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Abstract: This article considers testing the hypothesis of Generalized Linear Models

(GLM) versus general smoothing spline models for data from exponential families.

The tests developed are based on the connection between smoothing spline models

and Bayesian models (Gu (1992)). They are extensions of the locally most powerful

(LMP) test of Cox, Koh, Wahba and Yandell (1988), the generalized maximum like-

lihood ratio (GML) test and the generalized cross validation (GCV) test of Wahba

(1990) for Gaussian data. Null distribution approximations are considered and

simulations are done to evaluate these approximations. Simulations show that the

LMP and GML tests are more powerful for low frequency functions while the GCV

test is more powerful for high frequency functions, which is also true for Gaussian

data (Liu and Wang (2004)). The tests are applied to data from the Wisconsin

Epidemiology Study of Diabetic Retinopathy, the results of which confirm and pro-

vide more definite analysis than those of previous studies. The good performances

of the tests make them useful tools for diagnosis of GLM.
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imum likelihood, locally most powerful test, hypothesis test, reproducing kernel
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1. Introduction

Generalized Linear Models (GLM) are widely used to model responses with

distributions from exponential families (McCullagh and Nelder (1989)). These

models assume that the mean of the response variable depends parametrically

on covariates. Sometimes these parametric models are too restrictive and the

parametric forms need to be verified to avoid misleading results. In this pa-

per, we propose and compare three methods for testing GLM versus a general

nonparametric alternative.

We use smoothing splines to model the alternative. For Gaussian data,

Cox, Koh, Wahba and Yandell (1988) showed that there is no uniformly most

powerful (UMP) test, and they proposed a locally most powerful (LMP) test.

Wahba (1990, Chap. 6) proposed two tests based on the generalized maximum

likelihood (GML) and generalized cross validation (GCV) scores. Simulations
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indicate that the LMP and GML tests are more powerful for detecting departure

in the form of low frequency functions and that the GCV test is more powerful

for high frequency functions (Liu and Wang (2004)). For data from exponential

families, Zhang and Lin (2003) developed the score test under the semiparametric

additive mixed model. When the data are Gaussian, the score test is exactly the

same as the LMP test. Xiang and Wahba (1995) developed the symmetrized

Kullback-Leibler (SKL) test based on the SKL distance between the functions

estimated under the null and the alternative hypothesis. The SKL test has quite

different characteristics from the GML, GCV and LMP tests (Liu and Wang

(2004)). It is not considered further in this paper.

In this paper, we extend the GML, GCV and LMP tests to data from expo-

nential families. The extension of the LMP test turns out to be a special case

of the score test of Zhang and Lin (2003), while the GML and GCV tests are

new for data from exponential families. Simulations show that the comparative

behaviors of the tests for Gaussian data (Liu and Wang (2004)) remain true for

data from exponential families. A motivating example is given in Section 2. In

Section 3, a brief introduction to smoothing spline models for exponential fami-

lies is given. In Section 4, we present our tests. Simulations and the application

of the tests to the motivating example are in Sections 5 and 6.

2. A Motivating Example

The Wisconsin Epidemiology Study of Diabetic Retinopathy (WESDR) data

comes from a sample of 2990 diabetic patients selected from an 11-county area

in southern Wisconsin (Klein, Klein, Moss, Davis and DeMets (1988) and Klein,

Klein, Moss, Davis and DeMets (1989)). We are interested in the younger on-

set group which consists of 256 insulin-dependent patients diagnosed as having

diabetes before age 30. None of the patients had diabetic retinopathy at the

baseline. At the follow-up examination, all 256 patients were checked to see

whether they had diabetic retinopathy. The response y = 1 if an individual had

diabetic retinopathy at the follow-up and y = 0 otherwise. Several covariates

were recorded. We only list the variables pertinent to our analysis: x1, age in

years at the time of baseline examination; x2, duration of diabetes at the time

of baseline examination; x3, a measure of hyperglycaemia; x4, systolic blood

pressure in millimeters of mercury.

Wang (1994) considered five models including a GLM model (model II there):

logit{P (y = 1|x1, x2, x3, x4)} = α0 + α1x1 + α2x1
2 + β1x2 + β2x3 + β3x4, (1)

and an additive model (model IV):

logit{P (y = 1|x1, x2, x3, x4)} = f(x1) + β1x2 + β2x3 + β3x4, (2)
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where f is a smooth function. Note that the intercept in (2) is absorbed into

f . Based on a leave-out-one cross validation estimate of Kullback-Leibler dis-

crepancy and mean squared error, Wang (1994) concluded that (2) gives the best

prediction and (1) gives almost as good prediction as (2). It is then natural to ask

if f(x1) in (2) is significantly better than the more parsimonious quadratic func-

tion in (1) from a hypothesis testing point of view. Figure 1 shows the estimate of

f in (2) using a cubic smoothing spline and the corresponding 95% Bayesian con-

fidence interval. For comparison, we also plot the constant, estimate of α0 from

(1) with α1 = α2 = 0, and the quadratic age effect, α̂0 + α̂1x1 + α̂2x
2
1, from (1).

Bayesian confidence intervals are often used for inference and model building

in the smoothing spline literature. However, it is well-known that the cover-

age of these Bayesian confidence intervals is neither simultaneous nor pointwise

(Wahba (1990) and Wang and Wahba (1995)). Therefore, they usually do not

provide a definite conclusion. In Figure 1, the 95% confidence interval contains

the quadratic effect function which seems to suggest that f is not significantly

different from a quadratic. Furthermore, the 95% confidence interval contains the

constant which seems to suggest that the age effect is not significant, a conclu-

sion made in Klein, Klein, Moss, Davis and DeMets (1988) based on fitting GLM

models with a linear age effect only. Assuming the other three covariates have

linear effects, we will examine the form of the age effect with the tests developed

in this paper.
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Figure 1. Estimates of the age main effect f in model (2) (solid line) using a

cubic smoothing spline and 95% Bayesian confidence interval (dotted lines).

The estimate of α0 setting α1 = α2 = 0 is plotted as the long-dashed line.

The quadratic age effect in model (1) is plotted as the short-dashed line.
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3. Smoothing Spline Models for Exponential Families

In this section we briefly review smoothing spline models for exponential

families, their corresponding Bayesian models and connections with generalized

linear mixed effects models.

