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Abstract: Cluster analysis has become a very popular tool for the exploration of

high dimensional data. Dozens of algorithms have been proposed, each with its

own merits and shortcomings. It is not known to what extent various methods give

the same results, nor is it even clear how to measure how similar is the output of

two distinct algorithms. Here we propose a statistic that is designed to measure

the “correlation” between two clustering methods when applied to a particular

data set. In contrast to the Rank index, the most common statistic useed for this

purpose, the method is very fast. We provide an algorithm that approximates the

statistic and demonstrate two of its possible uses. Finally, we use this statistic to

understand the clustering in a data set in the context that motivated this work:

analysis of a gene expression experiment.

Key words and phrases: Cluster analysis, Cohen’s kappa, Metropolis algorithm,

microarray, traveling salesman problem.

1. Introduction

Cluster analysis (also known as unsupervised learning) is an exploratory
technique that aims to uncover groups of units that have similar values on a set
of variables. One of the most basic problems when attempting a cluster analy-
sis is how to define a cluster. There are scores of different algorithms available,
and these differ in the manner in which they define a cluster (in addition to the
technical details of how a solution is actually found). The most useful way to
think about different clustering algorithms is in terms of the shape of the im-
plied clusters: some algorithms look for spherical clusters, while others look for
ellipsoidal clusters (see, e.g., Banfield and Raftery (1993) or Fraley and Raftery
(2002) for a recent review). Unfortunately, it is often very hard to make an argu-
ment for a particular algorithm a priori since it is difficult to defend a choice for
cluster shapes, especially since cluster analysis is typically used in an exploratory
context.

An alternative to trying to choose the “right” clustering method is to apply
many of the available algorithms to a data set, then examine to what extent
these different methods concur. Moreover, given the interpretation of algorithms
in terms of the shape of the implied clusters, such comparisons can be enlighten-
ing. Finally, if many methods largely agree except one, the researcher will know
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that that method is likely to be an “outlier” and should treat the results of such
a method with caution. Here we propose a method for comparing a set of cluster
algorithms as applied to a specific data set, our goal is to produce a matrix anal-
ogous to a correlation matrix that displays the similarities between the methods.
While one could apply a cluster algorithm to the output of the cluster algorithms
(and thereby cluster the cluster analyses), we do not favor this since one still has
to determine what criterion should be used in the second clustering.

The feature common to all clustering algorithms that we exploit for the
purposes of our comparison is that, if a number of clusters is specified, then the
methods partition the units into clusters. The full comparison between a set
of algorithms is made by allowing the number of clusters to vary, thus the user
need only specify a range for the number of clusters, not an actual value (since
there are only a finite number of clusters possible, one can consider every possible
number of clusters). To gain insight into the relations between the methods, one
can either examine similarity for every given number of clusters or average over
all numbers of clusters. As we will see, for the examples we have considered
thus far, the extent of agreement persists over a wide range of the number of
clusters, hence comparing algorithms for just a few choices of the number of
clusters appears adequate.

There are a number of methods available for comparing partitions, but these
are usually computationally intensive. The most popular method is Hubert and
Arabie’s modified Rank index (Hubert and Arabie (1985)). This method deter-
mines how often two partitions classify two units as being in the same partition.
Since one must consider all pairs in a data set, if there are n units in the data set,
then

(n
2

)

comparisons must be made, thus the method is an O(n2) computation.
Hence, for large n, computing the Rank index can be time consuming, especially
if we compare many clustering methods and allow the number of clusters to vary
over a wide range. The method we present requires only the solution of an O(n)
problem.

For comparing specific types of cluster analyses, other methods are avail-
able. For example, if one restricts attention to hierarchical clustering algorithms,
then every method produces a dendrogram, hence we can compare the cluster-
ing methods by the use of metrics for dendrograms. The literature on metrics
for dendrograms has largely been concerned with unrooted trees since compar-
ing phylogenetic trees is the primary application of these methods, although one
could adapt those techniques to rooted trees (see, e.g., Robinson (1971), Water-
man and Smith (1978), Critchlow, Pearl and Qian (1996)). The advantage of the
method proposed here, as opposed to methods based on metrics for dendrograms,
is our method’s ability to compare non-hierarchical methods. This is especially
important for the application to large data sets (e.g., microarrays) due to the use
of self-organizing maps (the default clustering method used by many in microar-
ray analysis) and the K-means algorithm (which is very useful for clustering large
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data sets). In addition, our method also has the practical advantage of being rel-
atively fast compared to these methods: the computational complexity for our
method depends on the number of clusters, whereas the computational complex-
ity for dendrogram metrics depends on the number of items clustered (DasGupta
et al. (1997)). This observation is especially important since our method, like
dendrogram metrics, requires the solution of an NP-complete problem.

