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Abstract: Discrete data in the form of counts often exhibit extra variation that

cannot be explained by a simple model, such as the binomial or the Poisson. Also,

these data sometimes show more zero counts than what can be predicted by a

simple model. Therefore, a discrete generalized linear model (Poisson or binomial)
may fail to fit a set of discrete data either because of zero-inflation, because of over-

dispersion, or because there is zero-inflation as well as over-dispersion in the data.

Previous published work deals with goodness of fit tests of the generalized linear

model against zero-inflation and against over-dispersion separately. In this paper

we deal with the class of zero-inflated over-dispersed generalized linear models and

propose procedures based on score tests for selecting a model that fits such data.
For over-dispersion we consider a general over-dispersion model and specific over-

dispersion models. We show that in certain cases and under certain conditions,

the score tests derived using the general over-dispersion model and those devel-

oped under specific over-dispersion models are identical. Empirical level and power

properties of the tests are examined by a limited simulation study. Simulations
show that the score tests, in general, hold nominal levels well and have good power

properties. Two illustrative examples and a discussion are presented.

Key words and phrases: Binomial model, generalized linear model, over-dispersion,

Poisson model, score test, zero-inflation.

1. Introduction

A discrete generalized linear model (Poisson or binomial) may fail to fit a

set of data having a lot of zeros either because of zero-inflation, because of over-

dispersion, or because there is zero-inflation as well as over-dispersion in the

data. The purpose of this paper is to propose procedures based on score tests for

selecting a model that fits such data. Dean (1992) develops score tests to detect

over-dispersion in a generalized linear model. Broek (1995) obtains a score test

to test whether the number of zeros is too large for a Poisson distribution to fit

the data well. Deng and Paul (2000) develop score tests to detect zero-inflation

in a generalized linear model and obtain Broek’s results as special cases.

In this paper we obtain score tests (i) for zero-inflation in presence of over-

dispersion, (ii) for over-dispersion in presence of zero-inflation, and (iii) simul-

taneously for zero-inflation and over-dispersion. We first develop score tests
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using a zero-inflated over-dispersed generalized linear model in which the over-

dispersed generalized linear model is of the form considered by Cox (1983) and

Dean (1992). For Poisson and binomial data these score tests are then obtained

as special cases. Further, score tests are obtained using a zero-inflated nega-

tive binomial model for Poisson data and a zero-inflated beta-binomial model for

binomial data. These score tests are then compared with those obtained from

the zero-inflated over-dispersed generalized linear model considered earlier. We

show that for Poisson data the score test statistics, for testing over-dispersion

in the presence of zero-inflation and that for testing simultaneously for zero-

inflation and over-dispersion, using the zero-inflated over-dispersed generalized

linear model with log-link is identical to the corresponding score test statistics

using the zero-inflated negative binomial model. Also, for binomial data the

score test statistics, for testing over-dispersion in the presence of zero-inflation

and that for testing simultaneously for zero-inflation and over-dispersion, using

the zero-inflated over-dispersed generalized linear model with logit link is identi-

cal to the corresponding score test statistics using the zero-inflated beta-binomial

model. However, for testing zero-inflation in presence of over-dispersion the score

test statistics obtained as special cases do not coincide with those obtained from

the specific over-dispersed zero-inflated models. The reasons are discussed. Some

simulation results, two illustrative examples and a discussion are presented.

The score test (Rao (1947)) is a special case of the more general C(α) test

(Neyman (1959)) in which the nuisance parameters are replaced by maximum

likelihood estimates which are
√

N (N=number of observations used in estimat-

ing the parameters) consistent estimates. The score test is particularly appealing

as we have only to study distribution of the test statistic under the null hypoth-

esis which is that of the basic model. It often maintains, at least approximately,

a preassigned level of significance (Bartoo and Puri (1967)) and often produces a

statistic which is simple to calculate. Other asymptotically equivalent tests, such

as the likelihood ratio test and the Wald test (Moran (1970); Cox and Hinkley

(1974)), can be considered. However, both of these tests require estimates of the

parameters under the alternative hypotheses and often show liberal or conser-

vative behaviour in small samples (See, for example, Barnwal and Paul (1988),

Thall (1992) and Paul and Banerjee (1998)). To check this point in the present

context we conducted a small scale simulation experiment to study the small

sample behaviours of the likelihood ratio statistic and the Wald test statistic in

testing simultaneously for no zero-inflation and no over-dispersion. The results,

which are not presented in this paper, show that the likelihood ratio test is too

liberal and the Wald test is too conservative. Therefore, these large sample tests

are not considered in this paper.
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In Section 2 we introduce the zero-inflated generalized linear model. Score

tests for selecting a model from the class of zero-inflated over-dispersed gener-

alized linear models are developed in Section 3. Results for Poisson data based

on the zero-inflated over-dispersed generalized linear model with log-link and the

zero-inflated negative binomial model are obtained and compared in Section 4,

and results for binomial data based on the zero-inflated over-dispersed general-

ized linear model with logit link and the zero-inflated beta-binomial model are

obtained and compared in Section 5. Results of some simulation experiments are

presented in Section 6, and two illustrative examples are presented in Section 7.

2. The Zero-Inflated Over-Dispersed Generalized Linear Model

Consider the natural exponential family distribution with probability density

function

f(y; θ) = exp{a(θ)y − g(θ) + c(y)}, (2.1)

where y represents the response variable and θ is an unknown parameter. This

family includes both the Poisson and binomial distribution. Departure from the

generalized linear model (Poisson or binomial) may be because of having a lot of

zeros in the data or because the data are over-dispersed.

The exponential family distribution with zero-inflation has probability den-

sity

f1(y; θ) =

{

ω + (1 − ω)f(0; θ), if y = 0,

(1 − ω)f(y; θ), if y > 0,
(2.2)

where ω is the zero-inflation(deflation) parameter which can take negative values.

Note that a zero-inflated model has ω > 0 and a zero-deflated model has ω < 0.

The mean and variance of Y under (2.2) are E(Y ) = (1 − ω)(a′(θ))−1g′(θ) and

Var (Y ) = ((1 − ω)(a′(θ))2{g′′(θ) − a′′(θ)(a′(θ))−1g′(θ) + ω(g′(θ))2}.
Now, suppose that for given θ∗, y has the exponential family model with

probability density function f(y; θ∗) = exp{a(θ∗)y − g(θ∗) + c(y)}, where θ∗ is

continuous independent random variate with E(θ∗) = θ(x;β), Var (θ∗) = τb(θ) >

0, αr = E(θ∗ − θ)r, where β is the p × 1 vector of regression parameters and τ

is the over-dispersed parameter. Then following Cox (1983), Chesher (1984) and

Dean (1992) the probability function of the over-dispersed exponential family

model is

f2(y; θ, τ) = f(y; θ)
{

1 +
∞
∑

r=2

αr

r!
Dr(y; θ)

}

≡ f(y; θ){1 + D(y; θ, τ)}, (2.3)
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where Dr(y, θ) = {∂(r)/∂θ∗(r))f(y; θ∗)|θ∗=θ} {f(y; θ)}−1 and D(y, θ, τ) =
∑∞

r=2

(αr/r!)Dr(y; θ). Further, for small τ , we assume that αr = o(τ) for r ≥ 3 and

f2(y; θ, τ) = f(y; θ){1 +
α2

2!
D2(y; θ)} = f(y; θ){1 +

1

2
τb(θ)D2(y; θ)}.

