
Statistica Sinica 15(2005), 177-195
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Abstract: This paper considers residual-based and randomly weighted kernel esti-

mators for innovation densities of nonlinear autoregressive models. The weights are

chosen to make use of the information that the innovations have mean zero. Rates

of convergence are obtained in weighted L1-norms. These estimators give rise to

smoothed and weighted empirical distribution functions and moments. It is shown

that the latter are efficient if an efficient estimator for the autoregression parameter

is used to construct the residuals.
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1. Introduction

Consider a nonlinear autoregressive model Xi = rϑ(Xi−1) + εi of order p,

where Xi−1 = (Xi−p, . . . , Xi−1) and ϑ is a q-dimensional parameter. Assume that

the innovations εi are independent and identically distributed (i.i.d.) and have

mean zero, finite variance and positive density f . We are interested in estimating

f and study weighted kernel estimators based on estimated innovations ε̂i =

Xi − rϑ̂(Xi−1),

ˆ̂
fw(y) =

1

n

n
∑

i=1

ŵikbn(y − ε̂i),

where kbn(y) = k(y/bn)/bn for an appropriate kernel k and bandwidth bn, and

ŵi are nonnegative random weights that average to one. The ordinary kernel

estimator uses weights ŵi = 1. Residual-based density estimators in time series

are studied in Robinson (1986, 1987) and Liebscher (1999). Since the innovations

have mean zero, we take weights for which our kernel estimator also has mean

zero, i.e.,
∫

y
ˆ̂
fw(y) dy = 0. Motivated by Owen (1988, 2001), we take ŵi of the

form

ŵi =
1

1 + λ̂ε̂i
, (1.1)

where λ̂ is chosen such that
∑n

i=1 ŵiε̂i = 0. Our density estimator can be written

as
ˆ̂
fw(y) =

∫

kbn(y−u) d
ˆ̂
Fw(u), where

ˆ̂
Fw(t) = (1/n)

∑n
i=1 ŵi1[ε̂i ≤ t] is Owen’s
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empirical likelihood estimator of the distribution function F , here based on the
residuals ε̂i. In the literature, weighted kernel density estimators have been
studied for i.i.d. observations, e.g., for the actual innovations; see Chen (1997),
Zhang (1998) and Hall and Presnell (1999).

We study the behavior of our density estimators in the V -norm

‖g‖V =

∫

V (y)|g(y)| dy

for a measurable function V ≥ 1. The choice V = 1 yields the usual L1-norm.
Convergence in this norm suffices when estimating the innovation distribution
function. The choice V (y) = (1 + |y|)γ for some γ > 0 is useful when estimating
moments of the innovation distribution.

We first derive, in Section 2, convergence rates for weighted kernel estimators
based on i.i.d. observations. These results will be used in Section 3 to establish
our main result, convergence rates of residual-based weighted kernel estimators.
In the V -norm, the difference between the weighted residual-based kernel esti-
mator and the (unweighted) kernel estimator based on the actual innovations is
of order n−1/2, which is faster than the convergence rate of kernel estimators.
Nevertheless, if kernel estimators are plugged into smooth functionals of the den-
sity, the resulting plug-in estimators have rate n−1/2. Moreover, using the above
weights leads to an asymptotic variance reduction, and even to efficient estima-
tors if efficient estimators of the autoregression parameter are used. This will be

illustrated in the last two sections. In Sections 4 and 5 we use
ˆ̂
fw to construct

estimators
∫ t
−∞

ˆ̂
fw(y) dy and

∫

ym ˆ̂
fw(y) dy for the distribution function F (t) and

the m-th moment of the innovations. These estimators will be n1/2-consistent if
ϑ̂ is, and will be efficient if ϑ̂ is. In these sections we also demonstrate in some
special cases that these weighted linear functionals have significantly smaller
asymptotic variance than their unweighted counterparts. Müller, Schick and
Wefelmeyer (2003) use the results of Section 3 to obtain n−1/2-consistent and
efficient estimators for conditional expectations.

2. Weighted Kernel Estimators Based on i.i.d. Observations

Let ε1, . . . , εn be i.i.d. observations with mean zero, finite variance σ2 and
density f . We write f̂ for the usual kernel density estimator and f̂w for the
weighted kernel estimator:

f̂(y) =
1

n

n
∑

i=1

kbn(y − εi) and f̂w(y) =
1

n

n
∑

i=1

wikbn(y − εi).

We restrict attention to positive weights wi of the form

wi =
1

1 + λεi
,
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where λ is chosen such that
∑n

i=1wiεi = 0. As shown by Owen (2001), such a
λ exists with probability tending to one. Our density estimator can be written
as f̂w(y) =

∫

kbn(y − u) dF̂w(u), where F̂w(t) = (1/n)
∑n

i=1wi1[εi ≤ t] is Owen’s
empirical likelihood estimator of F (t).

Let V ≥ 1 be a measurable function. We assume throughout that V is
f -square integrable. We study the behavior of kernel density estimators in the
V -norm. For this we require additional assumptions on V .

Condition V1. The function D(s) = sup|t|≤|s| supy∈R
|V (y + t) − V (y)|/V (y),

s ∈ R, is continuous at 0.

Condition V2. For some α > 1 and W (y) = (1 + |y|)αV 2(y), ‖f‖W =
∫

W (y)f(y) dy <∞.

