signed square root log likelihood ratio (SRLLR) statistic for testing

a scalar parameter θ
(2)
0 = θk0 (or a scalar function of the parameter so that

k1 = k − 1) is

Rn ≡ Rn(θ0; k1) = sign(θ̂kn − θk0)
√
Wn, (2.7)
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and the distribution of Rn is asymptotically standard normal.

2.2. Bootstrap

Let θ̄n be an estimator of the parameter θ. For example, we may take

θ̄n = θ̂n, the MLE of θ. Then, given the data X1, . . . , Xn, draw a random sample

X∗
1 , . . . , X

∗
n of size n from the “estimated” density f(x; θ̄n). For a random variable

Tn ≡ tn(X1, . . . , Xn; θ), define the parametric bootstrap version of Tn as

T ∗
n = tn(X∗

1 , . . . , X
∗
n; θ̄n). (2.8)

In absence of a parametric model, bootstrap samples may be drawn with replace-

ment from the observations {X1, . . . , Xn}. The corresponding method is known

as the “ordinary” bootstrap or the nonparametric bootstrap. Several authors

have investigated properties of the nonparametric bootstrap for censored data.

See Lo and Singh (1986), Horvath and Yandell (1987), Babu (1991), Lai and

Wang (1993), Gross and Lai (1996), and the references therein. In this paper,

we consider the parametric, rather than the nonparametric bootstrap.

3. Continuous Edgeworth Expansions

In this section, we derive Edgeworth expansions for the likelihood-based

statistics of Section 2.1 by allowing the underlying parameter value to depend on

the sample size. This approach has been introduced in the bootstrap literature

by Datta (1992), and seems to be the most natural one for studying higher order

properties of the parametric bootstrap method of Section 2.2. Let θ0 ∈ Θ and

let {θn}n≥1 ⊂ Θ be a sequence of parameter values satisfying

θn → θ0 as n→ ∞. (3.1)

Also, write En and Pn to denote the expectation and the probability under θn,

n ≥ 0. For notational simplicity, we often drop the subscript 0 and write E0 = E

and P0 = P . We use the following regularity conditions for proving the main

results of the paper.

3.1. Conditions

We need some notation. For any real numbers x, y, write x ∧ y = min{x, y}
and x ∨ y = max{x, y}. Let ZZ = {0,±1,±2, . . .} denote the set of all integers.

Also, let IN = {1, 2, . . .} and ZZ+ = {0, 1, . . .}, respectively, denote the set of

positive and the set of nonnegative integers. For a positive definite matrix A of

order r ∈ IN , write ΦA and φA to denote the distribution and the (Lebesgue)

density of the N(0, A) distribution in IRr. For simplicity, we set ΦIr = Φ and

φIr = φ when A = Ir, the identity matrix of order r. For a function f : IRk → IR,
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denote by ∂νf the partial derivative ∂ |ν|/(∂tν1
1 . . . ∂tνk

k )f where ν ∈ INk, |ν| =∑k
i=1 νi and ν! = ν1! . . . νk!. When |ν| = 1, we write ∂i instead of ∂ν to denote a

partial derivative w.r.t. ti. For a set B in IRr, write ∂B to denote its boundary

and write Bε for the set Bε = {x ∈ IRr : ‖x− y‖ ≤ ε for some y ∈ B}. Also,

let e1, . . . , ek denote the standard basis of unit vectors in IRk. Let Θ0 be an open

neighborhood of θ0.

The following are the regularity conditions on the log likelihood function l.

(A.1) For each ν, 1 ≤ |ν| ≤ s + 1, l(x; θ) has a ν-th partial derivative ∂ν l(x; θ)

with respect to θ on IRd ×Θ, and for |ν| ≤ s, ∂νl(x; θ) is continuous on Θ0

for all x ∈ IRd.

(A.2) There exists a constant δ ∈ (0, 1) such that for all n ∈ ZZ+,

En

[
|∂ν l(X1; θn)|(s+1)

]
< δ−1 for each ν, 1 ≤ |ν| ≤ s, and (3.2)

En

[
sup

|θ−θ0|<δ
{|∂ν l(X1; θ)|}s

]
< δ−1 for each ν, |ν| = s+ 1. (3.3)

(A.3) (i) For each n ∈ ZZ+, En [∂il(X1; θn)] = 0 for i = 1, . . . , k.

(ii) The k × k matrices

I(θn)={−En[∂i∂jl(X1; θn)]}, D(θn)={En[∂il(X1; θn)∂jl(X1; θn)]} (3.4)

are non-singular, I(θn) = D(θn) for all n ∈ ZZ+, and ‖I(θn) − I(θ0)‖ → 0

as n→ ∞.

For n ∈ ZZ+, define Z
[ν]
in = ∂νl(Xi; θn) and let Zin = (Z

[ν]
in )1≤|ν|≤s be the

vector with coordinates indexed by the ν’s. The dimension of Zin is m =∑s
r=1

(k+r−1
r

)
, and we arrange Zin values such that the first k coordinates of

Zin are those with the indices ν = ej , 1 ≤ j ≤ k. Some of the coordinates of

Zin may be linearly dependent. To deal with this, we suppose that there exist

m0 × m matrices An of rank m0(≤ m) such that the variables Z̃ins defined by

the relation

Zin = Z̃inAn (3.5)

are of dimension m0 ≤ m and are such that the coordinates of Z̃1n are linearly

independent. We further suppose that the first m1 of these coordinates are

continuous variables and the remaining m2 = m0 −m1 are lattice variables with

minimal lattice ZZm2 . We write Z̃in = (Z̃
(1)
in , Z̃

(2)
in ), where Z̃

(1)
in are the first m1

coordinates and Z̃
(2)
in are the last m2 coordinates. For ε ∈ (0,∞), define the

set C(ε) = {(t, v) : t ∈ IRm1 , v ∈ [−π, π]m2 , ‖t‖ ∧ {‖v‖ ∨ ‖p0 − v‖} ≥ ε}, where

p0 = (π, . . . , π) ∈ IRm2 .
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We need an additional set of conditions on the Z̃in vectors.