The zero-inflated over-dispersed exponential family model then can be written
as

f3(y; θ, τ, ω) =

{

ω + (1 − ω)f2(0; θ, τ) if y = 0

(1 − ω)f2(y; θ, τ) if y > 0.
(2.4)

Obviously (2.4) generalizes (2.1), (2.2) and (2.3). The mean and variance of
y for (2.4) do not have closed forms.

3. Model Selection in the Zero-Inflated Over-Dispersed Generalized

Linear Model

For discrete data in the form of counts or proportions, one of following dis-
crete generalized linear models may fit the data: (i) a generalized linear (a Pois-
son or a binomial) model; (ii) a zero-inflated generalized linear model; (iii) a
over-dispersed generalized linear model; (iv) a zero-inflated over-dispersed gen-
eralized linear model. Under (2.3), Dean (1992) develops score tests to detect
over-dispersion in the generalized linear model. She then obtains score tests to

detect over-dispersion in Poisson and binomial data separately, as special cases
of the results she obtains for the generalized linear model. Broek (1995) obtains
a score test to test whether the number of zeros is too large for a Poisson dis-
tribution to fit the data well. Using (2.2), Deng and Paul (2000) develop score
tests to detect zero-inflation in generalized linear model and obtain score tests to
test for zero-inflation in Poisson and binomial data separately, as special cases of
the results they obtain for the generalized linear model. They show that for the
Poisson data their results are identical to those obtained by Broek (1995).

In this section, we derive score test statistics, using (2.4) to test (i) for
over-dispersion in presence of zero-inflation, (ii) for zero-inflation in presence of

over-dispersion, and (iii) simultaneously for zero-inflation and over-dispersion.
Let Yi, i = 1, . . . , n, be a sample of independent observations from (2.4) with

θi a function of p×1 vector of covariates Xi and a vector of regression parameters
β; that is, θi = θi(Xi;β), i = 1, . . . , n. Then the likelihood function is

L(ω, τ, θ; y) =
n
∏

i=1

{(ω + (1 − ω)f2(0; θ, τ))I{yi=0} + (1 − ω)f2(yi; θ, τ)I{yi>0}}.

Writing γ = ω/(1 − ω) the log likelihood l = l(γ, τ, θ; y) can be written as

l(γ, τ, θ; y) =
n
∑

i=1

li(γ, τ, θi; yi)
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=
n
∑

i=1

{− log(1 + γ) + I{yi=0} log(γ + f2(0; θ, τ)) + I{yi>0} log f2(yi; θ, τ)}

=
n
∑

i=1

{− log(1 + γ) + I{yi=0} log(γ + f(0; θi){1 + D(y, θ, τ)})

+I{yi>0}(a(θi)yi − g(θi) + c(yi) + log{1 + D(y, θ, τ)})}.

Now, define the parameter vector δ = (β ′, γ, τ)′. Partition δ = (δ′1, δ
′
2)

′. Suppose

we want to test H0 : δ2 = 0 against HA : δ2 > 0. The dimension of the parameter

vector δ2 will depend on the null hypothesis to be tested. For example, for testing

H0 : τ = 0, δ1 = (β′, γ)′, δ2 = τ and the dimension of δ2 is 1. Similarly, for testing

H0 : (τ, γ) = (0, 0), δ1 = β, δ2 = (τ, γ) and the dimension of δ2 is 2. Further de-

fine the likelihood score S = (∂l/∂δ2)|δ2=0 and the expected mixed second partial

derivative matrices, I11 = E(−(∂2l/∂δ1∂δ′1)|δ2=0), I12 = E(−(∂2l/∂δ1∂δ′2)|δ2=0)

and I22 = E(−(∂2l/∂δ2∂δ′2)|δ2=0). Then, under some conditions for the appli-

cation of the Central Limit Theorem to score components and the regularity

conditions of maximum likelihood estimates, the score test statistic for test-

ing H0 : δ2 = 0 is T = Ŝ′(Î22 − Î ′12Î
−1
11 Î12)

−1Ŝ, which, asymptotically, has a

chi-square distribution with d degrees of freedom , where d is dimension of δ2,

Ŝ = S(δ̂1), Î11 = I11(δ̂1), Î12 = I12(δ̂1), Î22 = I22(δ̂1) and δ̂1 is the maximum

likelihood estimate of δ1 under the null hypothesis.

We now give the score test statistics for the three null hypotheses H0 :

τ = 0,H0 : γ = 0 and H0 : (τ, γ) = (0, 0) in Theorem 1, Theorem 2 and

Theorem 3 respectively. The derivations are given in the Appendix. In what

follows the dependence on θi of the functions µ(θi), σ
2(θi), a(θi), b(θi), g(θi) and

Dr(θi) will be suppressed for simplicity of natation. For convenience, we re-

place f2(0; θi), a(θi), g(θi), b(θi), D2(yi, θi) and D(yi; θi, τ) with f0, a, g, b,D2 and

D respectively.

Theorem 3.1. Let 1 be an n× 1 unit vector, U an n× p matrix with ir-element

∂θi/∂βr, W τ
1 ,W τ

2 and W τ
3 diagonal matrices with ith elements W τ

1i = g′′ −
a′′Eyi − (f0γ/(γ + f0)(1 + γ))g′2 − (γ/(1 + γ))g′′,W τ

2i = −(f0/(γ + f0)(1 + γ))g′

and W τ
3i = [(1/2)g′bD2(f0γ/(γ + f0)(1 + γ)) + (1/2)(bD2)

′(γ/(1 + γ))]|yi=0 −
(1/2)E[(bD2)

′] respectively. Further, let Sτ =
∑n

i=1 −(γI{yi=0}/(γ + f0)) + (1/2)

bD2, Iτ
ττ =

∑n
i=1[(1/4)E(bD2)

2−((γ2 + 2f0γ)/(γ + f0)(1 + γ))((1/2)bD2)
2|yi=0],

Iτ
γγ =

∑n
i=1((1 − f0)/(1 + γ)2(γ + f0)|yi=0 and Iτ

γτ =
∑n

i=1((1/2)bD2f0/(γ +

f0) (1 + γ))|yi=0. Then the score test statistic for over-dispersion in the zero-

inflated over-dispersed generalized linear model is T1 = Ŝ2
τ /V̂τ , where, Ŝτ =

Sτ (θ̂1, . . . , θ̂n; γ̂) and V̂τ = Vτ (θ̂1, . . . , θ̂n; γ̂) with

Vτ = Iττ − 1T W3U(UT W1U)−1UT W31

−(Iγτ −(1T W3U)(UT W1U)−1(UT W21))2(Iγγ−1T W2U(UT W1U)−1UT W21)−1.
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θ̂i and γ̂ are the maximum likelihood estimates of θi and γ under the zero-inflated

generalized linear model. The statistic T1 has an asymptotic χ2 distribution with

one degree of freedom.

Theorem 3.2. Let 1 be an n× 1 unit vector, U an n× p matrix with ir-element

(∂θi/∂βr), W γ
1 ,W γ

2 and W γ
3 diagonal matrices with ith elements W γ

1i = g′′ −
a′′Eyi −E{∂2/∂θ2

i ) log(1+D)},W γ
2i = −E{(∂2/∂θi∂τ) log(1+D)},W γ

3i = −g′ +

{(∂/∂θi) log(1+D)}|yi=0 respectively. Further, let Sγ =
∑n

i=1(I{yi=0}/f2(0; θi, τ))

−1), Iγ
ττ =

∑

E{−(∂2/∂τ2) log(1 + D)}, Iγ
τγ =

∑

(∂/∂τ ) log(1 + D)|yi=0 and

Iγ
γγ =

∑

(1/f2(0; θi, τ) − 1). Then the score test statistic for zero-inflation in

the zero-inflated over-dispersed generalized linear model is T2 = Ŝ2
γ/V̂γ , where

Ŝγ = Sγ(θ̂1, . . . , θ̂n; τ̂ ) and V̂γ = Vγ(θ̂1, . . . , θ̂n; τ̂ ) with

Vγ = Iγγ−1T W3U(UT W1U)−1UT W31−(Iτγ−(1T W3U)(UT W1U)−1

×(UT W21))2(Iττ −1T W2U(UT W1U)−1UT W21)−1

and θ̂i and τ̂ are the maximum likelihood estimates of θi and τ under the over-

dispersed generalized linear model. The statistic T2 has an asymptotic χ2 distri-

bution with one degree of freedom.