These two conditions are met with α = 2 by V (x) = 1 as we have assumed
f to have finite variance. We are also interested in the choice V (x) = (1 + |x|)γ

for γ > 0. One verifies that this function satisfies Condition V1 with D(s) ≤ |s|γ
for 0 < γ < 1, and with D(s) ≤ |s|γ(1 + |s|)γ−1 for γ ≥ 1. Condition V2 holds
provided

∫

|y|2γ+αf(y) dy is finite for some α > 1. For γ < 1/2, this integral is
finite for α < 2(1 − γ) as f has finite variance.

Throughout we impose the following conditions on the bandwidth and the
kernel.

Condition K. The bandwidth bn satisfies bn → 0 and nbn → ∞. The kernel k
is a bounded measurable function,

∫

k(u) du = 1,

∫

uk(u) du = 0, (2.1)

and, for some β > 3,
∫

(1 + |u|)β(1 +D(u))2|k(u)| du <∞. (2.2)

The requirements on k are met by a symmetric bounded density with com-
pact support contained in {D < ∞}, but Condition K allows for kernels of
higher order and does not require a compact support if D(s) is finite for all
s ∈ R. For the choice V (x) = (1 + |x|)γ for some γ > 0, (2.2) is implied by
∫

(1 + |u|)2γ1+β|k(u)| du <∞ with γ1 = max{1, γ}.
It follows from Condition V1 that

V (y + s) ≤ (1 +D(s))V (y), s, y ∈ R. (2.3)

Since ‖f̂‖V ≤ (1/n)
∑n

i=1

∫

V (y)|kbn(y−εi)|dy=(1/n)
∑n

i=1

∫

V (εi + bnu)|k(u)|du,
we obtain from (2.3) that

‖f̂‖V ≤ ‖k‖1+D
1

n

n
∑

i=1

V (εi), bn ≤ 1. (2.4)
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Note that ‖k‖1+D is finite under (2.2). The expected value of f̂(y) is f ∗kbn(y) =
∫

f(y− bnu)k(u) du. Since
∫

V (y)|f ∗ kbn(y)| dy ≤
∫∫

V (y+ bnu)f(y)|k(u)| du dy,
we derive from (2.3) that

‖f ∗ kbn‖V ≤ ‖k‖1+D‖f‖V , bn ≤ 1. (2.5)

The following lemma shows that ‖f ∗ kbn − f‖V → 0.
Lemma 2.1. Suppose Condition V1 holds. Then, for every (measurable) func-

tion g with finite V -norm and every (measurable) function h with finite (1 +D)-
norm, we have

∫

V (y)

∫

|g(y − bu) − g(y)||h(u)| du dy → 0 as b→ 0. (2.6)

Proof. Since g has finite V -norm, the product V g is integrable. Thus the
map s →

∫

|(V g)(y − s) − (V g)(y)| dy is bounded by 2‖g‖V , and continuous
in view of the L1-continuity of translation, see Rudin (1974, Theorem 9.5). It
now follows from the Lebesgue Dominated Convergence Theorem that I1(b) =
∫∫

|(V g)(y − bu) − (V g)(y)| dy |h(u)| du → 0 as b → 0. By Condition V1, for
each u ∈ R we have D(bu) ≤ D(u) for |b| ≤ 1 and D(bu) → 0 as b → 0. Hence
the substitution v = y− bu, inequality (2.3), and again the Lebesgue Dominated
Convergence Theorem give that

I2(b) =

∫ ∫

|V (y) − V (y − bu)||g(y − bu)| dy |h(u)| du

≤ ‖g‖V

∫

D(bu)|h(u)| du → 0 as b→ 0.

Since the left-hand side of (2.6) is bounded by I1(b) + I2(b), the desired result

follows.

We say a function g is V -Lipschitz if there is a positive constant L such that

‖g(· − s) − g‖V =

∫

V (y)|g(y − s) − g(y)| dy ≤ L(1 +D(s))|s|, s ∈ R.

If f is V -Lipschitz and
∫

(1+D(s))|sk(s)| ds is finite, then ‖f ∗kbn −f‖V = O(bn).
A slightly stronger result is possible if f is V -smooth. We say a function g is
V -smooth if g is absolutely continuous and its almost everywhere derivative g ′

has finite V -norm. It is easy to check that a V -smooth function is V -Lipschitz.

Lemma 2.2. Suppose Conditions K and V1 hold. If f is V -smooth, then ‖f ∗
kbn −f‖V = o(bn). If, in addition, f ′ is V -Lipschitz, then ‖f ∗kbn −f‖V = O(b2n).

Proof. Since f is absolutely continuous, we have f(y − s) − f(y) = −sf ′(y) −
s

∫ 1
0 (f ′(y − ts) − f ′(y)) dt. This and (2.1) give

f ∗ kbn(y) − f(y) = −bn

∫ 1

0

∫

(f ′(y − tbnu) − f ′(y))uk(u) du dt.
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It follows from (2.2) that
∫

(1 + D(s))|sk(s)| ds is finite. Now use the previous

lemma and the Lebesgue Dominated Convergence Theorem to conclude that

‖f ∗ kbn − f‖V = o(bn). If f ′ is V -Lipschitz, we get the faster rate O(b2n) using

again (2.2).

Even faster rates are possible if we require f to be V -smooth of higher order.