(A.4) (i) There exists a constant δ ∈ (0, 1) such that for all n ∈ ZZ+,

En

[
‖Z̃1n‖max {2s+1,m1+1}

]
+En

[
‖Z̃(2)

1n ‖max {2s+1,m1+1,m2+1}
]
< δ−1,

and the finite cumulants of Z1n under θn converge to those of Z10 under

θ0 as n→ ∞.

(ii) For all ε > 0 there exists a δ ∈ (0, 1) such that for all n ∈ IN ,

sup
{∣∣∣En

[
exp (it · Z̃(1)

1n + iv · Z̃(2)
1n )

]∣∣∣ : (t, v) ∈ C(ε)
}
≤ 1 − δ. (3.6)

(A.5) (i) ‖An −A0‖ → 0 as n→ ∞.

(ii) The m1 × k matrix A
(11)
0 has full rank, where A

(11)
0 is the upper left

hand corner of A0.

(A.6) The m1×(k−k1) matrix (A
(1)
0 I(θ0)

−1/2)(12) has full rank, where A
(1)
0 is the

matrix consisting of the first k columns of A0, the lower triangular matrix

I(θ0)
−1/2 is the Cholesky factorization of I(θ0)

−1, and (A
(1)
0 I(θ0)

−1/2)(12)

is the m1× (k−k1) matrix of the first m1 rows and columns (k1 +1, . . . , k)

of A
(1)
0 I(θ0)

−1/2.

Condition (A.4)(ii) is called a uniform Cramer condition, and is required to

establish an Edgeworth expansion for the continuous part Z̃
(1)
in , given the lattice

part Z̃
(2)
in . Babu and Bai (1993) prove a similar expansion result under a weaker

moment condition than (A.4)(i), but they require a stronger Cramer condition

than (A.4)(ii). Condition (A.5) ensures that the first order Taylor approximation

of the target statistic depends on the continuous part Z̃
(1)
in , while Condition (A.6)

ensures the invariance of the reparameterization. Note that in formulating the

conditions, we include the limiting value θ0 (i.e., the index n = 0) in all those

conditions that ensure continuity of the resulting expansions at θ0, e.g., (A.3)

and (A.4)(i), and in conditions that simplify formulation of the uniformity con-

ditions, e.g., (A.5) and (A.6). Of all the conditions, the uniform Cramer condition

(A.4)(ii) is perhaps the most difficult to verify. A simple sufficient condition for

(A.4)(ii) that, in particular, allows one to dispense with the dependence of the

condition on θn, n ≥ 1, is given by the following proposition.

Proposition 1. Let {(Xn, Yn)}n≥0 be a collection of random vectors taking

values in IRm1 × ZZm2 . Suppose that for each n ≥ 0, the distribution of the

random vector (Xn, Yn) has an absolutely continuous component with respect to

the product measure λ (say) of the Lebesgue measure on IRm1 and the counting
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measure on ZZm2 with density fn(x, y). Assume that there exist a c > 0, a bounded

open set O ≡ ∏m1
j=1(x0j − aj, x0j + aj) ⊂ IRm1 , and integers l1, l2 ∈ ZZ such

that with B0 = O × [l1, l2]
m2 , (i) limn→∞ fn(x, y) = f0(x, y) for all (x, y) ∈

B0, (ii) limn→∞
∫
B0
fndλ =

∫
B0
f0dλ, and (iii) f0(x, y) > c for (x, y) ∈ B0.

Then, for any ε ∈ (0,∞), there exists a δ = δ(ε) ∈ (0, 1) such that for n = 0 and

for all n ≥ δ−1, sup
{∣∣∣E

[
exp(it ·Xn + iv · Yn)

]∣∣∣ : (t, v) ∈ C(ε)
}
≤ (1 − δ).

Proposition 1 implies the inequality (3.6) for large values of n and this is

adequate for the validity of the asymptotic results. In the next section, we

describe the continuous Edgeworth expansion results for the likelihood-based

statistics of Section 2.

3.2. Main results

The first result concerns the MLE θ̂n.

Theorem 1. Assume (A.1)−(A.3).

(a) There exists a sequence of statistics {θ̂n} and a constant a1 ∈ (0,∞), in-

dependent of n, such that Pn(‖θ̂n − θn‖ ≤ a1[log n/n]1/2, θ̂n solves (2.2))

= 1 − o(n−(s−2)/2).

(b) Assume (A.4) and (A.5). Then there exist polynomials qj(·; θ) (not depend-

ing on n) with coefficients that satisfy the continuity condition

limn→∞ qj(x; θn) = qj(x; θ0) for all x ∈ IRk, such that

sup
B∈B

∣∣∣Pn(
√
n(θ̂n − θn) ∈ B) −

∫

B

[
1 +

s−2∑

j=1

n−j/2qj(x, θn)
]
φΣn(x)dx

∣∣∣

= o(n−(s−2)/2),

where Σn = I(θn)−1 and B is a collection of sets in IRk satisfying

sup
B∈B

ΦΣn([∂B]δ) ≤ C1δ, ∀δ ∈ (0, 1), n ≥ δ−1, (3.7)

where C1 ∈ (0,∞) is a constant.

Theorem 1 extends Theorem 2.1 of Jensen (1993). Indeed, even in the special

case θn ≡ θ0 for all n ≥ 1, Theorem 1 gives an extension of the Edgeworth

expansion result of Jensen (1993) for the MLE, by allowing a larger class of

Borel sets than the class of convex measurable sets in IRk; see Corollary 3.2 of

Bhattacharya and Ranga Rao (1986) (hereafter referred to as [BR]).