Theorem 3.3. Let 1 be an n × 1 unit vector, U an n × p matrix with ir-

element ∂θi/∂βr, W1,W2 and W3 diagonal matrices with ith elements W1i =

g′′i − a′′i Eyi,W2i = −g′,W3i = (1/2)bi[g
′
i{(h′

i)
2 − h′′

i } − 2g′′i h′
i + g′′′i ] respectively.

Further, let S1 =
∑n

i=1((I{yi=0}/f(0; θi))−1), S2 =
∑n

i=1(1/2)bi(a
′
i)

2{(yi−µi)
2−

(a′i)
−2(g′′i − a′′i yi)}, Iγγ =

∑n
i=1(1/f(0; θi) − 1), Iγτ =

∑n
i=1(1/2)bi[(g

′
i)

2 − g′′i ] and

Iττ = (1/4)b2
i [g

′
i{5h′

ih
′′
i −3(h′

i)
3−h′′′

i }+2(h′
ig

′
i−g′′i )2 +g′′i {6(h′

i)
2−4h′′

i }−4h′′′
i h′

i+

g′′′′i ]. Then the score test statistic for zero-inflation and over-dispersion in the

zero-inflated over-dispersed generalized linear model is

T3 =
V̂22Ŝ

2
1 + V̂11Ŝ

2
2 − 2V̂12Ŝ1Ŝ2

V̂22V̂11 − V̂ 2
12

,

which has an asymptotic χ2 distribution with two degrees of freedom, where V11 =

Iγγ −1TW2U(UT W1U)−1UT W21, V12 = Iγτ −1TW2U(UT W1U)−1UT W31, V22 =

Iττ − 1T W3U(UT W1U)−1UT W31, Ŝ1 = S1(θ̂), Ŝ2 = S2(θ̂), V̂11 = V11(θ̂), V̂22 =

V22(θ̂) and V̂12 = V12(θ̂) and θ̂ is the maximum likelihood estimate of θ =

(θ1, . . . , θn) under the generalized linear model.

4. Score Test for Poisson Data

In Sections 4.1−4.3, score tests are obtained from Theorems 3.1−3.3 with

θ = log µ = Xβ, where X is a n×p matrix of covariates and β is a p×1 vector of

regression parameters, a(θ) = θ, g(θ) = eθ and h(θ) = 0. Note that in this case,
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U = X. Further, score tests are also obtained using the zero-inflated negative
binomial model

P (Y = 0) = ω + (1 − ω)(
1

1 + cµ
)c

−1

,

P (Y = y) = (1 − ω)
Γ(y + c−1)

y!Γ(c−1)
(

cµ

1 + cµ
)y(

1

1 + cµ
)c

−1

with E(Y ) = (1 − ω)µ and Var (Y ) = (1 − ω)µ + (1 − ω)(ω + c)µ2.

4.1. Testing for over-dispersion

Using (2.4) the null hypothesis to be tested is H0 : τ = 0. Then, from
Theorem 3.1, the score test statistic for testing for over-dispersion can be written
in a simplified form as

Z1 =
(
∑n

i=1
1
2((yi − µ̂i)

2 − µ̂i) −
γ̂(µ2

i
−µi)I{yi=0}

2(γ̂+e−µ̂i )
)2

V̂τ

.

Here µ̂i = exp(
∑

j=1 Xijβ̂j) and β̂j and γ̂ are the maximum likelihood estimates of
βj and γ under the zero-inflated Poisson model obtained by solving the estimating
equations

n
∑

i=1

( −1

1 + γ
+

I{yi=0}

γ + e−µi

)

= 0, (4.1)

n
∑

i=1

(

I{yi=0}
γµi

γ + e−µi
+ (yi − µi)

)

Xij = 0, for j = 1, 2, . . . , p, (4.2)

and where V̂τ = Vτ (µ̂, γ̂) with

Vτ =Iτ
ττ −1T W τ

3 X(XT W τ
1 X)−1XT W τ

3 1−(Iτ
γτ −1T W τ

3 X(XT W τ
1 X)−1XT W τ

2 1)2

×(Iτ
γγ−1T W τ

2 X(XT W τ
1 X)−1XT W τ

2 1)−1,

Iτ
γγ =

n
∑

i=1

eµi − 1

(1 + γ)2(1 + γeµi)
, Iτ

γτ =
n
∑

i=1

µ2
i − µi

2(1 + γ)(1 + γeµi)
,

Iτ
ττ =

n
∑

i=1

[
2µ2

i + µi

4(1 + γ)
− γ(µ2

i − µi)
2

(1 + γ)(1 + γeµi)
, W τ

1i =
µi

1 + γ
− γµ2

i

(1 + γ)(1 + γeµi)
,

W τ
2i = − µi

(1 + γ)(1 + γeµi)
, W τ

3i =
µi

2(1+γ)
+

1

2

γµi(µ
2
i − µ)

(1+γ)(1+γeµi )
.

Using the zero-inflated negative binomial model the null hypothesis to be
tested is H0 : c = 0. The score test statistic, in this case, can be shown to be

Z2 =
(
∑n

i=1
1
2 ((yi − µ̂i)

2 − yi) − I{yi=0}
µ̂2

i
γ̂

2(γ̂+e−µ̂i )
)2

V̂c

.
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Here µ̂i = exp(
∑p

j=1 Xijβ̂j) and β̂j and γ̂ are the same as those obtained from

(4.1) and (4.2), where V̂c = Vc(µ̂, γ̂) with

Vc = Icc−1T W3X(XT W1X)−1XT W31−(Icγ−1T W3X(XT W1X)−1XT W21)2

×(Iγγ − 1T W2X(XT W1X)−1XT W21)−1,

where W1 = W τ
1 ,W2 = W τ

2 ,W3 = W τ
3 − (1/2)W τ

1 , Iγγ = Iτ
γγ , Iγc = Iτ

γτ −
(1/2)

∑

W τ
2i and Icc = Iτ

ττ + (1/4)
∑

W τ
1i −

∑

W τ
3i. After simplification, it can be

shown that Vc = Vτ .

It is interesting to note that when the regression model involves an intercept

term, that is, when Xi1 = 1 for i = 1, . . . , n, the statistics Z1 and Z2 are identical,

seen as follows.

From (4.2), we have
∑n

i=1 µ̂i =
∑n

i=1{−I{yi=0}(γ̂µ̂i/(γ̂ + e−µ̂i)) + yi}, from

which

n
∑

i=1

1

2
((yi−µ̂i)

2−µ̂i)−
γ̂(µ̂2

i −µ̂i)I{yi=0}

2(γ̂+e−µ̂i)
=

n
∑

i=1

1

2
((yi−µ̂i)

2−yi)−I{yi=0}
µ̂2

i γ̂

2(γ̂+e−µ̂i)
,

that is, the numerators of Z1 and Z2 are equal. Since Vc = Vτ , Z1 = Z2.