Let yi, i = 1, . . . , n, be responses with density from the exponential family

p(yi|ξi, σ
2) = exp

{

(yiξi − h(ξi))/ai(σ
2) + ci(yi, σ

2)
}

, (3)

where ξi is the canonical parameter and σ2 is the dispersion parameter. Let ti,

i = 1, . . . , n, be measurements of covariates t ∈ T , where T is an arbitrary set,

either univariate or multivariate. Denote µi = E(yi|ti) = h′(ξi), i = 1, . . . , n.

Let µ = (µ1, . . . , µn)′ and y = (y1, . . . , yn)′. Our goal is to investigate how

µ = E(y|t) depends on t. Specifically, we assume that g(µ) = f(t) where g is a

known link function and the unknown f models the covariate effects. We assume

that f ∈ H, a Reproducing Kernel Hilbert Space (RKHS) on T . Usually H can

be decomposed as H = H0 ⊕ H1 where H0 = span {φ1(t), . . . , φM (t)}, a finite

dimensional space, and H1 is a RKHS with a reproducing kernel, say, R1 on

T × T . For example, for polynomial splines on T = [0, 1],

H = Wm =
{

f |f, . . . , f (m−1) are absolutely continuous, f (m) ∈ L2[0, 1]
}

. (4)

Wm can be decomposed to the direct sum of H0 = span {φ1(t), . . . , φm(t)} with

φν(t) = tν−1/(ν − 1)!, ν = 1, . . . ,m, and a RKHS with reproducing kernel

R1
m(s, t) =

∫ min(s,t)

0
(s − u)m−1(t − u)m−1du/((m − 1)!)2. (5)

We assume that ai(σ
2) = σ2/$i, where σ2 is a dispersion parameter which may

be unknown and the $i’s are known weights. Let fi = f(ti) and f = (f1, . . . , fn)′.

Denote the likelihood of y given f as p(y|f) = exp
{

−σ−2l(y|f)
}

, where

l(y|f) = −
n
∑

i=1

$i {yiξi − h(ξi)} − σ2
n
∑

i=1

ci(yi, σ
2). (6)

The smoothing spline estimate of f , f̂λ, is defined as the minimizer of the penal-

ized log likelihood (Gu (1992) and Wahba, Wang, Gu, Klein and Klein (1995)):

l(y|f) + (n/2)λ‖P1f‖
2, (7)

where P1 is the orthogonal projection of f onto H1 and λ is a smoothing pa-

rameter controlling the trade-off between the smoothness of the estimate and the

goodness of fit.
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The minimizer of (7) takes the form

f̂λ(t) =
M
∑

i=1

diφi(t) +
n
∑

i=1

ciR
1(t, ti) , (8)

where c = (c1, . . . , cn)′ and d = (d1, . . . , dM )′ can be calculated by the Newton-

Raphson procedure (Gu (1992) and Wahba et al. (1995)).

Wahba (1978) established a connection between the smoothing spline models

and a Bayesian model, which was used later in developing the GML, LMP and

GCV tests for Gaussian data (Cox, Koh, Wahba and Yandell (1988) and Wahba

(1990)). Gu (1992) extended this connection to data from exponential families.

Consider the following prior for f :

F (t) =
M
∑

i=1

θiφi(t) + b
1

2 Z(t), (9)

where θ = (θ1, . . . , θM )′∼N(0, aI), Z(t) is a Gaussian process independent of θ

with E(Z(t)) = 0 and E(Z(s)Z(t)) = R1(s, t). Let b = σ2/nλ and a → ∞. The

posterior distribution of F (t) can be approximated by a Gaussian distribution

with mean f̂λ given at (8) (Gu (1992)).

The connection between smoothing spline models and linear mixed effect

models for Gaussian data has been well established (Wang (1998)). We now

extend this connection to non-Gaussian data. Let Tn×M = {φν(ti)}
n
i=1

M
ν=1 and

Σn×n =
{

R1(ti, tj)
}n

i=1
n

j=1
. Consider the following generalized linear mixed effect

model (GLMM) (Breslow and Clayton (1993)):

g(E(y|c)) = Td + Σc, (10)

where d is a vector of fixed effects, c is a vector of random effects and c ∼

N(0, bΣ+) with Σ+ being the Moore-Penrose generalized inverse of Σ. It is easily

seen that nλ‖P1f‖
2 = nλc′Σc = bnλc′(bΣ+)+c = σ2c′(bΣ+)+c (Wahba(1990,

Chap. 1)). Therefore, the penalized likelihood (7) for the spline model is the same

as the penalized quasi-likelihood (PQL) (Breslow and Clayton (1993, equation

(6))) for the GLMM model (10) up to a multiplying constant σ2.

4. Hypothesis Tests

We are interested in testing a parametric model for f ∈ H. As in Xiang and

Wahba (1995), we can decompose H = H0 ⊕H1 under a suitably defined norm

in such a way that H0 is the model space of the parametric model. Therefore,

we consider the hypothesis

H0 : f ∈ H0, H1 : f ∈ H and f /∈ H0, (11)
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where H0 = span {φν , ν = 1, . . . ,M}.

It is easy to see that λ = ∞ in (7), equivalently b = 0 in (9) or (10), leads

to f ∈ H0. Thus (11) can be represented in either of the following ways:

H0 : λ = ∞, H1 : λ < ∞; (12)

H0 : b = 0, H1 : b > 0. (13)

In the following, we develop the GML and LMP tests for (13) based on the

marginal density of y under the Bayesian model, and the GCV test based on the

GCV criteria (Wahba et al. (1995)).

4.1. Marginal density of y and its approximation

Notice that under (9), f|θ ∼ N(Tθ, bΣ). Let q(f) be the unconditional

density of f assuming a flat prior for θ. Gu (1992) finds that

q(f) ∝ b−
n−M

2 |Σ|−
1

2 |T ′Σ−1T |−
1

2 exp

(

−
1

2b
f′Bf

)

,

where B = Σ−1 − Σ−1T (T ′Σ−1T )−1T ′Σ−1. We include part of the normalizing

term ignored in Gu (1992) because it depends on b, the parameter of interest for

our hypothesis. When b = 0, f has a flat prior and q(f) ∝ 1.