Next we consider the likelihood ratio statistic Wn and its Bartlett-corrected

version WBn. Even in the presence of a discrete component, the Edgeworth
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expansions for smooth functions of (
√
n)−1 ∑n

i=1 Z̃1n are themselves smooth and

do not involve the discontinuous see-saw functions that arise in the purely lattice

case (cf., Theorem 23.1, [BR]). This is a consequence of a result of Götze and Hipp

(1978). Although Wn admits an expansion in powers of n−1 in the complete data

case (cf., Chandra and Ghosh (1979), Barndorff-Nielsen and Hall (1988)), the

same is not necessarily true for censored data. By integrating the expansion for

the conditional probability of the continuous part with respect to the expansion

for the discrete part, contributions from the series in powers of n−1/2 enter into

the Edgeworth expansions for Wn in the terms of order O(n−3/2) and higher. As

a result, we restrict attention only to a third order expansion for Wn and WBn

in the censored data case. This is adequate for investigating properties of the

bootstrap approximation that we consider in the next section.

Let A
(12)
n denote the m1 × (k − k1) submatrix of An consisting of the first

m1 rows and the last (k − k1) columns.

Theorem 2. Suppose that (A.1)−(A.5) hold for s = 4, I(θn) is equal to the

identity matrix, and A
(12)
n is of full rank.

(a) Let R̃n = Rn(θn; k − 1) where Rn(·, ·) is as defined in (2.8). Then,

sup
x∈IR

∣∣∣∣∣Pn(R̃n ≤ x) −
∫ x

−∞

[
1 +

2∑

r=1

n−r/2q̃2+r(u; θn)

]
φ(u)du

∣∣∣∣∣ = o(n−1).

(b) There exists a polynomial q̃j(·; θ)’s with coefficients that satisfy the continuity

condition limn→∞ q̃j(x; θn) = qj(x; θ0), such that

sup
0<u<∞

∣∣∣∣Pn(W̃n ≤ u) −
∫ u

0

[
1 +

1

n
q̃1(v; θn)

]
hk−k1(v)dv

∣∣∣∣ = o(n−1),

where W̃n = Wn(θn; k1),Wn(·, ·) is as defined in (2.4), and where hk−k1 is the

(Lebesgue) density of the χ2-distribution with (k− k1) degrees of freedom. If,

in addition, the function B(·) in (2.6) is smooth in a neighborhood of Eθ0Z̄0n,

then

sup
0<u<∞

∣∣∣∣Pn( ˜WBn ≤ u) −
∫ u

0

[
1 +

1

n
q̃2(v; θn)

]
hk−k1(v)dv

∣∣∣∣ = o(n−1),

where ˜WBn = WBn(θn; k1) and WBn(·, ·) is as defined in (2.7).

Note that part (b) only asserts that the Bartlett-corrected version ˜WBn has

an error of approximation O(n−1) by the limiting χ2
k−k1

distribution for the

censored case. It is not clear if q̃2(u; θn) ≡ 0 as in the complete data case, where

the error of chi-squared approximation is known to be O(n−2) (cf., Barndorff-

Nielsen and Hall (1988)).
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4. Results for Bootstrapped Statistics

In this section, we consider higher order accuracy of bootstrap approxima-

tions for the statistics considered in Section 2. Throughout, we suppose that

the parametric bootstrap method is implemented by generating the bootstrap

variables X∗
1 , . . . , X

∗
n from the estimated probability distribution P

θ̂n
, where θ̂n

is the MLE of θ based on X1, . . . , Xn. Let θ̂∗n denote the bootstrap version of the

MLE, obtained by replacing X1, . . . , Xn in the definition of θ̂n by X∗
1 , . . . , X

∗
n.

Also, recall that I(θ) denotes the Fisher information matrix of X1 under θ. The

Studentized version of θ̂n is given by Tn =
√
n(θ̂n−θ0)I(θ̂n)1/2, where I(θ)1/2 is a

k×k-matrix satisfying I(θ)1/2[I(θ)1/2]′ = I(θ), obtained by the Cholesky decom-

position of I(θ). Define the bootstrap version of Tn by T ∗
n =

√
n(θ̂∗n− θ̂n)I(θ̂∗n)1/2.

Similarly, define the bootstrap versions R∗
n, W ∗

n and WB∗
n of Rn, Wn and

WBn, respectively, by replacing X1, . . . , Xn by X∗
1 , . . . , X

∗
n and θ0 by θ̂n in (2.8),

(2.4) and (2.7), respectively. For proving the results, we suppose that for each

θ ∈ Θ0, the random vector Z1(θ) ≡ (∂ν l(X1; θ))1≤|ν|≤s can be transformed to an

m-dimensional vector Z̃1(θ) as in (3.5) for some m0 ×m matrix A(θ) such that

the first m1 components Z̃
(1)
1 (θ) of Z̃1(θ) take values in IRm1 , and the last m2

components Z̃
(2)
1 (θ) of Z̃1(θ) are discrete with minimal lattice ZZm2 . Further, the

distribution of Z̃1(θ) under θ has an absolutely continuous component w.r.t λ

with density f(x, y; θ), x ∈ IRm1 , y ∈ ZZm2 , θ ∈ Θ0. This allows us to verify the

uniform Cramer condition (A.4)(ii) along different realizations of the sequence

{θ̂n} that lie in a set of probability 1 under θ0.

We use modified versions of some of the Conditions (A.1)−(A.6). Recall that

we write Eθ0 = E0 = E for simplicity.

(A.2)′ There exists δ ∈ (0, 1) such that

(i) E|∂ν l(X1, θ0)|s+1 < δ−1 and the cumulants of Z1(θ) under θ up to

order (s+ 1) are continuous over Θ0.

(ii) Eθ{sup‖θ−θ0‖≤δ |∂ν l(X1; θ)‖s} < δ−1 for all θ ∈ Θ0.