Ridout, Hinde and Demetrio (2001) obtain a score test for testing a zero-

inflated Poisson regression model against zero-inflated negative binomial alter-

natives. We obtain a more general version. In particular, for no covariate case,

we have µi = µ and

Z∗
2 =

{

∑n
i=1((yi − µ̂)2 − yi) − n0µ̂2γ̂

(γ̂+e−µ̂)

}2

µ̂2

1+γ̂
(2 − µ̂2

eµ̂−1−µ̂
)

,

where n0 is the number of zeros in the values of yi, which agrees with Ridout et

al. (2001).

4.2. Testing for zero-inflation

The score test statistic given in Theorem 3.2 is derived using (2.4) in which

we use (2.3). This statistic does not produce a simplified form for Poisson or

binomial data and it poses computational difficulty. So, as in Cox (1983), we

assume that for small τ that αr = o(τ), for r = 3, . . . ,∞. Then, under the null

hypothesis H0 : γ = 0, the score statistic is obtained in a simple form as

Z3 =
(

n
∑

i=1

I{yi=0}e
µ̂i

1 + 1
2 τ̂((yi − µ̂i)2 − µ̂i)

− 1
)2

/V̂γ .

Here µ̂i = exp(
∑

j=1 Xij β̂j) and β̂j and τ̂ are the maximum likelihood estimates
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of βj and τ under (2.3) with αr = o(τ) for r = 3, . . . ,∞, and V̂γ = Vγ(µ̂, τ̂) with

Vγ = Iγ
γγ−1T W γ

3 X(XT W γ
1 X)−1XT W γ

3 1−(Iγ
τγ − 1T W γ

3 X(XT W γ
1 X)−1

×XT W γ
2 1)2(Iττ − 1T W γ

2 X(XT W γ
1 X)−1UT W γ

2 1)−1,

Iγ
ττ =

1

4

n
∑

i=1

(2µ2
i + µi), Iγ

γτ =
1

2

n
∑

i=1

(µ2
i −µi), Iγ

γγ =
n
∑

i=1

(
eµi

1 + 1
2τ(µ2

i −µi)
−1),

W γ
1i = µi−

1

2
τ(2µ2

i −µi), W γ
2i =

1

2
µi −

1

2
τµ2

i , W γ
3i = −µi +

1

2
τ(2µ2

i − µi).

Further, using the zero-inflated negative binomial model, we obtain the score
test statistic for testing the null hypothesis H0 : γ = 0 as

Z4 =
(
∑n

i=1 I{yi=0}(1 + cµ̂i)
c−1 − 1)2

V̂γ

.

Here µ̂i = exp(
∑

j=1 Xij β̂j) and β̂j and ĉ are the maximum likelihood estimates

of βj and c under the negative binomial model, and V̂γ = Vγ(µ̂, ĉ) with

Vγ = Iγγ − 1T W3X(XT W1X)−1XT W31−(Iγc−1T W3X(XT W1X)−1XT W21)2

×(Icc − 1T W2X(XT W1X)−1XT W21)−1,

Iγγ =
n
∑

i=1

[(1 + cµi)
c−1 − 1], Iγc =

n
∑

i=1

[
1

c2
log(1 + cµi) −

µi

c(1 + cµi)
],

Icc =
n
∑

i=1

{

E
[

yi
∑

l=1

(l − 1)2

(1 + (l − 1)c)2

]

− 2 log(1 + cµi)

c3
− 2µi + cµ2

i

c2(1 + cµi)

}

,

W1i =
µi

(1 + cµi)
, W2i = 0, W3i = − µi

(1 + cµi)
.

Theoretically, a relationship between the statistics Z3 and Z4 cannot be
established, because the over-dispersion parameter c under the negative binomial
model is not the same as that under (2.3) with αr = o(τ), for r = 3, . . . ,∞.
Further, simulations, results of which are not reported here, show extremely
poor performance of the statistic Z3. Note that the statistic Z4 has a simple
form and we show by simulations in Section 6 that it holds its level even when
the over-dispersed model is not negative binomial. We recommend its use in
practice for testing for zero-inflation in the presence of over-dispersion.

4.3. Testing for over-dispersion and zero-inflation

Using the results in Theorem 3.3 the score test statistic for testing the hy-
pothesis H0 : (γ, τ) = 0 is

Z5 =
(
∑n

i=1((yi − µ̂i)
2 − µ̂i))

2

2
∑n

i=1 µ̂i
2 +

(
∑n

i=1(
I{yi=0}

e−µ̂i
− 1 − 1

2(yi − µ̂i)
2 + 1

2 µ̂i))
2

(
∑n

i=1 eµ̂i − 1 − µ̂i − 1
2 µ̂i

2)
,
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where µ̂i is the maximum likelihood estimate of the parameter µi under the

Poisson model.

Further, using the zero-inflated negative binomial model, the score test statis-

tic for testing the hypothesis H0 : (γ, c) = 0 is:

Z6 =
(
∑n

i=1((yi − µ̂i)
2 − yi))

2

2
∑n

i=1 µ̂i
2 +

(
∑n

i=1(
I{yi=0}

e−µ̂i
− 1 − 1

2(yi − m̂ui)
2 + 1

2yi))
2

(
∑n

i=1 eµ̂i − 1 − µ̂i − 1
2 µ̂i

2)
,

where µ̂i is the maximum likelihood estimate of the parameter µi, also, under

the Poisson model.

Note that under the Poisson model we have
∑

µ̂i =
∑

yi. Thus the two

statistics Z5 and Z6 are identical. Further, note that the test statistic is the

sum of two terms. The first term is the score test statistic for testing for over-

dispersion in Poisson data (see, Dean (1992)). The second term is closely related,

but not identical, to the score test statistic for testing for zero-inflation in Poisson

data (see, Deng and Paul (2000)). There seems to be some confounding effect be-

tween zero-inflation and over-dispersion. In connection with discrete exponential

mixture models, Lindsay and Roeder (1992) find such confounding of mixtures

with over-dispersion.

5. Score Test for Binomial Data

In Sections 5.1−5.3 we obtain score tests for binomial data. Here score

tests are obtained from Theorems 3.1−3.3 using θ = π, a(θ) = log{π/(1 − π)},
g(θ) = −m log(1− θ), b(θ) = θ(1− θ) and h(θ) = − log θ− log(1− θ)(in this case

U = diag(πi(1−πi))X), and also by using the zero-inflated beta binomial model

P (Yi = 0) = ω + (1 − ω)

∏m−1
r=0 (1 + rφ − π)
∏m−1

r=0 (1 + rφ)
,

P (Yi = yi) = (1 − ω)

(

m

yi

)

∏y−1
r=0(π + rφ)

∏m−y−1
r=0 (1 − π + rφ)

∏m−1
r=0 (1 + rφ)

,

with E(Y ) = (1−ω)mπ and Var (Y ) = (1−ω)mπ(1− π) 1+mφ
1+φ

+ (1 −ω)ωm2π2.