We say a measurable function g is V -smooth of order zero if ‖g‖V <∞ and define

V -smoothness of order m for positive integers m recursively: g is V -smooth of

order m+1 if g is absolutely continuous with an almost sure derivative g ′ that is

V -smooth of order m. In particular, a V -smooth function is V -smooth of order

one. We say the kernel is of type m if m is a positive integer and
∫

uik(u) du = 0, i = 1, . . . ,m, and

∫

(1 +D(u))(1 + |u|)m+1|k(u)| du <∞.

The following result is now immediate.

Lemma 2.3. Suppose Conditions K and V1 hold. Let f be V -smooth of order

m for some m > 1, and let k be of type m. Then ‖f ∗ kbn − f‖V = o(bmn ). If, in

addition, f (m) is V -Lipschitz, then ‖f ∗ kbn − f‖V = O(bm+1
n ).

It follows from (2.3) and simple calculations that

W (y + s) ≤ Dα(s)W (y), s, y ∈ R, (2.7)

with Dα(s) = (1 + |s|)α(1 +D(s))2, s ∈ R. From this we now derive inequalities

analogous to (2.4) and (2.5),

‖f̂‖W ≤ ‖k‖Dα

1

n

n
∑

i=1

W (εi), bn ≤ 1, (2.8)

‖f ∗ kbn‖W ≤ ‖k‖Dα‖f‖W , bn ≤ 1. (2.9)

Note that ‖k‖Dα is finite under (2.2) for α ≤ β.

The following result is known for the case V = 1; see Devroye (1992).

Lemma 2.4. Suppose Conditions K, V1 and V2 hold. Then ‖f̂ − f ∗ kbn‖V =

Op(n
−1/2b

−1/2
n ).

Proof. The Cauchy−Schwarz inequality yields that, for measurable g,

‖g‖2
V ≤ Cα‖g

2‖W (2.10)

with Cα =
∫

(1 + |y|)−α dy. We may assume that bn ≤ 1 and that α ≤ β. Since

k is bounded, the latter and (2.2) imply that ‖k2‖Dα is finite. We calculate

nE[‖(f̂ −f ∗kbn)2‖W ] = ‖nE[(f̂ −f ∗kbn)2]‖W ≤ ‖k2
bn
∗f‖W ≤ b−1

n ‖k2‖Dα‖f‖W .
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Thus, the above inequalities yield the bound E[‖f̂ − f ∗ kbn‖
2
V ] = O(n−1b−1

n )

which implies the desired result.

If follows from Lemmas 2.1 and 2.4 that ‖f̂ − f‖V = op(1) for every V that

satisfies Conditions V1 and V2. Actually, a stronger result is possible.

Corollary 2.1. Suppose Conditions K, V1 and V2 hold. Let V∗(y) = (1 +

|y|)V (y). Then ‖f̂ − f‖V∗
= op(1).

Proof. An application of the Cauchy−Schwarz inequality yields

‖f̂ − f‖2
V∗

≤

∫

(1 + |y|)V 2(y)|f̂ (y) − f(y)| dy

∫

(1 + |y|)|f̂(y) − f(y)| dy.

The first factor on the right-hand side is bounded by ‖f̂‖W +‖f‖W , which is Op(1)

in view of (2.8) and Condition V2. Using the Cauchy−Schwarz inequality again

we find that the square of the second factor is bounded by
∫

(1 + |y|)2(|f̂(y)| +

f(y)) dy
∫

|f̂(y) − f(y)| dy. Since f and |k| have finite second moments,
∫

(1 +

|y|)2(|f̂(y)| + f(y)) dy = Op(1). The desired result now follows as ‖f̂ − f‖1 ≤

‖f̂ − f‖V = op(1).

Of course rates in the V -norm are also possible. Combining Lemmas 2.3

and 2.4, we obtain the following result which gives rates analogous to those for

pointwise estimation of densities.

Corollary 2.2. Suppose Conditions K, V1 and V2 hold. Let f be V -smooth

of order m for some non-negative integer m, and let f (m) be V -Lipschitz. As-

sume that k is of type m if m > 1. Let bn ∼ n−1/(2m+3). Then ‖f̂ − f‖V =

Op(n
−(m+1)/(2m+3)).

Let us now look at the weighted density estimator f̂w. Owen (2001, pp.219-

221) has shown that the λ appearing in the definition of the weights wi satisfies

λ = σ−2 1

n

n
∑

i=1

εi + op(n
−1/2), (2.11)

and that the weights wi are uniformly close to one:

w∗ = max
1≤i≤n

|wi − 1| = op(1). (2.12)

We use this to compare f̂w and f̂ .

Lemma 2.5. Suppose Conditions K, V1 and V2 hold. Then, with ψ(y) = yf(y),

‖f̂w − f̂ + λψ‖V = op(n
−1/2).
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Proof. Since wi − 1 = −λεiwi, we can write f̂w − f̂ = −λψ̂w, where ψ̂w(y) =

(1/n)
∑n

i=1wiεikbn(y − εi). As n1/2λ = Op(1) by (2.11), it suffices to show that

‖ψ̂w − ψ‖V = op(1). Let ψ̂ be the version of ψ̂w with wi = 1 for all i. We have

‖ψ̂w − ψ̂‖V ≤ w∗
1

n

n
∑

i=1

|εi|

∫

V (y)|kbn(y − εi)| dy

= w∗
1

n

n
∑

i=1

|εi|

∫

V (εi + bnu)|k(u)| du.