While comparing different clustering outputs may appear to be a simple
problem, there are complications awaiting the unwary. To get a better grasp
on the nature of the problem, consider Figure 1. There we see the results of
two cluster analyses: the points reflect measurements in two dimensions and the
numerals in the figure represent the “cluster number” associated with each unit.
By cluster number we mean the symbol that the algorithm associates with a
group, these symbols partition the units. If we define the equivalence relation
“being in the same cluster”, then two cluster algorithms could be equivalent in
terms of this relation, yet assign individual points different cluster numbers due
to the arbitrary way in which cluster numbers are assigned by the algorithm.
Figure 1 shows a typical example: while the two methods largely agree, there
is no connection between the cluster numbers used by the two methods. With
only several clusters in two or three dimensions, one can graphically compare
the results or examine tables of the cluster numbers to understand the extent
of agreement, but if we apply 20 different methods to cluster 12,000 different
units with measurements in a 10-dimensional space into 30 clusters, comparing
the methods in such simple ways becomes unwieldy. One could use Pearson’s χ2

statistic as a measure of agreement here since it is invariant with respect to the
ordering of the categories, but this statistic does not have a simple interpretation
as a measure of agreement (see Krieger and Green (1999) for more on the use of
Pearson’s χ2 in this fashion).
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Figure 1. Example of two different cluster algorithms producing different
partitions of the units based on measurements in two dimensions.
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2. Measuring Agreement

For a fixed number of clusters, any clustering algorithm assigns every unit

to a cluster. If we are to compare two methods, then we must measure to what

extent the methods agree with respect to cluster assignment for each unit. This

problem is very similar to the problem of measuring inter-rater agreement, a

problem that has received much attention in the statistical literature. The im-

portant difference between the problems is that the categories to which raters

assign patients are fixed and meaningful, whereas the categories used by clus-

tering algorithms have no meaning except to define a partition among the units.

Setting this difference aside for now, we note that since there is no ordering to

the cluster groups, the standard measure of inter-rater agreement is Cohen’s κ

statistic (Cohen (1960)). Motivated by this practice, we will measure the simi-

larity between two methods with this statistic. Since we can interpret κ as an

intraclass correlation (see Fleiss (1975)), our basis for comparing cluster output

has a familiar interpretation. Since cluster algorithms only define equivalence

relations, we need to extend κ to this situation.

2.1. Cohen’s κ coefficient

Cohen’s κ measures pairwise agreement among a set of raters making cate-

gorical judgments, correcting for expected chance agreement. A general expres-

sion for κ is

κ =
Po − Pe

1 − Pe
,

where Po is the observed probability of agreement between the two raters and Pe

is the expected probability of agreement under the assumption of independent

rating by the two raters. As is obvious from the definition, κ must be less than

or equal to 1 and its lower bound depends on Pe, but will be less than zero. If

the raters devise the ratings independently of one another, then κ has a mean

value of zero (conditional on the marginal distributions of the raters).

While many other measures of agreement have been proposed, the important

distinction between these measures concerns accounting for expected agreement

(see Fleiss (1975)). Accounting for expected agreement has certain implications

in the context of comparing cluster analyses. When outliers are present, cluster

algorithms often make these points clusters with a single observation. When this

happens we can find κ ≈ 0 since Po ≈ Pe. For example, suppose we compare

two methods for clustering n + 2 points and suppose we allow two clusters.