The marginal density of y is

p(y) =

∫

p(y|f)q(f)df. (14)

The integral in (14) usually does not have a closed form since l(y|f) in (6)

is not quadratic in f. Similar to Gu (1992), we use the Laplace method to

approximate the integral. Let f̂ be the mode of p(y|f)q(f). Gu (1992) showed

that f̂ = (f̂λ(t1), . . . , f̂λ(tn))′ where f̂λ(t) is given in (8).

Let u = (u1, . . . , un)′ = ∂l/∂f with ui = −$i(yi − µi) {h
′′(ξi)g

′(µi)}
−1, and

W = ∂2l/∂f∂f′ = diag(w1, . . . , wn) with wi = $i
{

h′′(ξi)(g
′(µi))

2
}−1

− $i(yi −

µi)∂ {h′′(ξi)g
′(µi)}

−1 /∂fi. Here l denotes l(y|f). Since the second term in wi has

expectation 0, it is ignored in the remainder of the paper (Breslow and Clayton

(1993)). Let Wc and uc be W and u evaluated at f = f̂λ. Let yc = f̂ − W−1
c uc

be the adjusted working variable. Expanding l(y|f) around f̂ leads to

l(y|f) ≈
1

2
(f− yc)

′Wc(f − yc) + C,

where C = l(y|̂f) − (1/2)uc
′W−1

c uc is independent of f.
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Some algebra (Appendix A) shows that, approximately,

p(y) ∝ C0|V |−
1

2 |T ′V −1T |−
1

2 exp

{

−
1

2
y′

c(V
−1 − V −1T (T ′V −1T )−1T ′V −1)yc

}

,

(15)

where V = bΣ + σ2W−1
c and C0 = (2π)n/2σn exp(−σ−2C)|Wc|

−1/2. It is easy to

verify that, aside from C0, (15) is proportional to the restricted log likelihood

for variance component b based on (10) (Equation (13) after plugging in (10) in

Breslow and Clayton (1993)). Let ỹ = W
1/2
c yc, Σ̃ = W

1/2
c ΣW

1/2
c , T̃ = W

1/2
c T

and the QR decomposition of T̃ be (Q̃1 Q̃2)(R̃ 0)′. Let UDU ′ be the spectral

decomposition of Q̃′
2Σ̃Q̃2 where D = diag(λνn, ν = 1, . . . , n−M), and each λνn is

an eigenvalue with λ1n ≥ λ2n ≥ · · · ≥ λn−M n. Let z = (z1, . . . , zn−M )′ = U ′Q̃′
2ỹ.

Following arguments similar to the derivations below Corollary 2.1 in Gu (1992)

and Appendix B, (15) can be shown to be equivalent to

p(y) ∝ C1

n−M
∏

ν=1

(bλνn + σ2)−
1

2 exp

{

−
1

2

n−M
∑

ν=1

z2
ν

bλνn + σ2

}

, (16)

where C1 = (2π)n/2σn exp(−σ−2C)|R̃|−1. Notice that λνn and zν depend on b,

and C1 depends on both σ2 and b. C1 can be further approximated using the

techniques in Breslow and Clayton (1993). First it is easy to see that u′
cW

−1
c uc

is the Pearson chi-square statistic. Let ls(y) denote (6) for the saturated model,

where µ is estimated by the data y. Thus in ls(y), ξi is the solution to the

equation yi = µi = h′(ξi). Replacing the Pearson chi-square statistic by the

deviance, 2(l(y|̂f) − ls(y)), we have

C1 ≈ (2π)
n

2 σn exp

(

−
1

σ2
ls(y)

)

|R̃|−1. (17)

As in Breslow and Clayton (1993), we ignore the dependence of Wc on b. As a

result, we treat both R̃ and C1 as independent of b. However, C1 in (17) still

depends on σ2. Therefore, we distinguish between σ2 known and unknown.

4.2. GML and LMP tests with known σ2

For most applications, the dispersion parameter σ2 is known. For example

σ2 = 1 for Binomial and Poisson data without over- and under-dispersion. In

such cases, we denote p(y) as L(b|y) and define the GML statistic as

tGML =
L(0|y)

supb L(b|y)
. (18)

To compute tGML, apply (16) and (17) to both the numerator and the denomina-

tor. The terms C1 in the numerator and denominator are canceled since they are
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independent of b. However, the dependence of λνn and zν on b makes it difficult

to use (16) directly. Therefore, we propose the following further approximation.

Let b̂ = σ2/nλ̂, where λ̂ is any smoothing parameter estimate in (7) (Wahba

et al. (1995), Lin, Wahba, Xiang, Gao, Klein and Klein (2000), Wood and Kohn

(1998) and Gu and Xiang (2001)). Let λ̃νn and z̃ν be λνn and zν evaluated at b̂.

According to (16), we consider z̃ = (z̃1, . . . , z̃n−M )′ as

z̃ ∼ N(0, bD̃ + σ2I), (19)

where D̃ = diag(λ̃νn). Let b̃ be the maximizer of the likelihood of z̃ based on (19).

We then approximate the denominator in (18) with the maximized likelihood of

z̃. Let ž = (ž1, . . . , žn−M ) denote z under the null hypothesis. Finally, the GML

test statistic is approximated by

tGML ≈

∏n−M
ν=1 (b̃λ̃νn + σ2)

1

2 exp
{

1
2

∑n−M
ν=1 z̃2

ν/(b̃λ̃νn + σ2)
}

exp
{

1
2

∑n−M
ν=1 ž2

ν/σ
2
} , (20)

where a constant is dropped. Note that this form of tGML is different from the

Gaussian case in Wahba (1990) because σ2 is known here.