Thus, in view of (2.3), (2.12), and E[|ε|V (ε)] <∞, we obtain ‖ψ̂w−ψ̂‖V = op(1).

Let ψ̃(y) = yf̂(y). It follows from Corollary 2.1 that ‖ψ̃ − ψ‖V ≤ ‖f̂ − f‖V∗
=

op(1). Thus we are left to show that ‖ψ̂ − ψ̃‖V = op(1).

It is easy to check that h̃(y) = (ψ̂(y) − ψ̃(y))/bn = (1/n)
∑n

i=1 k̃bn(y − εi)

with k̃(y) = −yk(y) and k̃bn = k̃(y/bn)/bn. Repeating the arguments of Lemma

2.4 with k replaced by k̃ and with α ≤ β − 2 to guarantee the finiteness of

‖k̃2‖Dα , we obtain that ‖h̃ − f ∗ k̃bn‖V = Op(n
−1/2b

−1/2
n ). It follows from (2.3)

that ‖f ∗ k̃bn‖V ≤ ‖f‖V ‖k̃‖1+D < ∞. Combining the above yields the desired

‖ψ̂ − ψ̃‖V = op(1).

3. Residual-Based Weighted Kernel Estimators

Now consider observations X1−p, . . . , Xn from a stationary and ergodic non-

linear autoregressive process of order p,

Xi = rϑ(Xi−1) + εi,

with Xi−1 = (Xi−p, . . . , Xi−1) and ϑ a q-dimensional parameter. Assume that

the innovations ε1, . . . , εn are i.i.d. with mean zero, finite variance σ2, and density

f , and are independent of X0. Write (ε,X) for random variables distributed as

(εi,Xi−1). Then ε and X are independent. Denote the distribution functions of

ε and X by F and G. We make the following assumptions on the autoregression

function.

Condition R. The function τ 7→ rτ (x) is differentiable for all x with gradient

τ 7→ ṙτ (x). For each constant C,

sup
|τ−ϑ|≤Cn−1/2

n
∑

i=1

(

rτ (Xi−1) − rϑ(Xi−1) − ṙϑ(Xi−1)
>(τ − ϑ)

)2
= op(1). (3.1)

Moreover, E[|ṙϑ(X)|5/2] < ∞ and the matrix E[ṙϑ(X)ṙϑ(X)>] =
∫

ṙϑṙ
>
ϑ dG is

positive definite.

Example 3.1. Consider the classical autoregressive model Xt = ϑXt−1 + εt of

order one with |ϑ| < 1. Here p = q = 1 and rϑ(x) = ϑx. Thus ṙϑ(x) = x and



184 URSULA U. MÜLLER, ANTON SCHICK AND WOLFGANG WEFELMEYER

the left-hand side of (3.1) equals zero. The moment condition E[|ṙϑ(X)|5/2] =

E[|X0|
5/2] <∞ follows from

∫

|y|5/2f(y) dy <∞. (3.2)

Of course, E[X2
0 ] > 0. This shows that the autoregressive process of order one

satisfies Condition R if (3.2) holds. The same can be shown for higher order

autoregressive models.

Example 3.2. Condition R holds for self-exciting threshold autoregressive mod-

els with known thresholds. Let us look at the simplest such model, namely the

SETAR(2,1,1) model

Xt = ϑ1Xt−1I[Xt−1 ≤ 0] + ϑ2Xt−1I[Xt−1 > 0] + εt,

with ϑ1 < 1, ϑ2 < 1 and ϑ1ϑ2 < 1. The conditions on the parameter yield

ergodicity of the model, see Petrucelli and Woolford (1984). Here p = 1, q = 2,

rϑ(x) = ϑ1xI[x ≤ 0] + ϑ2xI[x > 0], ṙϑ(x)> = (xI[x ≤ 0], xI[x > 0]), and

the left-hand side of (3.1) equals zero. The moment condition is equivalent to

E[|X0|
5/2] < ∞ and is implied by (3.2). It is easy to check that the matrix

∫

ṙϑṙ
>
ϑ dG is diagonal with positive diagonal entries. This shows that Condition

R is satisfied if (3.2) holds.

Example 3.3. Now look at the EXPAR(1) model Xt = [ϑ1 +ϑ2 exp(−ϑ3X
2
t−1)]

Xt−1 + εt with |ϑ1| < 1 and ϑ3 > 0. Chan and Tong (1985) have shown that this

model is geometrically ergodic. Here p = 1, q = 3, rϑ(x) = [ϑ1 +ϑ2 exp(−ϑ3x
2)]x

and ṙϑ(x)> = (x, x exp(−ϑ3x
2),−ϑ2x

3 exp(−ϑ3x
2)). It is easy to see that this

gradient satisfies a Lipschitz condition: there are positive H and δ such that

|ṙτ (x) − ṙϑ(x)| ≤ H|τ − ϑ| for all x ∈ R and all τ with |τ − ϑ| < δ. From this

we immediately derive that the left-hand side of (3.1) is Op(n
−1). The moment

condition E[|ṙϑ(X)|5/2] < ∞ follows from E[|X0|
5/2] < ∞, which in turn is

implied by (3.2). The matrix
∫

ṙϑṙ
>
ϑ dG is positive definite unless ϑ2 = 0. Thus

the EXPAR(1) model satisfies Condition R if ϑ2 6= 0 and (3.2) holds.