Furthermore, suppose both methods agree except they each find a different outlier

and make the outlier a cluster. Then Po = n/(n + 2) and Pe = ((n + 1)/(n +

2))2 + (n + 2)−2, so Po −Pe = −2(n + 2)−2 and κ = −(n + 1)−1. Thus, for large

n, κ ≈ 0 (Section 4 provides details on this calculation). In contrast, a method
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that did not account for chance agreement would find the methods agree very

well (since the methods do agree for n/(n+2) of the cases). This is a strength of

κ, since detecting differences in what is considered an outlier provides a sensitive

tool for discriminating between methods.

3. The κmax statistic

We propose to consider all possible mappings of cluster numbers from one

method to those of another, and to use the mapping that makes κ as large as

possible. We choose the mapping that maximizes κ (as opposed to the average κ

for instance) because we want to conclude that cluster algorithms are in perfect

agreement if they define the same equivalence relation. We refer to this statistic

as κmax.

Since we are comparing two methods that use the same number of clusters,

the mapping of cluster numbers from one method to those of another is a permu-

tation. Hence we propose to measure agreement between cluster algorithms by

maximizing κ over the set of permuted cluster numbers, where we only permute

the cluster numbers from one method. We present the results for comparing

several methods in a κmax matrix, a symmetric matrix with 1 along the diagonal

and off-diagonal elements given by the κmax between each of the two methods.

If two methods under comparison use different numbers of clusters (or, if

one wants to compare the clusters obtained using the same method but different

numbers of clusters), then one can still use κ. The idea here is to suppose that

the clustering with the fewer number of clusters actually has as many clusters as

the other method, but assigns no units to these clusters.

4. Calculating the κmax statistic

When the number of clusters is small, we can quickly find the κmax statistic

by enumeration. As a simple example, consider Figure 1 again. The first step is

to find the contingency table that compares the two methods using the cluster

numbers assigned by the algorithm. Here this table is

1 2 3

1 2 0 3

2 5 0 0
3 1 4 0

.

To find κmax, consider permuting the columns of this table. The optimal permu-

tation will in general depend on our optimality criterion unless the methods are

in perfect agreement, but here it is easy to see that the optimal permutation is

given by
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3 1 2

1 3 2 0
2 0 5 0

3 0 1 4

.

For this example we find Po = 3/15+5/15+4/15 = 12/15 and Pe = (1/3)(3/15)+

(1/3)(8/15) + (1/3)(4/15) = 1/3, hence κmax = 0.7. This indicates that there is

fair agreement, as evident from the plot. Moreover, by simulating this statistic

(conditional on the table margins) under the assumption that the clusters are

formed independently by the two methods, we find the mean of this statistic is

0.2 and we would observe such a large value for the statistic less than 1 in 1,000

times.

As the number of clusters increases, we are maximizing over a set that grows

exponentially in size, hence enumeration becomes impractical. In most appli-

cations the number of clusters is not very large, thus enumeration is usually

adequate. Despite this, we would like a method that works for any number of

clusters. Optimizing a function over a set of permutations is a common problem

in numerical analysis: it is equivalent to the famous traveling salesman problem.

While no explicit solution exists (short of enumeration), good solutions can of-

ten be found by use of simulated annealing (see Press et al. (1992) for a good

treatment along with code for implementation). An S-plus function that finds

the κmax matrix for the difficult case of many clusters (more than five) can be

obtained at http://www.biostat.umn.edu/˜ cavanr.

4.1. The null distribution of the κmax statistic

While the statistic proposed here is primarily a tool for exploratory data

analysis, proper interpretation requires understanding of the distribution of this

statistic when the clustering methods assign points to clusters independently

of one another. Since the distribution of κmax will depend on the margins of

the table that compares outputs, in practice the most straightforward way to

determine the null distribution is to simulate it conditional on the table margins,

as in the example from the previous section.

For large sample sizes, κmax is approximately zero by the Law of Large

Numbers under the assumption of independent cluster assignment. The rate at

which the statistic approaches zero can be computed for the case of two clusters,

and illustrated for other cases with simulations. Simulations suggest that κmax

goes to zero at the same rate as in the case of two clusters.

First, suppose there are two clusters and write the table as
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1 2

1 x1 x2 n11

2 x3 x4 n12

n21 n22 n

.