The LMP test statistic is tLMP = (∂/∂b)log L(b|y)|b=0. Again, the approx-

imation (16) with C1 in (17) is used for L(b|y). Since the LMP test is defined

assuming the null hypothesis is true, we further approximate (16) with zν and

λνn replaced by žν and λ̌νn, calculated under the null hypothesis. Then the test

statistic is approximated by

tLMP ≈
n−M
∑

ν=1

λ̌νnž2
ν − σ2

n−M
∑

ν=1

λ̌νn, (21)

where a multiplying constant 1/2σ4 is dropped. Each λ̌νn depends on data solely

through Wc. Assuming Wc varies very slowly as a function of the mean (Breslow

and Clayton (1993)), we drop the last term in (21) and finally we have

tLMP ≈
n−M
∑

ν=1

λ̌νnž2
ν . (22)

4.3. GML and LMP tests with unknown σ2

We use L(b, σ2|y) to denote p(y) subsequently. For the GML test, we extend

the definition to

tGML =
supσ2 L(0, σ2|y)

supb,σ2 L(b, σ2|y)
. (23)
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Again, (16) and (17) can be used to approximate L(b, σ2|y). However, the de-

pendence of C1 on σ2 makes it difficult to obtain an explicit formula for (23).

In general, one may use numerical methods to compute it based on the approx-

imations. In the following we derive explicit formulas for two important special

cases.

The first special case includes all distributions in the exponential family with

C1 in (17) independent of σ2, or nearly so. It is easy to check that both Gaussian

and Inverse Gaussian distributions have C1 independent of σ2 (see Appendix C

for a proof for the Inverse Gaussian distribution). In this case we may again

approximate L(b, σ2|y) by the normal density function in (19). Following the

same steps as in the Gaussian case (Wahba (1990)), one can show that the GML

test in (23) is approximated by

tGML =

∑n−M
ν=1 z̃2

ν/(λ̃νn + nλGML)

Πn−M
ν=1 (λ̃νn + nλGML)−

1

n−M

1
∑n−M

ν=1 ž2
ν

, (24)

where λGML, the Generalized Maximum Likelihood (GML) estimate of λ, is the

minimizer of

M(λ) =

∑n−M
ν=1 z̃2

ν/(λ̃νn + nλ)

Πn−M
ν=1 (λ̃νn + nλ)−

1

n−M

.

Another special case is the Gamma distribution where C1 depends on σ2.

In this case, the GML test (23) can be simplified by profiling the likelihood

L(b, σ2|y). It is shown in Appendix D that, when σ2 is small, the GML test

statistic (23) can be approximated by

tGML ≈
infλ Πn−M

ν=1 (λνn/nλ + 1)
1

2 σ̂n−M
λ exp(nσ̂2

λ/6)

σ̂n−M
∞ exp(nσ̂2

∞/6)
, (25)

where σ̂2
λ = [9(1 −M/n)2 + 6

∑n−M
ν=1 z2

ν/(λνn/λ + n)]1/2 − 3(1−M/n) and σ̂2
∞ =

[9(1 − M/n)2+6
∑n−M

ν=1 ž2
ν/n]1/2 − 3(1 − M/n).

To extend the LMP test statistic, let σ̂2 be any consistent estimate of σ2.

Define I∗∗ = −E(∂2 log L(b, σ2)/∂∗∗)|b=0,σ2=σ̂2 for each combination ∗∗ of b and

σ2, with the expectation taken under the null hypothesis. Let I bb(0, σ̂2) = (Ibb −

Ibσ2I−1
σ2σ2I

′
bσ2)

−1. We extend the LMP test statistic as (Cox and Hinkley (1974,

Chap. 9))

tappLMP =
√

Ibb(0, σ̂2)
∂

∂b
log L(b, σ̂2|y)|b=0.

The extra square root term is used to account for the fact that σ2 is estimated.

Again, we approximate the likelihood L(b, σ2|y) by (16) with C1 given in (17)

which is independent of b. Since the test statistic is defined under the null
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hypothesis, we further approximate the likelihood by replacing zν and λνn by žν

and λ̌ν respectively. Then the test statistic becomes

tappLMP ≈

√

Ibb(0, σ̂2)

2σ̂2

(

1

σ̂2

n−M
∑

ν=1

λ̌νnž2
ν −

n−M
∑

ν=1

λ̌νn

)

. (26)

In the following, we estimate σ2 using

σ̂2 =
1

n − M

n−M
∑

ν=1

ž2
ν . (27)

Simple derivations show that

Ibb =
1

2σ̂4

n−M
∑

ν=1

λ̌2
νn, Ibσ2 =

1

2σ̂4

n−M
∑

ν=1

λ̌νn,

Iσ2σ2 =
n − M

2σ̂4
− E

(

∂2 log C1

∂(σ2)2

)∣

∣

∣

∣

∣

b=0,σ2=σ̂2

.

For distributions with C1 independent of σ2, for example the Gaussian and In-
verse Gaussian distributions, ∂2 log C1/∂(σ2)2 = 0. Thus by definition

Ibb(0, σ̂2) = 2σ̂4
(

n−M
∑

ν=1

λ̌2
νn −

1

n − M

(

n−M
∑

ν=1

λ̌νn

)2)−1
.

Now plug the above formula into (26). By the same argument presented in
Section 4.2, we drop the terms in (26) which depend on λ̌νn’s only and the test
statistic becomes

tappLMP ≈
n−M
∑

ν=1

λ̌νnž2
ν

/

n−M
∑

ν=1

ž2
ν . (28)

This test statistic is a special case of the score test of Zhang and Lin (2003)
for (11) under the semiparametric additive mixed models, but with a different
derivation.

For distributions with C1 dependent on σ2, E
(

∂2 log C1/∂(σ2)2
)

|b=0,σ2=σ̂2

needs to be calculated and plugged into (26) through Ibb(0, σ̂2). For the Gamma
distribution, from (36) in Appendix D, we have ∂2 log C1/∂(σ2)2 ≈ 0 when σ2

is small. Thus the approximate LMP test (28) can also be used for the Gamma
distribution.

4.4. GCV test

For λ < ∞, the GCV function at convergence is (Wahba et al. (1995))

V (λ) =

∑n−M
ν=1 z̃2

ν/(1 + λ̃νn/nλ)2

[
∑n−M

ν=1 1/(1 + λ̃νn/nλ)]2
. (29)
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Let λGCV be the minimizer of V (λ), which is the GCV estimate of the smoothing

parameter. For λ = ∞ which corresponds to fitting the GLM under H0, z̃ = ž

and (29) reduces to V (∞) =
∑n−M

ν=1 ž2
ν/(n−M). As in the Gaussian case (Wahba

(1990, Chap. 6)), we define the GCV test statistic as tGCV = V (λGCV)/V (∞).