Remark 3.1. In the previous examples we have actually verified that (3.1) holds

with op(1) replaced by 0 or by Op(n
−1). These faster rates are consequences of

the smoothness of the functions τ 7→ ṙτ (x). Indeed, suppose these functions

satisfy a Hölder condition at ϑ with exponent ζ > 0 in the following sense: there

is a δ > 0 and an A ∈ L2(G) such that |ṙτ (x)− ṙϑ(x)| ≤ |τ −ϑ|ζA(x), for x ∈ R
p,

|τ − ϑ| < δ. Then (3.1) holds with op(1) replaced by Op(n
−ζ).
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We do not know the innovations and estimate them by the residuals ε̂i =

Xi − rϑ̂(Xi−1), i = 1, . . . , n, where ϑ̂ is a n1/2-consistent estimator of ϑ. These

residuals are uniformly close to the actual innovations:

max
1≤i≤n

|ε̂i − εi| = op(1). (3.3)

To see this, introduce ε∗i = εi − ṙϑ(Xi−1)
>(ϑ̂− ϑ). It follows from Condition R

and the n1/2-consistency of ϑ̂ that

n
∑

i=1

(ε̂i − ε∗i )
2 = op(1), (3.4)

and hence

ζ1 = max
1≤i≤n

|ε̂i − ε∗i | = op(1). (3.5)

It follows from stationarity and finiteness of E[|ṙϑ(X)|5/2], that

ζ2 = max
1≤i≤n

|ε∗i − εi| ≤ |ϑ̂− ϑ| max
1≤i≤n

|ṙϑ(Xi−1)| = op(n
−1/10). (3.6)

Relations (3.5) and (3.6) imply (3.3).

The kernel estimators based on ε̂i and ε∗i are defined by
ˆ̂
f(y) = (1/n)

∑n
i=1 kbn

(y − ε̂i) and f̂∗(y) = (1/n)
∑n

i=1 kbn(y − ε∗i ). The next lemma compares these

two in the V -norm.

Lemma 3.1. Suppose Conditions K, R and V1 hold, and k is continuously

differentiable with ‖k′‖1+D finite. Then ‖
ˆ̂
f − f̂∗‖2

V = Op

(

n−1b−2
n

∑n
i=1(ε̂i −

ε∗i )
2
)

= op(n
−1b−2

n ).

Proof. We may assume that bn ≤ 1. First, for a non-negative (measurable)

function g and random variables ξ1, . . . , ξn, one has the inequalities
∫

V (y)
1

bn
g
(y − z − ξi

bn

)

dy ≤
(

1 +D
(

max
1≤i≤n

|ξi|
))

‖g‖1+DV (z), i = 1, . . . , n.

(3.7)

To see this, make the substitution y = z + ξi + bnu and then use (2.3) twice. In

view of (3.7) we have

‖
ˆ̂
f − f̂∗‖V ≤

1

n

n
∑

i=1

∫

V (y)|kbn(y − ε̂i) − kbn(y − ε∗i )| dy

≤
1

n

n
∑

i=1

|ε̂i − ε∗i |

∫

V (y)

∫ 1

0
|k′bn

(y − ε∗i − s(ε̂i − ε∗i ))| ds dy

≤ (1 +D(ζ1 + ζ2))‖k
′‖1+D

1

nbn

n
∑

i=1

|ε̂i − ε∗i |V (εi).
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Since D(ζ1+ζ2) = op(1) by Condition V1, (3.5) and (3.6), and since V is assumed

to be in L2(F ), an application of the Cauchy−Schwarz inequality gives the desired

result.

Next we compare f̂∗ and f̂ . We do so under an additional assumption on

the kernel k.

Condition S. The kernel k is twice continuously differentiable with k ′ and k′′

having finite (1 +D)-norms and (k′)2 and (k′′)2 having finite Dα-norms.

Recall that q denotes the dimension of the parameter ϑ. Set γ̂(y) = 1/n
∑n

i=1

k′bn
(y − εi)ṙϑ(Xi−1), y ∈ R.

Lemma 3.2. Suppose Conditions K, R, S, V1 and V2 hold and f is V -smooth.

Let 0 ≤ ξ ≤ 1/2 and φ = (20q − 10ξq + 50 − 20ξ)/(14 + 5q). Suppose that

nbφn → ∞. Then ‖f̂∗ − f̂ − (ϑ̂− ϑ)>γ̂‖V = op(n
−1/2b−ξ

n ).

Proof. We may assume that bn ≤ 1. It is easy to check that φ increases with q.

Thus φ ≥ (70−30ξ)/19 ≥ 55/19 > 2. Consequently, nbφ
n → ∞ implies nb2n → ∞.

Set rni = n−1/2ṙϑ(Xi−1). To stress the dependence on ∆̂ = n1/2(ϑ̂ − ϑ), we

express f̂∗(y) − f̂(y) − (ϑ̂− ϑ)>γ̂(y) as R∆̂(y), where

R∆(y) =
1

n

n
∑

i=1

[

kbn(y − εi + ∆>rni) − kbn(y − εi) − ∆>rnik
′
bn

(y − εi)
]

.