Then κmax is the maximum of (x2/n + x3/n − n11n22/n
2 − n12n21/n

2)/(1 −
n11n22/n

2−n12n21/n
2) and (x1/n+x4/n−n21n11/n

2−n22n12/n
2)/(1−n21n11/n

2

−n22n12/n
2). To simplify computations, suppose nij = n/2 for i, j = 1, 2. Then

some algebra indicates that Eκmax = 4/nE[max{n/2 − X,X}] − 1, where X ∼
Bin(n/2, 1/2). If n is divisible by 4, then for k = n/4+1, . . . , n/2, P{max{n/2−
X,X} = k} = P{X = k} + P{X = n/2 − k} = 2−n/2+1

(n/2
k

)

, and for k = n/4,

P{max{n/2 − X,X} = k} = P{X = n/4} = 2−n/2
(n/2
n/4

)

. Then

E[max{n/2 − X,X}] =
n

4
2−

n

2

(

n
2
n
4

)

+

n

2
∑

k=n

4
+1

k2−
n

2
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(

n
2

k

)

= 2−
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−2n

(
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2
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4

)
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n

2
∑

k=n

4
+1

k

(

n
2

k

)

=
n

2
2

n

2
−2.

Therefore Eκmax = 2−n/2
(n/2
n/4

)

, and for large n, Eκmax ≈ (2
√

nπ)−1.

It is difficult to extend the above arguments to the case where there are

more than two clusters, hence we conducted some simulations to investigate the

behavior of the κmax statistic. We suppose the marginal totals are all equal and

cluster assignments are made independently by two methods. Figure 2 shows

the expected values for 5, 10 and 15 clusters (100 data sets were simulated for

each sample size and number of clusters). The expected value goes to zero fairly

rapidly. In fact, if we plot the inverse of the square of the mean values from these

simulations against the sample size we see that the expected value of κmax seems

to be O(n−1/2), as in the two cluster case above. Indeed, if we regress the inverse

of the square of the mean values from the simulations on the sample size for the

numbers of clusters considered here, the resulting R2 values are 0.9973, 0.9998

and 0.9989. We speculate that the number of clusters enters the expectation as

an exponent. Evidence in favor of this is provided by noting that a regression of

the logarithm of the mean values from the simulations on the logarithm of the
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sample size and the number of clusters yields an R2 = 0.993 with all variables

being significant and no evidence for interactions.
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Figure 2. The expected value of the κmax statistic when the cluster assign-
ments are independent as a function of the sample size.

5. Some Applications of κmax

5.1. Sensitivity of K-means to the initial values

One application is to the K-means algorithm for cluster analysis. It is com-

mon to use several different starting points when one uses K-means clustering due

to sensitivity of the algorithm to initial values (see, e.g., Johnson and Wichern

(1992)), but there is little guidance as to how one should assess this sensitivity.

The κmax statistic provides a reasonable method for measuring the repro-

ducibility of the clustering. To demonstrate, we simulated 1,000 observations

from a ten component 8-variate normal mixture model, randomly selected six

sets of starting points distributed within the convex hull of the data, then used

the K-means algorithm (starting from each set of starting points) to cluster the

observations. We chose new starting points and repeated the procedure for vari-

ous numbers of clusters. We used S-plus to perform these computations, and the

K-means algorithm converged (see Hartigan and Wong (1979)) in all cases.

Figure 3 displays the κmax matrix using a gray scale image plot to represent

the values in the matrix (there is one row and column for each set of starting

points). We see that the initial values lead to solutions that largely agree for

any number of clusters, but when we use the correct number of clusters (ten)

the mean κmax reaches its maximal value (0.89, with next largest 0.85) and the

standard deviation of the κmax is at its smallest (0.009, with next smallest 0.013).

This suggests that use of the incorrect number of clusters leads to sensitivity of
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the solution with respect to the starting values, which is not surprising. Finally,

note that even when we specify the correct number of clusters there appears to be

two different solutions even though the algorithm converges in all cases. Perhaps

the κmax matrix could be used to devise more stringent convergence criteria for

the K-means algorithm, analogous to the use of multiple chains in Markov chain

Monte Carlo simulation.

PSfrag replacements

method 1
method 2

0

5

10

-5
-10

1

2

3

Figure 3. The κmax matrix comparing six different starting points using the

K-means algorithm for five different numbers of clusters.