Dropping a multiplying constant, we have

tGCV =

∑n−M
ν=1 z̃2

ν/(1 + λ̃νn/nλGCV)2

[
∑n−M

ν=1 1/(1 + λ̃νn/nλGCV)]2
1

∑n−M
ν=1 ž2

ν

. (30)

The GCV test does not require σ2 to be known. Thus it can be applied when σ2

is known or unknown.

4.5. Null distributions

We reject H0 when tGML or tGCV is too small, or when tLMP or tappLMP is

too large. In the Gaussian case the null distributions of the test statistics do

not depend on nuisance parameters (Liu and Wang (2004)). However, in the

general class of exponential families, the null distributions of the test statistics

depend on the true null function f0(t) =
∑M

i=1 diφi(t), and thus depend on nui-

sance parameters d. They also depend on σ2 when it is unknown. Therefore,

it is difficult to obtain analytic results for the null distributions. Xiang and

Wahba (1995) proposed the following bootstrap procedure to approximate the

null distributions.

1. Fit the observed data with the model under H0.

2. Generate bootstrap samples using the fitted model under H0.

3. Calculate test statistics based on these bootstrap samples which form empir-

ical null distributions.

Such a bootstrap procedure usually provides good approximations to the

exact null distributions (Xiang and Wahba (1995)), and it can be used here.

However, it is computationally intensive. We propose the following alternative

null distribution approximation method, which applies to all tests except for (25).

First note that for any observed data, once the hypothesis and H0 and H1 are

decided, T and Σ are known and remain unchanged. We calculate Wc from the

observed data, followed by λ̃νn and λ̌νn for ν ∈ {1, . . . , n − M}. According to

(19), we then generate z̃ and ž from N(0, I) under the null hypothesis b = 0.

Note that for convenience, σ2 is set to be 1 since when σ2 is unknown, all the

tests except (25) are transformation invariant to σ2. For each set of generated z̃,

the estimated smoothing parameters b̃, λGCV and λGML are calculated. We then

calculate the test statistics based on each realization of z̃ and ž. By repeating

this process many times, we obtain empirically approximated null distributions.

We investigate these approximations through simulation in Section 5.
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5. Simulations

Two sets of simulations are presented. The first set considers Binomial data

and the second considers Gamma data. In the first simulation, cubic smoothing

splines (m=2 in (4)) are used. Let n = 100 and ti = (i− 1)/(n− 1), i = 1, . . . , n.

We generate Binomial data yi ∼ b(k, p(ti)), i = 1, . . . , n, with two choices of k:

k = 1 (Binary) and k = 4, and the following choices of f(t) = logit(p(t)):

f(t) = t + a(t − 0.5)2, (31)

f(t) = a(2t − 1)3 − 2t, (32)

f(t) = 1 + t + a cos(6πt). (33)

These three models are chosen to represent functions with increasing frequencies

as illustrated in the top row of Figure 2. Four values of a are chosen for each form

of model: a = 0, 3, 5 and 7 for (31), a = 0, 1.5, 3 and 5 for (32) and a = 0, 0.5,

1 and 1.5 for (33). We are testing whether each of these models is significantly

different from a linear model: H0: f ∈ span{1, t}. Thus H0 is true when a = 0.

Models with larger values of a are further away from H0. It is therefore desirable

that the null hypothesis be rejected more often for larger a.

In Section 4.5 we noted the dependence of the null distributions on d and

σ2. If they were known, we could generate samples y from the true null model

and compute test statistics. Repeating this process would give us empirical

null distributions. The p-values calculated from these true empirical null distri-

butions could then serve as a benchmark for the p-values calculated from the

approximated null distribution as described in Section 4.5. The true models

(31), (32) and (33) are known completely in the simulations. However, they do

not belong to the linear space H0 when a > 0, and the corresponding true null

model is not readily available. In the following, we use the projection of the

true function f onto H0 as its null model (Xiang and Wahba (1995)), which we

call the proxy null model. For any f /∈ H0, take the proxy null model to be

f∗ = argming∈H0
RKL(g|f), where

RKL(g|f) =

∫

T

(h(g(t)) − Ef (y|t)g(t)) d(t)dt

is the relative Kullback-Leibler (RKL) distance with h(·) as defined in (3) and

d(t) as the sampling density of t. Xiang and Wahba (1995) showed that the

GLM estimate of f under H0 converges to f ∗ as n → ∞. Thus f ∗ can be

used as the proxy null model for f . Note that f ∗ usually does not equal the

function obtained by simply setting a = 0. In our simulations, we calculate f ∗

as f∗ = argming∈H0

∑n
i=1 {h(g(ti)) − Ef (y|ti)g(ti)} . True null distributions are
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formed by 40,000 test statistics based on samples generated from the proxy null

models. For any chosen significance level, a decision can be made as to whether

to accept or reject the null hypothesis. We use a significance level of 0.05 in

the simulations. The proportions of rejections based on 2,000 replications from

each model are obtained. They are shown in Tables 1, 2 and 3 with row entries

labeled as “true”. Similarly, the proportions of rejections based on approximated

null distributions are labeled as “approx” in these tables. Figure 2 shows the

proportion of rejections for each of the tests for each of the models obtained with

approximated null distributions.