(A.3)′ (i) Eθ∂il(X1, θ) = 0 for all θ ∈ Θ0, 1 ≤ i ≤ k.

(ii) I(θ0) of (3.4) is nonsingular and I(θ) = D(θ) for all θ ∈ Θ0.

(A.4)′ (i) Eθ[‖Z̃(1)
1 (θ)‖max{2s+1,m1+1}]+Eθ[‖Z(2)

1 (θ)‖max{2s+1,m1+1,m2+1}] <∞
for all θ ∈ Θ0 and all finite cumulants of Z̃1(θ) under θ are continuous

on Θ0.

(ii) There exists a c ∈ (0,∞) such that f(x, y; θ0) > c for all (x, y) ∈ B0

and the function g(θ;B0) ≡
∫
B0
f(x, y, θ)dλ(x, y) is continuous at

θ = θ0, where B0 is as defined in the statement of Proposition 1.

(A.5)′ (i) A(θ) is continuous at θ = θ0.

(ii) The matrix A
(11)
0 of Condition (A.5) is of full rank.
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Conditions (A.2)′−(A.5)′ are stronger versions of (A.2)−(A.5) and ensure
that (A.2)−(A.5) holds for every sequence {θn} that converges to θ0. Conditions
(A.1) and (A.6) did not involve the sequence {θn} and, therefore, may be used
in this section without further modifications. For notational simplicity, we set
(A.1)′=(A.1), (A.6)′=(A.6). Next, write P∗ for the conditional probability under
θ̂n, given X1, . . . , Xn.

Theorem 3. Suppose (A.1)′−(A.5)′ hold with s = 3.
(a) sup

B∈B
|P∗(T

∗
n ∈ B) − P (Tn ∈ B)| = o(n−1/2) a.s.(P ).

(b) If s ≥ 4, I(θ0) = Ik, and A
(12)
0 is of full rank and Condition (A.6) holds, then

sup
u∈IR

|P∗(R
∗
n ≤ u) − P (Rn ≤ u)| = o(n−1/2) a.s.(P );

sup
0<u<∞

|P∗(W
∗
n ≤ u) − P (Wn ≤ u)| = o(n−1) a.s.(P );

sup
0<u<∞

|P∗(WB
∗
n ≤ u) − P (WBn ≤ u)| = o(n−1) a.s.(P ).

Thus, it follows that the bootstrap improves upon the normal approxima-
tion to the distribution of Tn and is second order correct even in presence of
censoring. If we assume that s ≥ 4, then the o(n−1/2) term is indeed O(n−1)
in Pθ0 -probability. Part (b) shows that similar improvements over the limiting
normal and χ2-approximations are achieved by using bootstrap versions of the
SRLLR statistic Rn and the likelihood ratio statistic Wn, respectively.

5. Numerical Results

The theoretical results in this paper hold under standard regularity condi-
tions. These conditions hold for the smallest extreme value, normal and logistic
distributions. The results are also valid for the corresponding log-location-scale
distributions (i.e., the two-parameter Weibull, lognormal, and loglogistic distri-
butions).

To explore the finite sample performance of the asymptotic results in Sec-
tions 3 and 4, we conducted a simulation study using the two-parameter Weibull
distribution model with Type I censored data. We also incorporated the complete
data case in the simulation study to gain some insight on the effects of censoring
on accuracy of the likelihood-based methods for one- and two-sided CIs. In Sec-
tion 5.1, we describe the two parameter location-scale distribution model and in
Section 5.2, we describe the simulation design and relevant formulas of the CIs.
We present the results of the Weibull simulation study in Section 5.3.

5.1. The two parameter log-location-scale distribution model

We describe the general log-location-scale model that can be used for
Weibull, lognormal, loglogistic and other distributions. For example, the loga-
rithm of a Weibull random variable has a smallest extreme value distribution
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which is a location-scale model. Suppose that the continuous random variable
X = log(T ) has density φLS[(x−µ)/σ]/σ and cdf ΦLS[(x−µ)/σ], where (µ, σ) = θ
is the unknown parameter in an open set Θ ⊂ IR2. Let tc denote the censoring
time and define δ = 1 for a failure and δ = 0 for a censored observation. The ob-

servations are x1 = log(t1), . . . , xn = log(tn). Let xc = log(tc). The log likelihood
of an observation xi is

l(xi; θ) = δi

{
− log(σ) + log

[
φLS

(
xi−µ
σ

)]}
+ (1 − δi) log

[
1−ΦLS

(
xc−µ
σ

)]
.

(5.8)

One might be interested in the location or the scale parameter, or in a partic-

ular quantile or other function of these parameters. We consider estimating a par-

ticular quantile, other functions of the parameters can be obtained analogously.

Let xp be the p quantile of the distribution ΦLS[(x − µ)/σ], and up = Φ−1
LS (p).

Then xp = µ+ upσ, and tp = exp(xp) is the p quantile of the distribution of T .

The CIs (CBs) for tp can be obtained by taking the antilog of transformation of

the CIs (bounds) for xp. The likelihood in (5.8) can be rewritten as

l(xi; (σ, xp)) = δi

{
− log(σ) + log

[
φLS

(
xi − xp

σ
− up

)]}

+(1 − δi) log

[
1 − ΦLS

(
xc − xp

σ
− up

)]
. (5.9)

With l smooth enough and φ having light tails, it can be shown that Con-

ditions (A.1)′−(A.3)′, stated in Section 4 are satisfied. They can be checked

by direct calculations for SEV, normal and logistic distributions, we omit these

details here. Then for |ν| ≤ 4,

Zi =

(
∂l(Xi; (σ, xp))

∂xp
,
∂l(Xi; (σ, xp))

∂σ
,
∂2l(Xi; (σ, xp))

∂x2
p

,
∂2l(Xi; (σ, xp))

∂xp∂σ
,

. . . ,
∂4l(Xi; (σ, xp))

∂σ4

)
,

where Zi is a 14 dimensional vector. Transform Zi into a m0 = m1 + m2 di-

mensional vector Z̃i with linearly independent coordinates for which the first m1

ordinates are continuous and last m2 coordinates are discrete. The form of Z̃i

depends on the distribution of the observations. Note that δi is the only dis-

crete part of Zi, so it is the only discrete part of Z̃i. By Proposition 1, (A.4)′ is

satisfied.