5.2. Comparing cluster algorithms

Another application of the κmax statistic is in assessing the relative merits

of a variety of clustering algorithms under varying circumstances. By simulating

data sets and calculating the κmax statistic, one has a method of gauging a new

cluster algorithm against existing algorithms.

As an illustration, we generated data sets with 100 observations using one

of four, 6-component 8-variate normal mixture models. We first simulated a set

of weights for the mixture components (these were uniform), then we simulated

the centers for each component (using six independent N8(0, I) deviates or six

independent N8(0, 16I) deviates, where I is the 8 by 8 identity matrix). We

used two correlation matrices (one with independence and one with two groups

of variables that are highly correlated within groups but basically independent
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across groups) to obtain distinct covariance matrices (all standard deviations

are 1).

Given a data set, we applied one of six cluster algorithms to the data (all are

available in S-plus): hierarchical clustering (with complete linkage and simple

linkage), model based clustering (with the trace criterion, the determinant crite-

rion and with no constraints), and K-means clustering. For each set of six cluster

outputs and the true cluster identities we then calculated the κmax matrix. We

repeated the entire process 100 times and found the mean κmax matrix.
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Figure 4. The κmax matrix comparing six different methods and the true

cluster membership (last row and column) from a 2 × 2 factorial simulation
experiment. The top row has clusters that are closer together than in the

bottom row. The left column has spherically symmetric clusters, while the
right row has ellipsoidal clusters.

Figure 4 displays the mean κmax matrix for each of the four scenarios con-

sidered here. The first six rows and columns represent the methods (in the order

listed above) and the last row and column represents the true cluster member-

ship. As expected, when the standard deviation of the centers is larger (shown

in the bottom row), all methods do better except model based clustering with

no constraints, which appeared to never do well. In addition, K-means differed

from the other methods and did not perform as well. When there is correlation

within clusters, the determinant criterion becomes more similar to the group of

three methods that seek spherically symmetric clusters (i.e., complete linkage,
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the trace criterion and K-means), but it outperforms all of the other methods.

This finding is expected since we know that the determinant criterion is supposed

to do well in this context (see Banfield and Raftery (1993)).

In summary, we find that simple methods seeking hyperspherical clusters,

such as Ward’s method (which uses the trace criterion) and K-means, typically

do quite well (and usually agree with one another), while methods that seek to

find clusters of arbitrary size and shape (e.g., the model based, unconstrained

method) do poorly. Moreover, these conclusions seem to hold even when there

is substantial correlation among measurements within a mixture component, de-

spite the fact that these more general methods allow for such correlations and

therefore should do better.

6. Application to a cDNA Microarray Experiment

6.1. Cluster analysis in microarray experiments

DNA microarrays allow comprehensive surveys of gene expression. While

it is customary to think of the relationships between transcript levels across

conditions or time as being related thorough some high dimensional system of

biochemical equations, it is not clear that estimation of the parameters of such

systems is possible using microarrays because of the many mechanisms of post-

transcriptional regulation, in addition to limitations of the technology. Despite

these obstacles, a system of equations would have implications for more global

properties of transcript expression. For instance, although we probably cannot

accurately estimate equilibrium constants for the biochemical reactions implied

by such a system from microarray data, a system may imply that certain groups

of transcripts will tend to be induced or repressed as a whole. While even the

specification of such systems is largely impossible for most cellular systems, we

can start to empirically construct the broad outlines of these systems by examin-

ing which transcripts have similar gene expression across a variety of conditions.

Based on this perspective, researchers have explored the use of many different

clustering methods for microarray analysis. In the application to microarrays,

units are usually transcripts which are grouped on the basis of their gene ex-

pression across various circumstances. Eisen et al. (1998) were the first to apply

cluster analysis to microarray data. They used the pair-wise average-linkage cri-

terion and implemented the method with an agglomerative algorithm. As an

alternative, the divisive, hierarchical clustering method was applied to gene ex-

pression data by Alon et al. (1999). Additionally, to partition expression data

into groups, self-organizing maps (Toronen et al. (1999)), K-means clustering

and the quality cluster algorithm of Heyer et al. (1999) have been explored. The

notion of two-dimensional clustering was used by Alon et al. (1999) and Perou

et al. (1999), in which not only the genes but also the arrays are organized by
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clustering. Getz et al. (2000) presented a coupled two-way clustering approach to

gene microarray data analysis. One could apply the methods for comparing clus-

ter algorithms presented here to these two way clustering methods by applying

the method separately to the two clusterings.