In view of the n1/2-consistency of ϑ̂, it suffices to show that, for each (large)

constant C,

sup
|∆|≤C

‖R∆‖V = op(n
−1/2b−ξ

n ). (3.8)

Fix now such a C. A Taylor expansion shows that

R∆(y) =
1

n

n
∑

i=1

∆>rni

∫ 1

0

(

k′bn
(y − εi + v∆>rni) − k′bn

(y − εi)
)

dv

=
1

n

n
∑

i=1

(∆>rni)
2
∫ 1

0

∫ v

0
k′′bn

(y − εi + u∆>rni) du dv

and that

R∆+∆̃(y) −R∆(y)

=
1

n

n
∑

i=1

∆̃>rni

∫ 1

0

(

k′bn
(y − εi + (∆ + v∆̃)>rni) − k′bn

(y − εi)
)

dv

=
1

n

n
∑

i=1

∆̃>rni

∫ 1

0
(∆ + v∆̃)>rni

∫ v

0

(

k′′bn
(y − εi + u(∆ + v∆̃)>rni) du dv.
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Let an be a sequence of positive numbers such that C ≥ an → 0. It follows from

(3.7) that

sup
|∆|≤C

sup
|∆̃|≤an

‖R∆+∆̃ −R∆‖V

≤ 2anC
(

1 +D
(

2C max
1≤i≤n

|rni|
))

b−2
n ‖k′′‖1+D

1

n

n
∑

i=1

|rni|
2V (εi).

Since max1≤i≤n |rni| = op(n
−1/10) and E[|rni|

2V (εi)] = n−1E[ṙϑ(X)|2]‖f‖V , we

see that

sup
|∆|≤C

sup
|∆̃|≤an

‖R∆+∆̃ −R∆‖V = Op(ann
−1b−2

n ). (3.9)

Let now R∗
∆(y) be defined as R∆(y), but with rni replaced by r∗ni = rni1[|rni| ≤

n−1/10]. Then R∗
∆(y) and R∆(y) can differ only on the event {max1≤i≤n |rni| >

n−1/10} which has probability tending to zero. This shows that

sup
|∆|≤C

‖R∗
∆ −R∆‖V = op(n

−1/2b−ξ
n ). (3.10)

Now set

R̄∗
∆(y) =

1

n

n
∑

i=1

(∆>r∗ni)
2
∫ 1

0

∫ v

0

∫

k′′bn
(y − z + u∆>r∗ni)f(z) dz du dv.

It is easy to check that
∫

k′′bn
(y− z)f(z) dz =

∫

k′bn
(y− z)f ′(z) dz. Using this and

(3.7), ‖R̄∗
∆‖V ≤ (1/n)

∑n
i=1(∆

>r∗ni)
2b−1

n (1 +D(|∆|n−1/10))‖k′‖1+D ‖f ′‖V . Since

‖f ′‖V <∞ and nb2n → ∞, we obtain that

sup
|∆|≤C

‖R̄∗
∆‖V = Op(n

−1b−1
n ) = op(n

−1/2b−ξ
n ). (3.11)

Next,

E[‖(R∗
∆ − R̄∗

∆)2‖W ] ≤

∫ 1

0

∫ v

0

∫

W (y)E[Γ2
∆(y, u)] dy du dv,

with Γ∆(y, u) = (1/n)
∑n

i=1(∆
>r∗ni)

2(k′′bn
(y−εi+u∆

>r∗ni)−
∫

k′′bn
(y−z+u∆>r∗ni)

f(z) dz) a martingale. Since E[Γ2
∆(y, u)] ≤ n−3|∆|4E[|ṙϑ(X)|41[|ṙϑ(X)| ≤ n2/5]

(k′′bn
(y− ε+u∆>n−1/2ṙϑ(X)))2], we obtain from (3.7) with W in place of V that

sup
|∆|≤C

E[‖(R∗
∆ − R̄∗

∆)2‖W ]

≤Dα(Cn−1/10)C4n−3+3/5b−5
n E[|ṙϑ(X)|5/2]‖f‖W ‖(k′′)2‖Dα .
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In view of (2.10) we then have, for every finite subset Dn of {∆ ∈ R
q : |∆| ≤ C}

with Mn elements,

P
(

max
∆∈Dn

n1/2bξn‖R
∗
∆ − R̄∗

∆‖V > η
)

≤
∑

∆∈Dn

P (n1/2bξn‖R
∗
∆ − R̄∗

∆‖V > η)

≤
∑

∆∈Dn

P (nb2ξ
n Cα‖(R

∗
∆ − R̄∗

∆)2‖W > η2)

≤
∑

∆∈Dn

nb2ξ
n Cα

η2
E[‖(R∗

∆ − R̄∗
∆)2‖W ], η > 0.

This shows that, for every η > 0 and every finite subset Dn as above,

P
(

max
∆∈Dn

n1/2bξn‖R
∗
∆ − R̄∗

∆‖V > η
)

= O(Mnn
−7/5b−5+2ξ

n ). (3.12)

Now take Dn to be such that the balls of radius an centered at elements of Dn

cover the ball {∆ : |∆| ≤ C}. We can choose Dn such that Mn = O(a−q
n ). Thus,

if aq
nn

7/5b5−2ξ
n → ∞ and a−1

n n1/2b2−ξ
n → ∞, then we obtain from (3.9)−(3.12) the

desired (3.8). But if we take an = b
(3−4ξ)/(14+5q)
n , then aq

nn
7/5b5−2ξ

n = (nbφn)7/5 →

∞ and a−1
n n1/2b2−ξ

n = (nbφn)1/2 → ∞.

Lemma 3.3. Suppose Conditions K, R, S, V1 and V2 hold and f is V -smooth.