The first two elements of Zi are linearly independent when data come from

the SEV, normal or logistic distribution. The first two elements of the first two

columns of A(11) are (1, 0) and (c1, c2) respectively, where c1, c2 are non-zero
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constants (that could depend on the parameters), hence A(11) has full rank 2.

For the SEV, normal, and logistic distributions, (c1, c2) is just (0, 1). So (A.5)′

holds.

Because the first m1 rows of A(1) give A(11) as described in Section 3.1, and

I(θ0)
−1/2 is a lower triangular positive definite matrix, (A(1)I(θ0)

−1/2)(11) is an

m1-dimensional vector that has rank 1. Thus, (A.6)′ holds. Theorems 1-3 tell

us that the procedure based on the bootstrap log likelihood ratio statistic, or its

corresponding signed square root, can be used to construct two-sided (one-sided)

CIs (bounds) that are second order accurate.

5.2. The simulation design

5.2.1. Confidence intervals

This section briefly describes the different CI procedures that we consider in

our simulation study. For more details, see the given references.

Log LR method (LLR). The distribution of W is approximately χ2
1. Thus an

approximate 100(1 − α)% CI can be calculated from min{W −1(χ2
(1−α,1))} and

max{W−1(χ2
(1−α,1))}, where W−1[·] is the inverse mapping and χ2

(1−α,1) is the

1 − α quantile of χ2 distribution with 1 degree of freedom.

Log LR Bartlett-corrected method (LLRB). Let WB = W/E(W ). In

general one must substitute an estimate for E(W ) computed from the data. For

complicated problems (e.g., those involving censoring) it is necessary to estimate

E(W ) by simulation. Then an approximate 100(1 − α)% CI can be obtained by

using min{WB−1[χ2
(1−α,1)]} and max{WB−1[χ2

(1−α,1)]}.

Parametric transformed bootstrap-t method (PTBT). For estimating the

scale parameter and quantiles of a positive random variable, we take the log

transformation and follow the procedure in Efron and Tibshirani ((1993), Section

12.4 and 12.5).

Parametric bootstrap bias-corrected accelerated method (PBBCA).

We used the procedure given by Efron and Tibshirani ((1993, Section 14.3)) who

showed an easy way to obtain BCa CIs.

Parametric bootstrap signed square root LLR method (PBSRLLR).

Suppose that r
θ̂1

∗

(α)
is the α quantile of the bootstrap distribution of a SRLLR

statistic, R(θ1). Then an approximate 100(1 − α)% CI can be computed from

min{R−1(r
θ̂1

∗

(α/2)
), R−1(r

θ̂1
∗

(1−α/2)
)} and max{R−1(r

θ̂1
∗

(α/2)
), R−1(r

θ̂1
∗

(1−α/2)
)}.
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5.2.2. The simulation set up

If T has a Weibull distribution, thenX = log(T ) has a smallest extreme value

(SEV) distribution with density φSEV (z)/σ and cdf ΦSEV (z), where φSEV (z) =

exp[−z−exp(z)], ΦSEV (z) = 1−exp[− exp(z)] and z = (x−µ)/σ, −∞ < x <∞,

−∞ < µ <∞, σ > 0. Our simulation was designed to study:

• pf : the expected proportion failing by the censoring time;

• E(r) = npf : the expected number of failures before the censoring time.

We used 5,000 Monte Carlo samples for each pf and E(r) combination. The

number of bootstrap replications was B = 10000. The levels of the experimental

factors used were pf = 0.01, 0.1, 0.3, 0.5, 0.9, 1 and E(r) = 3, 5, 7, 10, 15

and 20. For each Monte Carlo sample we obtained the ML estimates of the

scale parameter and the quantiles log(tp), p = 0.01, 0.05, 0.1, 0.3, 0.5, 0.632 and

0.9, where µ ∼= log(t0.632). The one-sided 100(1 − α)% CBs were calculated for

α =0.025 and 0.05. Hence the 90% and 95% two-sided CIs can be obtained by

combining the upper and lower CBs. Without loss of generality, we sampled from

an SEV distribution with µ = 0 and σ = 1.

Because the number of failures before the censoring time tc is random, it is

possible to have as few as r = 0 or 1 failures in the simulation, especially when

E(r) is small. The PBBCA procedure requires at least r = 2 failures before

the censoring time in order to estimate the accelerated constant. Therefore, we

calculated results conditioned on r > 1.

Let 1 − α be the nominal (user-specified) coverage probability (CP) of a

procedure for constructing a CI, and let 1 − α̌ denote the corresponding Monte

Carlo evaluation of the actual coverage probability 1 − α
′

. The standard error

of α̌ is approximately se(1 − α̌) = [α
′

(1 − α
′

)/ns]
1/2, where ns is the number of

Monte Carlo simulation trials. For a 95% CI from 5,000 simulations the standard

error of the CP estimation is [0.05(1 − 0.95)/5000]1/2 = 0.0031 if the procedure

is correct. The Monte Carlo error is approximately ±1%. We say the procedure

or the method for the 95% CI (or CB) is adequate if the Monte Carlo evaluation

of CP is within ±1% error of the nominal CP.

5.3. Simulation results

In this section, we present some of the major findings from our simulation.

Because the difference of the results of the LLR and LLRB methods are not very

significant, we omit the graphs of the LLR method in this paper.

Figure 1 shows the coverage probability for the one-sided approximate 95%

CBs for σ from the seven methods with five different proportion failing values.