5.1 Testing for over-dispersion

Here the null hypothesis to be tested is H0 : τ = 0. Using the results in

Theorem 3.1 the score test statistic for testing for over-dispersion is

Z7 =
(

n
∑

i=1

(

− I{yi=0}γ̂

γ̂+(1−π̂i)mi

π̂imi(mi−1)
2(1−π̂i)

+ 1
2π̂i(1−π̂i)

((yi−miπ̂i)
2+(yi−miπ̂i)π̂i−yi(1−π̂i))

)

)2

V̂τ

.
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Here π̂i = (exp(
∑

Xij β̂j))/(1 + exp(
∑

Xijβ̂j)) and β̂j and γ̂ are the maximum

likelihood estimates of βj and γ under the null hypothesis, and V̂τ = Vτ (π̂, γ̂)

with

Vτ (π, γ)=Iτ
ττ − 1T W τ

3 U(UT W τ
1 U)−1UT W τ

3 1

−(Iτ
γτ −1T W τ

3 U(UT W τ
1 U)−1UT W τ

2 1)2(Iτ
γγ − 1T W τ

2 U(UT W τ
1 U)−1UT W τ

2 1)−1,

Iτ
γγ =

n
∑

i=1

1 − (1 − πi)
mi

(1 + γ)2(γ + (1 − πi)mi)
, Iτ

γτ =
n
∑

i=1

(

(1 − πi)
mi−1πimi(mi − 1)

2(1 + γ)(γ + (1 − πi)mi)

)

,

Iτ
ττ =

n
∑

i=1

(mi(mi − 1)

2
− m2

i (mi − 1)2

4(1 − πi)2
(2(1 − πi)

mi + γ)γ

(1 + γ)(γ + (1 − πi)mi

)

,

W τ
1i =

mi

πi(1 − πi)
− γmi

(1 + γ)(1 − πi)2
− γ(1 − πi)

mi−2m2
i

(1 + γ)(γ + (1 − πi)mi)
,

W τ
2i = − mi(1 − πi)

mi−1

(1 + γ)(γ + (1 − πi)mi)
,

W τ
3i =

γπim
2
i (mi − 1)(1 − πi)

mi−2

2(1 + γ)(γ + (1 − πi)mi)
+

γmi(mi − 1)

2(1 + γ)(1 − πi)2
.

The maximum likelihood estimates β̂j and γ̂ are obtained by solving the

estimating equations:

n
∑

i=1

( −1

1 + γ
+

I{yi=0}

γ + (1 − πi)mi

)

= 0,

n
∑

i=1

(

I{yi=0}
γmi

(γ+(1−πi)mi)(1−πi)
+

(yi−miπi)

πi(1 − πi)

)

πi(1−πi)Xij =0, for j =1, . . . , p.

Using the zero-inflated beta-binomial model the null hypothesis to be tested

is H0 : φ = 0. As in Section 4.1, after a lot of algebra it can be shown that the

score test statistic obtained here is exactly the same as Z7. The proof is omitted.

5.2. Testing for zero-inflation

Here we deal with the hypothesis H0 : γ = 0 in the zero-inflated overdispersed

binomial model. As in Section 4.2 , the score statistic poses problems so we derive

the score statistic by using the zero-inflated beta-binomial model, which is

Z8 =

(

∑n
i=1(

∏mi−1

r=0
(1+rφ̂)

∏mi−1

r=0
(1+rφ̂−π̂i)

I{yi=0} − 1)

)2

V̂γ

.
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Here π̂i = πi(
∑

Xijβ̂j) and β̂j and φ̂ are the maximum likelihood estimate of βj

and φ under the beta-binomial model, and V̂γ = Vγ(π̂, φ̂) with

Vγ = Vγ(π, φ) = Iγ
γγ−1T W γ

3 U(UT W γ
1 U)−1UT W γ

3 1

−(Iγ
γφ−1T W γ

3 U(UT W γ
1 U)−1UT W γ

2 1)2(Iγ
φφ−1T W γ

2 U(UT W γ
1 U)−1UT W γ

2 1)−1,

Iγ
γγ =

n
∑

i=1

(

∏mi−1
r=0 (1 + rφ)

∏mi−1
r=0 (1 + rφ − πi)

− 1

)

, Iγ
γφ =

n
∑

i=1

mi−1
∑

r=1

(
r

1 + rφ − πi
− r

1 + rφ
),

Iγ
φφ =

n
∑

i=1

mi−1
∑

r=1

{

r2P (Y > r)

(πi + rφ)
+

r2P (Y < mi − r)

(1 + rφ − πi)
+

r2

(1 + rφ)

}

,

W γ
1i =

mi−1
∑

r=0

{

P (Y > r)

(πi + rφ)2
+

P (Y < mi − r)

(1 + rφ − πi)

}

,

W γ
2i =

mi−1
∑

r=0

{

rP (Y > r)

(πi + rφ)2
− rP (Y < mi − r)

(1 + rφ − πi)2

}

, W γ
3i =

mi−1
∑

r=1

−1

(1 + rφ − πi)
.

5.3. Testing for over-dispersion and zero-inflation

The hypothesis to be tested is H0 : (γ, φ) = 0. The score statistic obtained

using Theorem 3.3 is identical to the score statistic obtained using the over-
dispersed beta-binomial model. Thus, the score statistic to test H0 : (γ, φ) = 0

is

Z9 =
V̂TT Ŝ2 + V̂SST̂ 2 − 2V̂ST ŜT̂

V̂TT V̂SS − V̂ 2
ST

,

where

S(π) =
n
∑

i=1

(I{yi=0}(1−πi)
−mi−1),

T (π) =
n
∑

i=1

(yi−miπi)
2+πi(yi−miπi)−yi(1−πi)

2πi(1 − πi)
,

VSS(π) =
n
∑

i−1

((1 − πi)
−mi − 1), VST (π) =

n
∑

i=1

πimi(mi − 1)

2(1 − πi)
,

VTT (π) =
n
∑

i=1

1

2
mi(mi − 1) − 1T W3U(UT W1U)−1UT W31,

with W1i = mi/[πi(1 − πi)], W3i = −mi/(1 − πi), Ŝ = S(π̂), T̂ = T (π̂), V̂SS =
VSS(π̂), V̂TT = VTT (π̂), V̂ST = VST (π̂) and π̂ is the maximum likelihood estimate

of the parameter π = (π1, . . . , πn) under the binomial model.
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6. Simulations

A simulation study was conducted to examine the empirical size and power of

the score statistics. The simulation study was limited only to examining perfor-

mance of the score test statistics Z1, Z4 and Z5 for Poisson data. Covariates were

not considered. Each simulation experiment was based on 10,000 simulations.

6.1. Testing for over-dispersion in presence of zero-inflation in Poisson

data

Samples of size n = 20, 50, 100, 200, were taken from the zero-inflated

Poisson (µ, ω) distribution, where µ is the Poisson mean and ω is the zero-

inflation parameter. We conducted simulations for values of µ = 0.5, 1.0, 1.5,

2.0, 2.5, 3.0 and ω = 0.01, 0.10, 0.20, 0.30, 0.40, 0.50. However, we present

results for only µ = 2.0 in Table 1. Conclusions for other values of µ are similar.

Results in Table 1 show that, in general, the statistic Z1 maintains nominal level

well for all values of µ and ω considered. Only for small n, µ and α does one find

some liberal behaviour.