Table 1. Proportion of rejections in 2,000 replications under model (31) with

Binary (k = 1) and Binomial (k = 4) data.

k = 1 k = 4

a = 0 a = 3 a = 5 a = 7 a = 0 a = 3 a = 5 a = 7

true 0.050 0.171 0.371 0.565 0.046 0.536 0.909 0.990
LMP

approx 0.044 0.183 0.408 0.595 0.055 0.537 0.908 0.990

true 0.052 0.127 0.249 0.328 0.046 0.376 0.810 0.967
GCV

approx 0.036 0.101 0.211 0.397 0.042 0.361 0.795 0.965

true 0.053 0.169 0.339 0.560 0.051 0.516 0.891 0.989
GML

approx 0.041 0.150 0.314 0.534 0.050 0.501 0.889 0.989

Table 2. Proportion of rejections in 2,000 replications under model (32) with

Binary (k = 1) and Binomial (k = 4) data.

k = 1 k = 4
a = 0 a = 1.5 a = 3 a = 5 a = 0 a = 1.5 a = 3 a = 5

true 0.053 0.052 0.068 0.153 0.054 0.075 0.330 0.875
LMP

approx 0.047 0.058 0.076 0.173 0.049 0.070 0.290 0.881

true 0.048 0.093 0.261 0.477 0.053 0.289 0.879 0.997
GCV

approx 0.046 0.081 0.244 0.499 0.047 0.285 0.875 0.997

true 0.048 0.079 0.215 0.476 0.052 0.268 0.859 0.996
GML

approx 0.043 0.067 0.202 0.477 0.047 0.264 0.863 0.996

Table 3. Proportion of rejections in 2,000 replications under model (33) with
Binary (k = 1) and Binomial (k = 4) data.

k = 1 k = 4

a = 0 a = 0.5 a = 1 a = 1.5 a = 0 a = 0.5 a = 1 a = 1.5

true 0.049 0.051 0.053 0.051 0.050 0.052 0.065 0.084
LMP

approx 0.040 0.045 0.043 0.046 0.055 0.057 0.066 0.086

true 0.045 0.096 0.293 0.730 0.051 0.319 0.967 0.999
GCV

approx 0.051 0.102 0.305 0.723 0.049 0.315 0.967 0.999

true 0.044 0.044 0.046 0.198 0.051 0.069 0.634 0.988
GML

approx 0.047 0.044 0.044 0.193 0.051 0.070 0.632 0.987



248 ANNA LIU, WENDY MEIRING AND YUEDONG WANG
P
S
fr

a
g

r
e
p
la

c
e
m

e
n
t
s

a
g
e

lo
g
it

sca
le

ttt

0.00.00.0 0.20.20.2 0.40.4
0
.4

0.4 0.60.60.6 0.80.80.8

1
.0

1.01.0
1
.0

1.0

1
.5

1
.6

2
.0

-
1
.4

-
0
.8

1
0

2
0

3
0

4
0

-
101234568Model 31, a=3 Model 32, a=1.5 Model 33, a=0.5

M
o
d
e
l
3
1
,
k
=

1

M
o
d
e
l
3
2
,
k
=

1

M
o
d
e
l
3
3
,
k
=

1

M
o
d
e
l
3
1
,
k
=

4

M
o
d
e
l
3
2
,
k
=

4

M
o
d
e
l
3
3
,
k
=

4

f
(t

)

p
ro

p
o
rtio

n
o
f
re

je
c
tio

n
sa

0.5

0.5

P
S
fr

a
g

r
e
p
la

c
e
m

e
n
t
s

a
g
e

lo
g
it

sca
let

0.0

0
.0

0.0

0
.0

0
.2

0
.2

0
.4

0
.4

0
.6

0
.6

0
.8

0
.8

1.0

1
.0

1.0

1
.0

1.5

1.5

1
.6

2
.0

-
1
.4

-
0
.8

1
0

2
0

3
0

4
0

-
1

00

00

1

1

22

22

3

3

44

44

5

5

6

6

8

8

M
o
d
e
l
3
1
,

a
=

3

M
o
d
e
l
3
2
,

a
=

1
.5

M
o
d
e
l
3
3
,

a
=

0
.5

Model 31,k=1 Model 32,k=1 Model 33,k=1

Model 31,k=4 Model 32,k=4 Model 33,k=4

f
(t)

p
ro

p
o
rt

io
n

o
f
re

je
c
ti

o
n
s

p
ro

p
o
rt

io
n

o
f
re

je
c
ti

o
n
s

aaa

aaa

Figure 2. The left column of panels corresponds to (31), the center column

to (32), and the right column to (33). Top row: f(t) for each model for one

of the simulation a values. Middle row: Proportion of rejections in each of

2000 replications for each of the models, versus a for the Binary simulation

(k = 1). Lowest row: Proportion of rejections in each of 2000 replications

for each of the models, versus a for the Binomial simulation (k = 4). In

each of the lower two rows, a line is drawn for each of the three tests. Solid

lines correspond to LMP test results, long dashed lines correspond to GCV

test results, and short dashed lines correspond to GML test results. Crosses

indicate results using the approximated null distributions.

Observe that all tests hold their levels reasonably well (Tables 1, 2 and 3)

Power increases as a increases for each form of model, although very slowly

for the LMP test for (33). For the low frequency function (31), GML and the

LMP tests are more powerful. For the high frequency function (33), GCV test

outperforms other tests. GML and GCV tests are more powerful than the LMP

test for (32). We also ran simulations with Poisson data, other functions and

sample sizes. Similar results were obtained. We conclude that for detecting

relatively low frequency functions, the GML test is preferred, and for detecting

high frequency functions, the GCV test is preferred. This is consistent with the

observations for corresponding tests in the Gaussian case (Liu and Wang (2004)).

The comparative behavior of the tests is intrinsic and is explained in that paper
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by different weighting schemes of the tests. The LMP test concentrates its weights

on low frequency functions relative to the null hypothesis. Compared with the

LMP test, the GML puts relatively larger weights on higher frequency functions,

and the GCV test further increases the weights on higher frequency functions.

Powers based on Binomial data (k = 4) are larger than those based on Binary

data (k = 1). This is not surprising since the Binomial data is equivalent to

having four replicates of Binary data at each point, thus four times the sample

size. The null distribution approximation provides a practical way to apply our

methods to real data. From the comparisons shown in the tables, it can be seen

that they give satisfying approximations.

For the second set of simulations, we generate Gamma data from the follow-

ing models of f(t) = log µ:

f(t) = 1 + t2 + a cos(3πt), (34)

f(t) = 1 + t2 + a cos(6πt), (35)

where a = 0, 0.05, 0.1, 0.2 in (34) and a = 0, 0.1, 0.2, 1 in (35). All other settings

remain the same as for the first set of simulations. We fit data using quintic

smoothing splines (m = 3) instead of cubic smoothing splines (m = 2). The

GML test (25), LMP test (28) and GCV test (30) are used to test a quadratic

null hypothesis. The null distributions are approximated by bootstrapping as

described at the beginning of Section 4.5. The results are shown in Table 4 and

5 for different values of σ2.