Then

‖γ̂ − f ′E[ṙϑ(X)]‖V = Op(n
−1/2b−3/2

n ) + op(1).

Proof. Let f ′bn
= k′bn

∗ f = f ′ ∗ kbn and set γ̄(y) = (1/n)
∑n

i=1 f
′
bn

(y)ṙϑ(Xi−1).

It suffices to show

‖γ̂ − γ̄‖V = Op(n
−1/2b−3/2

n ), (3.13)

‖γ̄ − f ′E[ṙϑ(X)]‖V = op(1). (3.14)

By Lemma 2.1, we have ‖f ′
bn

− f ′‖V = ‖f ′ ∗ kbn − f ′‖V → 0. Relation (3.14)

follows from this and the ergodic theorem.

To prove (3.13) we may assume that bn ≤ 1. Since γ̂(y)−γ̄(y) is a martingale,

we have

nb3nE[|γ̂(y) − γ̄(y)|2] ≤ b3nE[|ṙϑ(X)|2]

∫

(k′bn
(y − z))2f(z) dz

≤ E[|ṙϑ(X)|2]

∫

f(y − bnz)(k
′(z))2 dz

and thus, in view of (2.7) and Condition V2, nb3n
∫

W (y)E[|γ̂(y) − γ̄(y)|2] dy ≤

E[|ṙϑ(X)|2]‖(k′)2‖Dα ‖f‖W . Relation (3.13) follows from this and (2.10).

Corollary 3.1. Suppose Conditions K, R, S, V1 and V2 hold and f is V -smooth.

Let nbφ1

n → ∞ with φ1 = (40+15q)/(14+5q). Then ‖f̂∗− f̂‖V = op(n
−1/2b

−1/2
n ).
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Proof. Note that φ1 equals φ of Lemma 3.2 with ξ = 1/2, and 55/19 ≤ φ1 < 3.

Thus φ1 > 2, and nbφ1

n → ∞ implies that nb2n → ∞. Consequently we obtain from

Lemma 3.3 that ‖γ̂>(ϑ̂ − ϑ)‖V = Op(n
−1b

−3/2
n ) + Op(n

−1/2) = op(n
−1/2b

−1/2
n ).

This and Lemma 3.2 give the desired result.

Corollary 3.2. Suppose Conditions K, R, S, V1 and V2 hold and f is V -smooth.

Let nbφ0

n → ∞ with φ0 = (50 + 20q)/(14 + 5q). Then ‖f̂∗ − f̂ − f ′E[ṙϑ(X)]>(ϑ̂−

ϑ)‖V = op(n
−1/2).

Proof. Note that φ0 equals φ of Lemma 3.2 with ξ = 0 and 70/19 ≤ φ0 < 4.

Thus φ0 > 3 and nbφ0

n → ∞ implies nb3n → ∞. Consequently we obtain from

Lemma 3.3 that ‖γ̂−f ′E[ṙϑ(X)]‖V = op(1). This and Lemma 3.2 give the desired

result.

Lemmas 2.2, 2.4, 3.1 and Corollary 3.1 give the following convergence rate

for the residual-based density estimator
ˆ̂
f in the V -norm.

Theorem 3.1. Suppose Conditions K, R, S, V1 and V2 hold and f is V -smooth.

If nbφ1

n → ∞ with φ1 = (40 + 15q)/(14 + 5q), then

‖
ˆ̂
f − f‖2

V = Op(n
−1b−1

n ) + o(b2n) +Op

(

n−1b−2
n

n
∑

i=1

(ε̂i − ε∗i )
2
)

= op(n
−1b−2

n + b2n).

Remark 3.2. Suppose the assumptions of Theorem 3.1 are met. Then ‖
ˆ̂
f −

f‖V = op(1). Mimicking the proof of Corollary 2.1 yields the stronger ‖
ˆ̂
f−f‖V∗

=

op(1). If bn ∼ n−1/4, then we even have ‖
ˆ̂
f − f‖V = op(n

−1/4). Better rates are

available if we impose additional smoothness assumptions on f or if we require

(3.1) to hold with op(1) replaced by Op(n
−1/3). In this latter case we have

∑n
i=1(ε̂i − ε∗i )

2 = Op(n
−1/3). Then ‖

ˆ̂
f − f‖V = Op(n

−1/3) if bn ∼ n−1/3. A

sufficient condition for the strengthened version of (3.1) is a Hölder condition

with exponent 1/3; see Remark 3.1.

If Condition R holds with op(1) replaced by Op(n
−2/3), then

∑n
i=1(ε̂i−ε

∗
i )

2 =

Op(n
−2/3). Thus Lemma 3.1 and Corollary 3.2 give the following result.

Theorem 3.2. Suppose Conditions K, S, V1 and V2 hold, f is V -smooth,

and Condition R holds with op(1) replaced by Op(n
−2/3). Let nbφ0

n → ∞ with

φ0 = (50 + 20q)/(14 + 5q), then

‖
ˆ̂
f − f̂ − f ′E[ṙϑ(X)]>(ϑ̂− ϑ)‖V = op(n

−1/2).