6.2. Sources of experimental data

As an illustration of the use of the κmax statistic for data analysis, we apply

the technique to an experiment aimed at understanding the etiology of porcine re-

productive and respiratory syndrome virus (PRRSV). Gene expression in porcine

alveolar macrophages infected by one of three PRRSV strains was measured at 4

hours and 24 hours post-infection by using spotted cDNA microarrays contain-

ing 139 genes and expressed sequence tags from swine and PRRSV. RNA from

the virus infected samples was labeled during reverse transcription with the red-

fluorescent dye Cy5 and mixed with a mock infected sample, labeled with the

green-fluorescent dye Cy3, from the same time point. For the analyses presented

here, the data take the form of a 139 by 6 matrix of average log2 expression

ratios, with a row for each gene and a column for each experimental condition

(from two different time points infected by three strains of virus relative to the

control).

6.3. Clustering algorithms to be compared

For this data set, we considered nine different cluster algorithms. We distin-

guish these by the criterion used to define the clusters, and whether the method

allows for Poisson noise distributed over the six dimensional space of measure-

ments (Poisson noise allows for outliers). Following the nomenclature of Banfield

and Raftery (1993), we used the following methods: trace with noise, determi-

nant with noise, determinant without noise, spherical with noise, S* with noise,

unconstrained with noise, unconstrained without noise, the centroid method of

Sneath and Sokal (1973) without noise, and K-means without noise. We allowed

the number of clusters to vary from 3 to 12. The trace criterion (also known

as the sum of squares criterion) looks for hyperspherical clusters of the same

size. In contrast, the determinant criterion (Friedman and Rubin (1967)) favors

ellipsoidal clusters with the same size pointing in the same direction. The spher-

ical criterion seeks hyperspherical clusters of varying sizes. The criterion S* is

appropriate for clusters that have the same size and orientation but have differ-

ent shapes, while the unconstrained criterion (Scott and Symons (1971)) allows

clusters to have different orientations, shapes, and sizes. Both the centroid and

K-means algorithms are heuristic methods that seek hyperspherical clusters, but
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use different methods for finding the clusters. Once again, all cluster analysis

was conducted using S-plus.

6.4. Results for the PRRSV microarray experiment

Figure 5 shows the κmax for ten different numbers of clusters (the rows and

columns represent the cluster algorithms and are in the order listed above). First

note that the extent of agreement does not vary as we vary the number of clus-

ters. Note that there are two groups of cluster algorithms that agree amongst

themselves but differ across groups. One group consists of the determinant with-

out noise, the spherical criterion, the S* criterion, the centroid method and the

K-means algorithm. The other group consists of the two versions of the uncon-

strained criterion (with and without noise). There is very little agreement across

these two groups. These results are sensible since the first group seeks largely

spherical clusters (some allow ellipsoidal clusters) while the second group has no

constraints. The trace criterion with noise differs from all other cluster methods,

as does the determinant criterion with noise.
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Figure 5. The κmax matrix comparing the nine methods used to analyze the

gene expression data set using ten different numbers of clusters.

Looking further into the relations between the methods illustrates how an

interplay between the agreement measures and the clustering output can be used

to further understand the nature of the clustering in the data. As noted in Sec-

tion 2.1, algorithms often make a single item its own cluster if that item appears
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to be an outlier, and by allowing for noise we explicitly allow for the presence

of outliers. Here several methods are identifying outliers as clusters. These

methods use different criteria for clusters, hence they identify different points as

outliers, and so they strongly disagree. This is the explanation for the discrepant

effects of allowing for noise when using the determinant criterion compared to

the unconstrained criterion. The unconstrained version is not as sensitive as the

determinant criterion to the assumption of Poisson noise, because allowing for

noise does not alter the sort of clusters the unconstrained criterion seeks, while

this assumption does have a large impact on the determinant criterion. These

considerations suggest to us that the use of any of the first group of methods

identified in the previous paragraph results in a clustering that is robust, while

the other methods seem less useful.
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