Table 1. Empirical levels of score test statistic Z1 for testing over-dispersion

in presence of zero inflation; data are generated from P (µ, ω) distribution

with no covariates; based on 10,000 replications; µ = 2.0

α n ω = 0.01 ω = 0.10 ω = 0.20 ω = 0.30 ω = 0.40 ω = 0.50

0.01 20 0.044 0.025 0.043 0.023 0.017 0.012
50 0.019 0.014 0.013 0.012 0.010 0.011

100 0.010 0.010 0.012 0.011 0.013 0.011

200 0.010 0.010 0.011 0.012 0.010 0.010

0.05 20 0.061 0.045 0.060 0.038 0.030 0.024

50 0.048 0.042 0.041 0.036 0.036 0.033

100 0.045 0.044 0.047 0.042 0.042 0.041
200 0.047 0.046 0.048 0.051 0.046 0.045

0.10 20 0.091 0.076 0.092 0.068 0.055 0.048

50 0.090 0.086 0.085 0.077 0.078 0.071

100 0.092 0.091 0.094 0.085 0.083 0.085

200 0.098 0.096 0.093 0.094 0.094 0.092

A power study was conducted for µ = 2.0, α = 0.05, c = 0.01, 0.05, 0.10,

0.15, 0.25, 0.35, 0.45, 0.55, and for the zero-inflated parameter ω =0.05, 0.15,

0.35, 0.55. The data for the power analysis were generated from the zero-inflated

NB(µ, c) distribution, and the results are summarized in Table 2. For fixed

values of ω power increases as c increases. However, for fixed values of c, power

decreases as ω increases.
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Table 2. Empirical power of score test statistic Z1 for testing over-dispersion

in presence of zero-inflation; data are generated from zero-inflated NB(µ, c);

based on 10,000 replications; µ = 2.0; α = 0.05.

ω n c = 0.01 c = 0.05 c = 0.1 c = 0.15 c = 0.25 c = 0.35 c = 0.45 c = 0.55

0.05 20 0.050 0.061 0.085 0.109 0.163 0.225 0.287 0.347

50 0.047 0.076 0.120 0.183 0.317 0.454 0.564 0.657

100 0.050 0.086 0.180 0.285 0.516 0.703 0.824 0.894
200 0.055 0.123 0.282 0.479 0.780 0.927 0.975 0.993

0.15 20 0.059 0.073 0.086 0.110 0.165 0.215 0.271 0.327

50 0.047 0.069 0.110 0.166 0.290 0.423 0.525 0.618

100 0.049 0.085 0.165 0.271 0.487 0.666 0.784 0.868

200 0.054 0.112 0.259 0.436 0.746 0.900 0.963 0.987

0.35 20 0.036 0.048 0.063 0.081 0.122 0.169 0.213 0.250

50 0.040 0.065 0.102 0.139 0.244 0.352 0.437 0.510
100 0.044 0.075 0.139 0.219 0.401 0.567 0.680 0.773

200 0.053 0.103 0.220 0.366 0.642 0.822 0.912 0.958

0.55 20 0.026 0.034 0.049 0.060 0.088 0.121 0.150 0.177

50 0.037 0.056 0.082 0.115 0.186 0.261 0.331 0.389

100 0.048 0.072 0.124 0.178 0.316 0.446 0.544 0.638

200 0.053 0.092 0.182 0.286 0.507 0.692 0.802 0.872

Table 3. Empirical levels of score test statistic Z4 for testing zero-inflation

in presence of over-dispersion; (a) data are simulated from NB(µ, c), (b)

data are simulated from LMP (µ, c), with no covariates; based on 10,000

replications; µ = 2.0.

(a) NB(µ, c) (b) LMP (µ, c)

α n c = 0.05 c = 0.10 c = 0.20 c = 0.50 c = 0.05 c = 0.10 c = 0.20 c = 0.50

0.01 20 0.010 0.008 0.007 0.008 0.009 0.008 0.009 0.014

50 0.008 0.009 0.008 0.009 0.010 0.010 0.010 0.021
100 0.010 0.008 0.010 0.011 0.009 0.009 0.013 0.028

0.05 20 0.049 0.048 0.046 0.044 0.048 0.046 0.047 0.055
50 0.046 0.048 0.044 0.047 0.046 0.051 0.052 0.072

100 0.047 0.047 0.048 0.049 0.048 0.052 0.052 0.090

0.10 20 0.097 0.095 0.097 0.092 0.100 0.098 0.097 0.108

50 0.096 0.098 0.092 0.096 0.097 0.101 0.103 0.128

100 0.094 0.093 0.097 0.100 0.098 0.102 0.103 0.154

6.2. Testing for zero-inflation in presence of over-dispersion in Poisson

data

Samples of size n = 20, 50, 100 were taken from negative binomial (µ,c)

distribution. Simulations were conducted for values of µ = 0.5, 1.0, 1.5, 2.0, 2.5,

3.0 and c = 0.05, 0.10, 0.20, 0.50. Here also we present results for only µ = 2.0
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as conclusions for other values of µ are similar. The results presented in Table 3

show that the statistic Z4 maintains nominal level well.

Since the statistic Z4 was derived using the zero-inflated negative binomial

distribution, we conducted further simulations to examine robustness of this

statistic when data are generated from a over-dispersed model other than the

negative binomial distribution. So, we repeated the simulation by taking sam-

ples from the log-normal mixture of Poisson LMP(µ,c) distribution. The results

of the simulations are also reported in Table 3. The level properties, in this case,

remains the same.

A power study was conducted for µ = 2.0, α = 0.05, c = 0.01, 0.05, 0.15,

0.25 and the zero-inflation parameter ω = 0.01, 0.05, 0.10, 0.15, 0.25, 0.35, 0.45,

0.55. The results are given in Table 4. Power increases as the zero-inflation

parameter increases except for large values of ω in which case there seems to be

some reversal.

Table 4. Empirical power of score test statistic Z4 for testing zero-inflation in

presence of over-dispersion; data are generated from zero-inflated NB(µ, c)

distribution; based on 10,000 replications; µ = 2.0; α = 0.05.

c n ω = 0.01 ω = 0.05 ω = 0.10 ω = 0.15 ω = 0.25 ω = 0.35 ω = 0.45 ω = 0.55

0.01 20 0.046 0.053 0.072 0.086 0.133 0.157 0.193 0.251
50 0.076 0.116 0.194 0.279 0.458 0.575 0.617 0.675

100 0.211 0.322 0.454 0.609 0.804 0.888 0.876 0.828

200 0.556 0.631 0.738 0.852 0.961 0.984 0.966 0.857

0.05 20 0.044 0.052 0.061 0.082 0.109 0.125 0.132 0.114

50 0.046 0.062 0.112 0.171 0.283 0.352 0.343 0.288

100 0.050 0.088 0.184 0.311 0.542 0.674 0.652 0.481
200 0.055 0.138 0.352 0.576 0.858 0.946 0.889 0.590

0.15 20 0.044 0.047 0.054 0.063 0.095 0.108 0.118 0.116

50 0.049 0.060 0.091 0.133 0.218 0.268 0.260 0.245

100 0.056 0.087 0.155 0.244 0.429 0.540 0.490 0.353

200 0.066 0.125 0.273 0.448 0.731 0.858 0.701 0.319

0.25 20 0.044 0.046 0.048 0.057 0.070 0.082 0.083 0.078

50 0.048 0.056 0.082 0.104 0.166 0.207 0.184 0.154
100 0.049 0.070 0.125 0.192 0.333 0.414 0.341 0.204

200 0.051 0.098 0.207 0.356 0.620 0.744 0.486 0.161

6.3. Testing for over-dispersion and zero-inflation in Poisson data

Here, samples of size n = 20, 50, 100 were generated from Poisson (µ)

distribution for µ = 1.0, 2.0, 3.0. The results are presented in Table 5. The

results show that the score test statistic Z5 for testing simultaneously for zero-
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inflation and over-dispersion maintains nominal level reasonably well, although

for small n there seems to be some conservative behaviour.

A power study was conducted for µ = 2.0, α = 0.05, and for some selected

values of (ω, c). The results are given in Table 6. The statistic shows good power

against departure from the Poisson model. In general, power increases as sample

size increases. Power also increases as either or both ω and c increase.