Figure 2 is the same type of graph for t0.1, the 0.1 quantile of Weibull distri-

bution. Figure 3 shows CPs of these procedures when pf = 0.5 for different
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quantiles. Figure 4 shows the coverage probability for 90% two-sided CIs of t0.1.

We summarize the simulation results briefly as follows.

• Using a Bartlett correction for the LLR method does not improve the coverage

probability accuracy for one-sided CBs. For one-sided CBs, the LLR and

LLRB methods are adequate when the expected number of failures ≥ 20. For

two-sided CIs, the LLR method is adequate when the expected number of

failures is more than 15 and the LLR method with a Bartlett correction is

very accurate even for an expected number of failures as small as 7.

• The bootstrap-t method is an accurate procedure for the scale parameter.

When the quantity of interest is tp where p is close to the proportion failing, the

one-sided lower CB procedure is anti-conservative. The bootstrap-t method

gives accurate coverage probabilities for all functions of the parameters only

when the number of failures exceeds 20. This is because the distribution of t̂p
is approximately discrete.

• The BCa method for both one-sided CBs and two-sided CIs is adequate when

the number of failures exceeds 20.

• The PBSRLLR method for the one-sided CBs and two-sided CIs is adequate

except when the number of failures is less than 15 and the quantity of interest

is the p quantile where p is close to the proportion failing.

Figure 1. Coverage probability versus expected number of failures plot for
one-sided approximate 95% CI procedures for parameter σ. The numbers (1,

2, 3, 4, 5) in the lines of each plot correspond to pf ’s (0.01, 0.1, 0.3, 0.5, 1),

respectively. Dotted and solid lines correspond to upper and lower bounds,

respectively.
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Figure 2. Coverage probability versus expected number of failures plot for
one-sided approximate 95% CI procedures for t0.1. The numbers (1, 2, 3, 4, 5)

in the lines of each plot correspond to pf ’s (0.01, 0.1, 0.3, 0.5, 1), respectively.

Dotted and solid lines correspond to upper and lower bounds, respectively.

Figure 3. Coverage probability versus expected number of failures plot for

one-sided approximate 95% CI procedures for pf = 0.5. The numbers (1, 2, 3,

4, 5) in the lines of each plot correspond to tp’s, p = (0.01, 0.1, 0.5 ,0.632, 9),
respectively. Dotted and solid lines correspond to upper and lower bounds,

respectively.
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Figure 4. Coverage probability versus expected number of failures plot for

two-sided approximate 90% CI procedures for t0.1. The numbers (1, 2, 3, 4, 5)

in the lines of each plot correspond to pf ’s (0.01, 0.1, 0.3, 0.5, 1), respectively.

Dotted and solid lines correspond to upper and lower bounds, respectively.

For Type I censored data, we can draw the following conclusions. If our

interest is in constructing one-sided CBs, the PBSRLLR method provides better

coverage probability with a small expected number of failures (like 10). For

two-sided CIs, the PBSRLLR and LLRB methods provide accurate procedures.

The LLRB method gives more accurate results even when the expected number of

failures is as small as 7. The two-sided CI from the PBSRLLR is more symmetric

than that from other methods in the sense that the confidence level of one side

of the interval is close to the confidence level of the other side of the interval.

6. Proofs

Let C,C1, C2, . . . denote generic positive constants that do not depend on n.

Unless otherwise mentioned, limits in the order symbols O(·) and o(·) are taken

by letting n→ ∞.

Proof of Proposition 1. Define the measures µn, n ∈ ZZ+ on the Borel σ-field

B(IRm) on IRm by µn(A) =
∫
A∩B0

fndλ, A ∈ B(IRm). Then µn, n ≥ 0, are

finite measures and by (ii), µn(IRm) → µ0(IR
m). Hence, by an extended version

of Scheffe’s Theorem (cf., Billingsley (1995, p.215)),

sup
{∣∣∣

∫

B0

ei(tx+vy)fn(x, y)dλ(x, y)−
∫

B0

ei(tx+vy)f0(x, y)dλ(x, y)
∣∣∣ : (t, v)∈IRm

}
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≤
∫

B0

|fn − f0|dλ→ 0 as n→ ∞. (6.1)

Fix ε > 0, write x0 = (x01, . . . , x0m1) and m = m1 + m2. Let ϕ1(·; a) be the
characteristic function of the UNIFORM(−a, a) distribution, a ∈ (0,∞), and
let ϕ2(·) be that of the discrete uniform distribution over the integers [l1, l1 +
1, . . . , l2]. Then, by the property of lattice random variables (cf., Feller (1968,
Chap. 15)), uniformly in (t, v) ∈ C(ε),

∣∣∣
∫

B0

ei(tx+vy)f0(x, y)dλ(x, y)
∣∣∣

≤ c
∣∣∣

∑

y∈[l1,l2]m2

[ ∫

O
eitxdx

]
eivy

∣∣∣ +

∫

B0

[f0(x, y) − c]dλ(x, y)

= c
∣∣∣
∫

O
eit(x−x0)dx

∣∣∣ ·
m2∏

j=1

∣∣∣
l2∑

k=l1

eivjk
∣∣∣ +

∫

B0

f0(x, y)dλ(x, y) − cλ(B0)

= cλ(B0)
{ m1∏

j=1

∣∣∣ϕ1(tj ; aj)
∣∣∣
}{ m2∏

j=1

∣∣∣ϕ2(vj)
∣∣∣
}

+ µ0(IR
m) − cλ(B0)

< µ0(IR
m) − ε1 (6.2)

for some constant ε1 > 0, depending on ε, c, λ(B0). This proves the Proposition
for n = 0. Now, the case n = 0 together with (6.1) gives the desired bound on
the characteristic functions of (Xn, Yn) for all large n.