Table 4. Proportion of rejections in 2,000 replications under model (34) with

Gamma data.

σ2 = 0.01 σ2 = 0.1

a = 0 a = 0.050 a = 0.1 a = 0.2 a = 0 a = 0.05 a = 0.1 a = 0.2

LMP 0.050 0.887 1.000 1.000 0.051 0.162 0.529 0.982

GCV 0.051 0.835 1.000 1.000 0.052 0.133 0.440 0.967

GML 0.048 0.887 1.000 1.000 0.049 0.166 0.513 0.978

Table 5. Proportion of rejections in 2,000 replications under model (35) with

Gamma data.

σ2 = 0.01 σ2 = 0.1

a = 0 a = 0.1 a = 0.2 a = 1 a = 0 a = 0.1 a = 0.2 a = 1

LMP 0.050 0.024 0.002 0.000 0.051 0.054 0.041 0.000

GCV 0.051 1.000 1.000 1.000 0.052 0.209 0.821 1.000

GML 0.048 0.960 1.000 1.000 0.049 0.071 0.321 1.000
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It is seen that the comparative behavior of the tests remains the same. How-
ever, the LMP test does not perform well for the high frequency function model
(35). Table 5 shows that the power of the LMP test may even decrease as a
increases. Further investigation shows that under the high frequency model, the
estimate of σ2 based on (27) becomes increasingly inflated as a increases, leading
to the decrease in power. Using an improved estimator of σ2 may eliminate the
decreasing power pattern. However, the low power of the LMP test compared
to those of the GCV and GML tests for high frequency functions is intrinsic,
even in cases where σ2 is known (as shown in Table 3 for binomial distribution
simulations). The reason is that the LMP test concentrates its weights on func-
tions with low frequency relative to the null hypothesis. For the Gaussian case,
Liu and Wang (2004) provide further information on these weights, showing that
the LMP test does not perform as well as the GML and GCV tests for high
frequency functions. Therefore, we do not recommend the LMP test for high
frequency functions relative to the null hypothesis.

6. Application to WESDR data

For the data presented in Section 2, we first rescale the age variable so
that x1 ∈ [0, 1]. Based on (2), we are interested in testing the following three
hypotheses with Wm as defined in (4):

1. H1
0 : f ∈ span{1} vs. H1

1 : f ∈ W1 and f /∈ span{1};

2. H2
0 : f ∈ span{1, x1} vs. H2

1 : f ∈ W2 and f /∈ span{1, x1};

3. H3
0 : f ∈ span{1, x1, x

2
1} vs. H3

1 : f ∈ W3 and f /∈ span{1, x1, x
2
1}.

These correspond to no age effect, linear and quadratic age effects, respec-
tively. Note that three different polynomial spline spaces on [0, 1] are used for
different hypotheses such that there is no penalty for functions under the null
hypotheses. Let t = (x1, x2, x3, x4)

′. The model spaces of model (2) for the three
hypotheses are H = W1 ⊗ L, H = W2 ⊗ L and H = W3 ⊗ L respectively where
L = span{x2, x3, x4} represents the linear model space for duration, glycosylated
haemoglobin and pressure. H is decomposed into H = H0 ⊕ H1 according to
each of the hypotheses. The decompositions and their reproducing kernels are
listed in Table 6.

Table 6. The model spaces H, their decompositions H0 and H1, and re-
producing kernels of H1 for hypotheses 1, 2 and 3, where R1

m is given in
(5).

H H0 H1 R1 for H1

1 W1 ⊗L L (W1 	 span{1})⊗L R1
1

2 W2 ⊗L span{1, x1} ⊗ L (W2 	 span{1, x1}) ⊗L R1
2

3 W3 ⊗L span{1, x1, x
2
1} ⊗ L (W3 	 span{1, x1, x

2
1}) ⊗L R1

3



NONPARAMETRIC TESTS FOR GENERALIZED LINEAR MODELS 251

The null distributions for the tests are approximated as described in Section

4.5. The p-values of the approximated null distributions are listed in Table 7.

One may also test these hypotheses using polynomial GLM. Specifically, one may

test H1
0, H2

0 and H3
0 by comparing a linear model vs a constant, a quadratic model

vs a linear model and a cubic model vs a quadratic model, respectively. P-values

based on these nested polynomial GLM tests are added for comparison.

Table 7. P-values for the three hypotheses on age.

Hypothesis LMP GML GCV polynomial GLM

1 0.134 0.072 0.078 0.276

2 0.004 0.015 0.039 0.007

3 0.305 0.325 0.412 0.263

For the hypothesis of a constant age effect, a 0.1 significance level would lead

to rejection of the constant age effect by GML and GCV tests, but not by the

LMP test and the linear GLM test. The large p-value of the linear GLM test led

Klein, Klein, Moss, Davis and DeMets (1988) to conclude that the age variable

is not significant. The lower power of the LMP test can be explained by the fact

that for the constant null hypothesis, the actual close-to-quadratic age effect is

a relatively high frequency function. All four tests reject the hypothesis that the

age effect is linear at significance level 0.05. The LMP test is more powerful than

the GML and GCV tests for testing the second hypothesis, since the true age

effect is close to quadratic and is a low frequency function relative to the linear

null hypothesis. All four tests fail to reject the hypothesis that the age effect is

quadratic.

8. Discussion

The good performances of our tests motivate us to extend them further. In-

teresting circumstances include hypothesis testing for GLMM (Breslow and Clay-

ton (1993)) and generalized additive models (Hastie and Tibshirani (1990)) for

multivariate data, where SS ANOVA models can be used (Wahba et al. (1995)).