Table 5. Empirical levels of score test statistic Z5 for testing zero-inflation

and over-dispersion; data are simulated from P (µ) with no covariates; based

on 10,000 replications.

α n µ = 1.0 µ = 2.0 µ = 3.0

0.01 20 0.015 0.013 0.014

50 0.017 0.015 0.012

100 0.015 0.011 0.011

0.05 20 0.040 0.040 0.039

50 0.049 0.048 0.044

100 0.051 0.049 0.046

0.10 20 0.071 0.075 0.072
50 0.090 0.092 0.090

100 0.094 0.096 0.096

Table 6. Empirical power of score test statistic Z5 for testing zero-inflation

and over-dispersion; data are generated from zero-inflated NB(µ, c) distri-

bution; based on 10,000 replications; µ = 2.0; α = 0.05.

(ω, c)

n (0.01, 0.05) (0.05, 0.1) (0.05, 0.15) (0.05, 0.25) (0.1, 0.1) (0.1, 0.15) (0.1, 0.25) (0.15, 0.1) (0.15, 0.15) (0.15, 0.25)

20 0.074 0.161 0.213 0.345 0.218 0.282 0.419 0.300 0.376 0.497

50 0.098 0.277 0.397 0.627 0.431 0.551 0.745 0.604 0.706 0.841

100 0.135 0.472 0.644 0.876 0.712 0.827 0.955 0.878 0.936 0.985

7. Examples

Example 1. The data are from a prospective study of dental status of school-

children from Bohning, Dietz and Schlattmann (1999). The children were all

7 years of age at the beginning of the study. Dental status were measured by

the decayed, missing and filled teeth(DMFT) index. Only the eight deciduous

molars were considered so the smallest possible value of the DMFT index is

0 and the largest is 8. The prospective study was for a period of two years.

The DMFT index was calculated at the beginning and at the end of the study.

The DMFT index data at the beginning of the study are: (index, frequency):

(0,172), (1,73), (2,96), (3,80), (4,95), (5,83), (6,85), (7,65), (8,48). We now sepa-

rately fit the Poisson model(P), over-dispersed Poisson model (negative binomial
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model)(NB), zero-inflated Poisson model(ZIP) and zero-inflated negative bino-

mial model(ZINB) to the data. The values of the maximized log-likelihood under

these four models are −1998.88, −1833.86, −1761.20 and −1756.80 respectively,

which indicate that the zero-inflated negative binomial model fits the data far

better than other models. Note that the likelihood ratio statistic for testing the

fit of the zero-inflated Poisson model(ZIP) against the zero-inflated negative bi-

nomial model(ZINB)is 2(−1756.8 + 1761.2) = 8.8 which is highly significant on

the χ2(1) scale.

We now use the score tests to select an appropriate model for the data. The

values of the score test statistic for the goodness of fit of a model (such as the

Poisson model) against another model (such as the negative binomial model) are

given in Table 7. The tests overwhelmingly rejects the fit of all other models in

favour of the zero-inflated negative binomial model.

Table 7. Results of the goodness of fit tests (score tests) for the DMFT index
data.

Test Score statistic Score statistic
with no covariate (p-value) with covariates (p-value)

P vs NB 394.44(0.00000) 354.51(0.00000)
P vs ZIP 847.20(0.00000) 709.89(0.00000)

ZIP vs ZINB 7.87(0.00503) 6.67(0.00978)

NB vs ZINB 45.51(0.00000) 41.87(0.00000)

P vs ZINB 890.17(0.00000) 761.75(0.00000)

To see how covariates affect goodness of fit of the models we expanded the

above analysis to include the school variable. There were six treatments and

six schools. The six treatments were randomized to the six schools, so that all

children of a given school received the same treatment. Note in the previous

analysis µ, c and ω were all common for all treatment groups, whereas now

we have different µ’s, but common c and ω. The values of the maximized log-

likelihood under the four models P, NB, ZIP and ZINB are −1980.78, −1826.95,

−1756.33 and −1752.50 respectively. The values of the score test statistics are

given in the last column of Table 7. The conclusions here are essentially the same

as those obtained earlier.

Example 2. The data given in Berry (1987) pertain to twelve patients who

experienced frequent premature ventricular contractions (PVCs) and were ad-

ministered a drug with antiarrhythmic properties. One-minute EKG record-

ings were taken before and after drug administration. The PVCs were counted

on both recordings. The values of the maximized log-likelihood under bino-

mial(B), beta-binomial(BB), zero-inflated binomial(ZIB) and zero-inflated beta-

binomial(ZIBB) are −40.69, −19.18, −18.87 and −18.02 respectively. The values
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of the score test statistics are given in Table 8. The maximized log-likelihood val-

ues indicate that the zero-inflated beta-binomial model fits the data slightly bet-

ter than the zero-inflated binomial model, and fits the data far better than other

models. The values of the score test statistics and their corresponding p-values

indicate that either the zero-inflated binomial or the beta-binomial model ade-

quately fit the data. However, the value of the score test statistic for testing the fit

of the zero-inflated binomial model against the zero-inflated beta-binomial model

is smaller than that for testing the fit of the beta-binomial model against the zero-

inflated beta-binomial model. Therefore, the zero-inflated binomial model is the

model of choice for the data.

Table 8. Results of the goodness of fit tests (score tests) for the PVC counts

data.

Test Score statistic p-value

B vs BB 236.4964 0.0000

B vs ZIB 931.0414 0.0000

ZIB vs ZIBB 1.2883 0.2564
BB vs ZIBB 1.6997 0.1613

B vs ZIBB 990.2721 0.0000

Acknowledgement

This research was partially supported by the Natural Science and Engineering Re-

search Council of Canada. The editor and two referees made helpful suggestions which

have improved the presentation of the paper.

Appendix A. Proofs

A.1. Information matrix

Partition the Fisher information matrix I(β, τ, γ) for the parameters β, τ and γ as

I(β, τ, γ) =





Iββ Iβτ Iβγ

Iτβ Iττ Iτγ

Iγβ Iγτ Iγγ



 ,

where Iββ , Iγγ , Iβγ , Iγγ , Iγτ and Iβτ are p× p, 1× 1, 1× p, 1× 1, 1× 1 and 1× p matrices

respectively and have usual meanings. To obtain the elements of the matrix I(β, τ, γ),

we first obtain the first and the second partial derivatives of the log likelihood function

li(γ, τ, θi; yi) with respect to the parameters γ, τ, θi.