Lemma 1. Let (Xni, Yni) ∈ IRp+q, i = 1, . . . , n, n ≥ 1 be a triangular array of
row i.i.d. random vectors such that for each n ≥ 1, Yn1 ∈ IRq is a lattice variable
with minimal lattice ZZq, EXn1 = 0, EYn1 = 0 and Cov(Xn1, Yn1) = Ip+q.
Suppose that there exists a δ ∈ (0, 1) and an integer s ≥ 3 such that for all
n > δ−1,

E‖Xn1‖α(s) ≤ δ−1, E‖Yn1‖β(s) ≤ δ−1, (6.3)

for α(s) = max{2s + 1, p + 1} and β(s) = max{α(s), q + 1}, and that for any
ε > 0, there exists a δ ∈ (0, 1) such that for all n ≥ δ−1,

sup{|E exp(i(tXn1 + vYn1))| : (t, v) ∈ C(ε)} ≤ 1 − δ. (6.4)

Let g : IRp+q → IR be (s− 1)-times continuously differentiable in a neighborhood
of 0 ∈ IRp+q with g(0) = 0 and

∑p
j=1[∂jg(0)]

2 = 1. Let Sn = ((
√
n)−1 ∑n

i=1Xni,

(
√
n)−1 ∑n

i=1 Yni), and let χνn be the νth cumulant of (Xn1, Yn1), ν ∈ ZZp+q
+ .

Then, there exist functions pj(·; ·) such that

sup
u∈IR

∣∣∣∣∣P
(√

ng

(
Sn√
n

)
≤u

)
−

∫ u

−∞


1+

s−2∑

j=1

n−j/2pj(u; {χνn : |ν|≤j+2})

φ(u)du

∣∣∣∣∣

= O(n−(s−1)/2). (6.5)
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Proof. Here we outline a proof of Lemma 1 using some extensions of the ar-

guments developed by Jensen (1989). Without loss of generality, suppose that

(6.3) and (6.4) of Lemma 1 hold for all n ≥ 1. Let S
(1)
n = (

√
n)−1 ∑n

i=1Xni

and S
(2)
n = (

√
n)−1 ∑n

i=1 Yni. By Bartlett’s (1938) formula for the conditional

characteristic function,

E[exp(itS(1)
n )|S(2)

n = y] = (2π)−q
∫

[−π
√

n,π
√

n ]q

[
fn

n

(
t√
n
,
v√
n

)]
e−ivydv/an,

(6.6)

where an = nq/2P (S
(2)
n = y) and fn(t, v) ≡ E exp(itXn1+ivYn1), t ∈ IRp, v ∈ IRq.

Let ψn(t, v) be the Fourier transform of the Edgeworth expansion for (S
(1)
n , S

(2)
n )

given by

ψn(t, v) = e−(‖t‖2+‖v‖2)/2
[
1 +

α(s)−3∑

j=1

n−j/2P̃j(it, iv; {χνn : |ν| ≤ j + 2})
]
, (6.7)

where the functions P̃j(it, iv; {χνn : |ν| ≤ j + 2}), j ≥ 1, are defined by identity

(7.2) of [BR] (with χν ’s there replaced by χνn’s). Also, let Ψ̂n(t|y) be defined by

Ψ̂n(t|y) = (2π)−q
∫
ψn(t, v)e−ivydv/bn, (6.8)

where bn ≡ (2π)−q
∫
ψn(0, v)e−ivydu. By (6.3) and arguments in (2.9)−(2.12)

of Jensen (1989), it follows that, uniformly in ‖y‖2 ≤ s log n, |an − bn| =

O(n−(α(s)−2)/2) and an ∧ bn ≥ C1n
−s/2 for some C1 ∈ (0,∞), so that

|an − bn|a−1
n = O(n−(α(s)−2−s)/2) = O(n−(s−1)/2). (6.9)

Arguments leading to Theorem 9.9 of [BR] yield
∣∣∣∣∂

ν(fn
n (

t√
n
,
v√
n

) − ψn(t, v))

∣∣∣∣

≤ C2(δ)n
−(α(s)−2)/2

[
1 + ‖t‖3(α(s)−2)+|ν|

]
e−(‖t‖2+‖u‖2)/4 (6.10)

for |ν| ≤ α(s), and for ‖t‖+‖v‖ ≤ C3(δ)
√
n. Now using the smoothing inequality

of Corollary 11.2 of [BR], and arguments in the proof of Lemma 1 of Jensen

(1989), one gets

sup
B∈B

∣∣∣P (S(1)
n ∈ B|S(2)

n = y) − Ψn(B|y)
∣∣∣ = O(n−(s−1)/2) (6.11)

uniformly over
√
ny ∈ ZZm2 with ‖y‖2 ≤ s log n, where Ψ(·|y) is the signed

measure corresponding to the Fourier transform Ψ̂(·|y) of (6.8), and B is any

given collection of Borel subsets of IRp satisfying ‘Φ([∂B]ε) = O(ε) as ε→ 0’.
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Next, using the transformation technique of Bhattacharya and Ghosh (1978)

(hereafter referred to as [BG]), one can easily show that uniformly over ‖y‖2 ≤
s log n,

sup
u0∈IR

∣∣∣P
(√

ng
( Sn√

n

)
≤ u0|S(2)

n = y
)

−
∫ u0

−∞

[
1 +

s−2∑

j=1

n−1/2p̌jn(u; y)
]
φσn(u− dny)du

∣∣∣ = O(n−(s−1)/2) (6.12)

for some polynomials p̌jn(·; y) whose coefficients are rational functions of {χνn :

|ν| ≤ j + 2} and {∂νg(0; y/
√
n) : |ν| ≤ s − 1}. Here σ2

n =
∑p

j=1[∂jg(0, y/
√
n)]2

and dn is the 1×q vector with ith component ∂p+ig(0, y/
√
n), i = 1, . . . , q. Next,

note that P (
√
ng(Sn/

√
n) ≤ u0) = E{P (

√
ng(Sn/

√
n) ≤ u0|S(2)

n )} = E[
∫ u0
−∞{1+

∑s−2
j=1 n

−j/2p̌jn(u;S
(2)
n )}φσn(u−dnS

(2)
n )du]+O(P (‖S(2)

n ‖2 > s log n)+n−(s−1)/2).