Bayesian models for smoothing splines have been used to construct confi-

dence intervals (Wahba (1983)). They have good frequentist properties when

smoothing parameters are estimated from data (Wahba (1983), Nychka (1988)

and Nychka (1990)) even though some theoretical issues remain (Cox (1993) and

Shen and Wasserman (2001)). The GML and LMP tests in this paper are de-

rived from Bayesian models. Nevertheless, these Bayesian models and the many

approximations involved serve as heuristic motivations rather than rigorous the-

oretical justifications to the final stand-alone test statistics. Empirical properties



252 ANNA LIU, WENDY MEIRING AND YUEDONG WANG

of these tests are evaluated by simulations. Future research on theoretical prop-
erties will be invaluable.
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Appendix A

The marginal density defined in (14) is approximated by

p(y) ∝ b−
n−M

2 |Σ|−
1

2

∣

∣

∣T ′Σ−1T
∣

∣
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2 exp

(
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The integral can be simplified as follows:
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According to (1.5.12) in Wahba (1990), B = lima→∞ (aTT ′ + Σ)−1 . Thus,

Wc

σ2

(

Wc

σ2
+

B

b

)−1 B

b

= lim
a→∞

(

σ2Wc
−1 + abTT ′ + bΣ

)−1

= lim
a→∞

(

abTT ′ + V
)−1

= V −1 − V −1T
(

T ′V −1T
)−1

T ′V −1.

On the other hand, we use (5.1) of Harville (1977) by matching R with our bΣ,
Z with the unit matrix and D with σ2W−1

c . It can be shown that S is B/b in

terms of our notion and the V matrices coincide. Then (15) follows from

b−
n−M
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Appendix B

Let Ṽ = bΣ̃ + σ2I and Q̃ = (Q̃1, Q̃2). Notice that Q̃ is orthogonal. We have

|V |−
1

2

∣

∣
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−
1

2

= |Wc|
1

2

∣

∣

∣Ṽ
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−
1

2
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∣

∣
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−
1

2
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1

2
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1

2
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1Ṽ
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∣

∣

∣

−
1

2

∣

∣

∣R̃
∣

∣

∣

−1
.

Let G = Q̃′Ṽ −1Q̃ = (Q̃′Ṽ Q̃)−1 and write G as a block matrix

(

G11 G12

G′
12 G22

)

.

Then the bottom right block of G−1 = Q̃′Ṽ Q̃, Q̃′
2Ṽ Q̃2, can be represented by

(

G22 − G′
12G

−1
11 G12

)−1
(Rao (1973, p.33)). Therefore, |G22 − G′

12G
−1
11 G12| =

|Q̃′
2Ṽ Q̃2|

−1 and
∣

∣

∣Q̃′Ṽ −1Q̃
∣

∣
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∣
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∣
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,
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Appendix C

For data from the Inverse Gaussian distribution, h(ξi)=−(−2ξi)
1/2, ai(σ

2)=

σ2, $i = 1, and ci(yi, σ
2) = −

{

log(2πσ2y3
i ) + 1/(σ2yi)

}

/2. It is easy to check

that ls(y) = (σ2/2)
∑n

i=1 log(2πσ2y3
i ). Thus C1 in (17) is (2π)

n

2 σn exp(−
∑n

i=1

(log 2πσ2y3
i )/2)|Wc|

−
1

2 =
∏n

i=1 y
3/2
i |Wc|

−
1

2 , independent of σ2.

Appendix D

For the Gamma distribution with density (3), h(ξi) = − log(−ξi), ai(σ
2) =

σ2, $i = 1, and ci(yi, σ
2) = (log yi)/σ

2 − (log σ2)/σ2 − log yi − log Γ(1/σ2) (Mc-

Cullagh and Nelder (1989)). Here 1/σ2 is the shape parameter and −σ2/ξi is the
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scale parameter. Thus the mean is −1/ξi and the variance is σ2/ξ2
i . It is easy

to check that ls(y) = n + n log σ2 + σ2∑n
i=1 log yi + nσ2 log Γ(1/σ2). Up to an

additive constant, we have

log C1 =
n

2
log σ2 −

1

σ2
ls(y)

=
n

2
log σ2 −

n

σ2
− n

[

log σ2

σ2
+ log Γ(

1

σ2
)

]

−
n
∑

i=1

log yi.

Using (6.1.41) for Γ(1/σ2) in Abramowitz and Stegun (1970), and neglecting

terms of order σ6 and higher, we have log σ2/σ2 + log Γ(1/σ2) ≈ −1/σ2 +

log σ2/2 + σ2/12. Thus

log C1 ≈ −
nσ2

12
−

n
∑

i=1

log yi. (36)

Note that b = σ2/nλ. We rewrite L(b, σ2|y) = L(σ2/nλ, σ2|y) = LH(λ, σ2|y),

the likelihood of λ and σ2. It can be easily verified that, up to an additive

constant,

log LH(λ, σ2|y) = log C1 −
n − M

2
log σ2 −

S2

2σ2
− S1

≈−
nσ2

12
−

n − M

2
log σ2 −

S2

2σ2
− S1 −

n
∑

i=1

log yi, (37)

where S1 = 1
2

∑n−M
ν=1 log(λνn/nλ + 1) and S2 =

∑n−M
ν=1 z2

ν/(λνn/nλ + 1).

Differentiating log LH(λ, σ2|y) with respect to σ2 gives [∂ log LH(λ, σ2|y)]/

∂σ2 ≈ −n/12 − (n − M)/2σ2 + (1/2σ4)S2. It can be shown that σ̂2
λ = [9(1 −

M/n)2 + 6
∑n−M

ν=1 z2
ν/(λνn/λ + n)]1/2 − 3(1 − M/n) is the unique positive root

of the equation [∂ log LH(λ, σ2|y)]/∂σ2 = 0. Using σ̂2
λ as an estimate of σ2 and

plugging σ̂2
λ into (37), we have

log LH(λ, σ̂2
λ|y) ≈ −

n − M

2
log σ̂2

λ −
nσ̂2

λ

6
− S1. (38)

Note that a new GML method of estimating λ for Gamma data can be developed

based on maximizing (38). Now the GML test statistic reduces to

tGML ≈
LH(∞, σ̂2

∞|y)

supλLH(λ, σ̂2
λ|y)

=
infλ Πn−M

ν=1 (λνn/nλ + 1)
1

2 σ̂n−M
λ exp(nσ̂2

λ/6)

σ̂n−M
∞ exp(nσ̂2

∞/6)
,

which is (25).
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