∂li
∂γ

=
−1

1 + γ
+ I{yi=0}

1

γ + f0

,
∂li
∂τ

= I{yi=0}
f0

γ + f0

∂D
∂τ

1 + D
+ I{yi>0}

∂D
∂τ

1 + D
,

∂li
∂θi

= I{yi=0}
f0

γ + f0

[

− g′ +
∂D
∂θi

1 + D

]

+ I{yi>0}[a
′yi − g′] + I{yi>0}

∂D
∂θi

1 + D
,
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∂2li
∂γ2

=
1

(1 + γ)2
− I{yi=0}

1

(γ + f0)2
,

∂2li
∂τ∂γ

= −I{yi=0}
f0

(γ + f0)2

∂D
∂τ

1 + D
,

∂2li
∂θ2

i

=
−I{yi=0}

(γ + f0)2

[

f0(−g′) + f0

∂D
∂θi

1 + D

]2

+
f0I{yi=0}

γ + f0

[

(−g′ +
∂D
∂θi

1 + D
)2 − g′′

]

+
f0I{yi=0}

γ + f0

[

∂2D
∂θ2

i

1 + D
+

−( ∂D
∂θi

)2

(1 + D)2

]

+ I{yi>0}

[

(a′′yi−g′′) +

∂2D
∂θ2

i

1 + D
+
−( ∂D

∂θi

)2

(1+D)2

]

,

∂2li
∂τ2

= I{yi=0}
−f2

0

(γ + f0)2

( ∂D
∂τ

1 + D

)2

+ I{yi=0}
f0

γ + f0

∂2D
∂τ2

1 + D

+I{yi>0}

[ (∂D
∂τ

)2

(1 + D)2
+

∂2D
∂τ2

1 + D

]

,

∂2li
∂θi∂γ

= −I{yi=0}
f0

(γ + f0)2

(

− g′ +
∂D
∂θi

1 + D

)

,

∂2li
∂θi∂τ

=
I{yi=0}f0

∂D
∂τ

(γ + f0)(1 + D)

(

− g′ +
∂D
∂θi

1 + D

)

+
I{yi=0}f0

γ + f0

[

∂2D
∂θi∂τ

1 + D
+

−∂D
∂τ

∂D
∂θi

(1 + D)2

]

,

+
−I{yi=0}f

2

0

∂D
∂τ

(1 + D)(γ + f0)2

[

− g′ +
∂D
∂θi

1 + D

]

+ I{yi>0}

[

∂2D
∂θi∂τ

1 + D
+

−∂D
∂τ

∂D
∂θi

(1 + D)2

]

.

A.2. Proof of Theorems

We give the proof of Theorem 3.1. Let U be an n × p matrix with ir-element
∂θi/∂βr, 1 an n× 1 unit vector, W τ

1
, W τ

2
and W τ

3
be diagonal matrices with ith element

W τ
1i, W

τ
2i and W τ

3i respectively. Then, using the results in Section A.1, we obtain

Sτ
i (θi, γ) =

∂li
∂τ

|τ=0 = −γI{yi=0}

γ + f0

+
1

2
bD2,

W τ
1i = E{−∂2li

∂θ2

i

}|τ=0 = g′′ − a′′Eyi −
f0γ

(γ + f0)(1 + γ)
g′2 − γ

1 + γ
g′′,

W τ
2i = E{− ∂2li

∂θi∂γ
}|τ=0 = − f0

(γ + f0)(1 + γ)
g′,

W τ
3i = E{− ∂2li

∂θi∂τ
}|τ=0 = [

1

2
g′bD2

f0γ

(γ + f0)(1 + γ)
+

1

2
(bD2)

′ γ

1 + γ
]|yi=0 −

1

2
E[(bD2)

′],

Iτ
ττ =

∑

[
1

4
E(bD2)

2 − (γ2 + 2f0γ)

(γ + f0)(1 + γ)
(
1

2
bD2)

2|yi=0],

Iτ
γγ =

∑ 1 − f0

(1 + γ)2(γ + f0)
|yi=0, Iτ

γτ =
∑

1

2
bD2f0

(γ + f0)(1 + γ)
|yi=0.

From the Fisher information matrix, the asymptotic variance of the likelihood score
Sτ =

∑n
i=1

((1/2)bD2 − (γI{yi=0}/(γ + f0)) is

Vτ = Iτ
ττ − (1T W τ

3 U, Iτ
τγ)

(

UT W τ
1 U UT W τ

2 1

1T W τ
2
U Iτ

γγ

)−1(

UT W τ
3 1

Iτ
γτ

)

.
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Then, the score test statistics for testing H0: τ =0 is Ŝ2
τ/V̂τ , where Ŝτ =Sτ (θ̂1, . . . , θ̂n; γ̂),

V̂τ = Vτ (θ̂1, . . . , θ̂n; γ̂) and θ̂i and γ̂ are the maximum likelihood estimates of θi and γ
under the zero-inflated generalized linear model, which, under mild regularity conditions,
has, asymptotically, a χ2 distribution with one degree of freedom.

Proofs of Theorem 3.2 and Theorem 3.3 are omitted as these follow similar steps as
those above.

References

Barnwal, R. K. and Paul, S. R. (1988). Analysis of one-way layout of count data with negative
binomial variation. Biometrika 75, 215-222.

Bartoo, J. B. and Puri, P. S. (1967). On optimal asymptotic tests of composite statistical
hypothesis. Ann. Math. Statist. 38, 1845-52.

Berry, D. A. (1987). logarithmic transformations in ANOVA. Biometrics 43, 439-56.

Bohning, D., Dietz, E. and Schlattmann, P. (1999). The zero-inflation Poisson and the decayed,
missing and filled teeth index in dental epidemiology. J. Roy. Statist. Soc. Ser. A 162,

195-209.
Breslow, N. (1990). Tests of hypotheses in over-dispersed Poisson regression and other quasi-

likelihood models. J. Amer. Statist. Assoc. 85, 565-571.

Broek, V. J. (1995). A score test for zero inflation in a Poisson distribution. Biometrics 51,
738-743.

Chesher, A. (1984). Testing of neglected heterogeneity. Econometrika 52, 865-872.
Cox, D. R. (1983). Some remarks on overdispersion. Biometrika 70, 269-274.
Dean, C. B. (1992). Testing for overdispersion in Poisson and binomial regression models, J.

Amer. Statist. Assoc. 87, 451-457.
Deng, D. and Paul, S. R. (2000). Score tests for zero-inflation in generalized linear models.

Canad. J. Statist. 27, 563-570.

Lindsay, B. G. and Roeder, K. (1992). Residual diagnostics for mixture models. J. Amer.

Statist. Assoc. 87, 785-794.

Neyman, J. (1959). Optimal asymptotic tests for composite hypothesis. In Probability and

Statistics: The Harold Cramer Volume (Edited by U. Grenander), Wiley, New York.
Neyman, J. and Scott, E. L. (1966). On the use of C(α) Optimal tests of composite hypotheses.

Bull. Inst. Internat. Statist. 41, 477-497.
Paul, S. R. and Banerjee, T. (1998). Analysis of two-way layout of count data involving multiple

counts in each cell. J. Amer. Statist. Assoc. 93, 1419-1429.

Rao, C. R. (1947). Large sample tests of statistical hypotheses concerning several parameters
with applications to problems of estimation. Proc. Cambridge Philosophical Society 44,

50-57.
Ridout, M., Hinde, J. and Demetrio, C. G. B. (2001). A score test for testing a zero-inflated

Poisson regression model against zero-inflated negative binomial alternatives. Biometrics

57, 219-223.
Thall, P. F. (1992). Score tests in the two-way layout of counts. Comm. Statist. Theory

Methods 21, 3017-3036.

Department of Mathematics and Statistics, University of Regina, Sask., Canada.

E-mail: deng@math.uregina.ca

Department of Mathematics and Statistics, University of Windsor, Ont., Canada.

E-mail: smjp@uwindsor.ca

(Received November 2002; accepted March 2004)


	1. Introduction
	2. The Zero-Inflated Over-Dispersed Generalized Linear Model
	3. Model Selection in the Zero-Inflated Over-Dispersed Generalized Linear Model
	4. Score Test for Poisson Data
	4.1. Testing for over-dispersion
	4.2. Testing for zero-inflation
	4.3. Testing for over-dispersion and zero-inflation

	5. Score Test for Binomial Data
	5.1 Testing for over-dispersion
	5.2. Testing for zero-inflation
	5.3. Testing for over-dispersion and zero-inflation

	6. Simulations
	6.3. Testing for over-dispersion and zero-inflation in Poisson data

	7. Examples
	Appendix A. Proofs