Hence, using the arguments in Götze and Hipp (1978) and an analog of (6.10)

with t = 0, |ν| ≤ β(s), one gets (6.5).

Proof of Theorem 1. By using a Taylor series expansion of the left side of

(2.3) around θn up to order s, one can express (2.3) as

0 = ∂j l̄n(θ) = ∂j l̄n(θn) +
s−1∑

|ν|=1

[∂ν∂j l̄n(θn)](θ − θn)ν/ν! +Rnj , (6.13)

where |Rnj(θ)| ≤ C|θ− θn|s · sup{|∂ν l̄n(t)| : ‖t− θn‖ ≤ ‖θ− θn‖, |ν| = s+1}, 1 ≤
j ≤ k.

Using (A.2), (A.3), and Corollary 4.2 of Fuk and Nagaev (1971), we get

Pn(|∂ν l̄n(θn) − En∂
ν l̄n(θn)| > Cn−1/2(log n)1/2) = O(n−(s−2)/2(log n)−s/2), 1 ≤

|ν|≤s−1, and Pn
(
sup

{
|∂ν l̄n(θ)| : ‖θ−θn‖ ≤ a1, |ν| = s+1

}
> C

)
= O(n−(s−2)/2

(log n)−s/2). Hence, on a set An with Pn(Ac
n) = O(n−(s−2)/2(log n)−s/2), we may

rewrite (6.13) as

(θ − θn) = gn(θ − θn) (6.14)

for some continuous function gn that satisfies ‖gn(x)‖ ≤ Cn−1/2(log n)1/2 for all

‖x‖ ≤ Cn−1/2(log n)1/2. Hence, part (a) follows from Brouwer’s Fixed Point

Theorem, as in the proof of Theorem 3 of [BG].

To prove part (b) note that, using the arguments in the proof of Theorem 3

of [BG], we can express θ̂n and θn as

θ̂n = g(Z̄†
n) and θn = g(EnZ̄n) (6.15)

for some smooth function g : IRm → IRk where Z
†(ν)
in = Z

(ν)
in for |ν| ≥ 2 and

Z
†(ν)
in = Z

(ν)
in + Rn(θ̂n), |ν| = 1, and Rn(θ̂n) is the vector of Rnj(θ̂n), 1 ≤ j ≤ k.
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Now using the reparametrization of the Zin’s in terms of Z̃in’s, and using Lemma
1 above in place of Theorem 1 of Jensen (1989), one can complete the proof of
part (b). We omit the routine details.

Proof of Theorem 2. Following the arguments on pp.8-9 of Jensen (1993), we
can express R̃n and W̃n as R̃n = Ṽ1n and W̃n = Ṽ 2

2n where Ṽ1n and Ṽ2n admit
stochastic expansions of the form, for m = 1, 2,

Ṽmn =
k∑

i=k1+1

ami

[ 1√
n

n∑

j=1

Z̃
(ei)
in

]
+

2∑

r=1

n−r/2p̌rm

( 1√
n

n∑

j=1

Z̃in; θn

)
+Řmn, (6.16)

for some constants ami = amin ∈ IR \ {0} and polynomials p̌rm(·; ·) (with k1 =
k − 1 when m = 1). Here, the remainder term Řmn satisfies the inequality
Pn(|Řmn| > Cn−1(log n)−2) = O(n−1(log n)−2) for m = 1, 2. Now applying
Lemma 1 above and the transformation techniques of [BG], one can establish
(3.8) and (3.9) of Theorem 2. The proof of (3.10) is similar, by noting that the
effect of the correction factor 1/(1 +B(·)) shows up only in the term of order
O(n−1) in the expansion for W̃n.

Proof of Theorem 3. By part (a) of Theorem 1, under (A.4)(i) with s = 3,
E0‖Z10‖2s+1 ≤ ‖A0‖2s+1E0‖Z̃10‖2s+1 <∞, so that

P0(‖θ̂n − θ0‖ > a1[(log n)/n]1/2) = o(n−5/2). (6.17)

Hence, by the Borel-Cantelli lemma, θ̂n − θ0 = O(n−1/2(log n)1/2) a.s. (P0).
Let D0 be the set of P0-probability 1 where θ̂n − θ0 = O(n−1/2(log n)1/2) as
n → ∞. Then, by the continuity of ∂ν l(x; θ) in θ over Θ, 1 ≤ |ν| ≤ s, and
the continuity of the second moments, f(x, y; θ̂n) → f(x, y; θ0) as n→ ∞ for all
(x, y) ∈ IRm1 ×ZZm2 . Hence, the conditions of Proposition 1 hold, which in turn
implies (A.4)(ii) along every realization of {θ̂n} on D0. Now, using the expansion
for

√
n(θ̂n − θ0) from part (b) of Theorem 1 and the transformation technique of

[BG], one can show

sup
B∈B

∣∣∣∣P (T ∗
n ∈ B)−

∫

B

[
1+q1(x; θ̂n)n−1/2

]
φ(x)dx

∣∣∣∣ = o(n−1/2) a.s.(P0), (6.18)

sup
B∈B

∣∣∣∣P (Tn ∈ B) −
∫

B

[
1 + q1(x, θ0)n

−1/2
]
φ(x)dx

∣∣∣∣ = o(n−1/2), (6.19)

for some polynomial q1(·) ≡ q1(·; θ) with coefficients that are smooth functions
of θ. Part (a) of the theorem follows from this. Part (b) follows by similar
arguments, by exploiting the continuity of the cumulants of Z̃1(θ) in θ and the
reparametrization argument in Remark 2.5 of Jensen (1993). We omit the details.
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