Since f is assumed to have mean zero, it is more natural to choose an

estimator that also has this property. For this purpose we now consider a
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weighted kernel estimator
ˆ̂
fw(y) = (1/n)

∑n
i=1 ŵikbn(y− ε̂i) with positive weights

ŵi = 1/(1+ λ̂ε̂i), where λ̂ is chosen such that
∑n

i=1 ŵiε̂i = 0. As shown by Owen

(1988, 2001) such a λ̂ exists on the event min1≤i≤n ε̂i < 0 < max1≤i≤n ε̂i. We

choose λ̂ = 0 otherwise. The above event has probability tending to one by (3.3),

and since the innovations are centered. In view of (3.3) we have

S =
1

n

n
∑

i=1

ε̂2i =
1

n

n
∑

i=1

ε2i + op(1) = σ2 + op(1), (3.15)

Z∗ = max
1≤i≤n

|ε̂i| = max
1≤i≤n

|εi| + op(1) = op(n
1/2). (3.16)

Also, in view of (3.4) and the ergodic theorem,

1

n

n
∑

i=1

ε̂i =
1

n

n
∑

i=1

ε∗i + op(n
−1/2) =

1

n

n
∑

i=1

εi −E[ṙϑ(X)]>(ϑ̂− ϑ) + op(n
−1/2)

= Op(n
−1/2).

We can then proceed as in Owen (2001, pp. 219-221), with his Xi − µ0 replaced

by ε̂i, to conclude that

λ̂ = S−1 1

n

n
∑

i=1

ε̂i + op(n
−1/2) (3.17)

and therefore

λ̂ = σ−2
( 1

n

n
∑

i=1

εi −E[ṙϑ(X)]>(ϑ̂− ϑ)
)

+ op(n
−1/2). (3.18)

It is now easy to see that

ŵ∗ = max
1≤i≤n

|ŵi − 1| = op(1). (3.19)

We are ready to compare
ˆ̂
fw with

ˆ̂
f in the V -norm.

Lemma 3.4. Suppose Conditions K, R, S, V1 and V2 hold and f is V -smooth.

Let nbφ1

n → ∞ with φ1 = (40 + 15q)/(14 + 5q). Then, with ψ(y) = yf(y),

‖
ˆ̂
fw −

ˆ̂
f + λ̂ ψ‖V = op(n

−1/2).

Proof. The proof is similar to that of Lemma 2.5. But now we use (3.18) and

(3.19) instead of (2.11) and (2.12). To prove the analogue of ‖ψ̂w − ψ̂‖V = op(1),

we now use (3.7) and

1

n

n
∑

i=1

|ε̂i|V (εi) ≤
( 1

n

n
∑

i=1

ε̂2i
1

n

n
∑

i=1

V 2(εi)
)1/2

= Op(1),
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which follows from (3.15). We also have ‖
ˆ̂
f‖V = Op(1) and ‖

ˆ̂
f − f‖V∗

= op(1) by
Theorem 3.1 and Remark 3.1.

Lemma 3.4, Theorem 3.2 and relation (3.18) give the following expansion

for
ˆ̂
fw.

Theorem 3.3. Suppose Conditions K, S, V1 and V2 hold, Condition R holds

with op(1) replaced by Op(n
−2/3), and f is V -smooth. Let nb

(50+20q)/(14+5q)
n → ∞.

Then, with ψ(y) = yf(y),

∥

∥

∥

ˆ̂
fw − f̂ + σ−2ψ

1

n

n
∑

i=1

εi − (σ−2ψ + f ′)E[ṙϑ(X)]>(ϑ̂− ϑ)
∥

∥

∥

V
= op(n

−1/2).

A sufficient condition for the strengthened version of (3.1) is a Hölder con-
dition with exponent 2/3, see Remark 3.1. If E[ṙϑ(X)] = 0, as is the case in the
classical linear autoregressive model of order p, we have the simpler conclusion

‖
ˆ̂
fw − f̂ + σ−2ψ(1/n)

∑n
i=1 εi‖V = op(n

−1/2).

4. A Smoothed and Weighted Empirical Distribution Function

As a first application of the previous results, we consider estimation of the
innovation distribution function F . From now on we assume the following.
(A1) The kernel k is a symmetric twice continuously differentiable density with

compact support.
(A2) The bandwidth bn satisfies nb4n → 0 and nb

(50+20q)/(14+5q)
n → ∞.

(A3) Condition R holds with op(1) replaced by Op(n
−2/3).

Our estimator is the smoothed and weighted residual-based empirical distri-
bution function

ˆ̂
F sw(t) =

∫ t

−∞

ˆ̂
fw(u) du =

1

n

n
∑

i=1

ŵiK
( t− ε̂i

bn

)

, t ∈ R,

where K is the distribution function of the kernel k. The smoothed empirical
distribution function (based on the actual innovations) is

F̂s(t) =

∫ t

−∞
f̂(u) du =

1

n

n
∑

i=1

K
(t− εi

bn

)

, t ∈ R.

We can use Theorem 3.3 with V = 1 to obtain the following expansion for the
difference of these estimators.

Corollary 4.1. Suppose (A1)−(A3) hold and f is absolutely continuous with

‖f ′‖1 <∞. Then

sup
t∈R

∣

∣

∣

ˆ̂
F sw(t) − F̂s(t) + ct

1

n

n
∑

i=1

εi − (ct + f(t))E[ṙϑ(X)]>(ϑ̂− ϑ)
∣

∣

∣ = op(n
−1/2),
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where ct = σ−2E[ε1[ε ≤ t]] =
∫ t
−∞ yf(y) dy

/

∫

y2f(y) dy.

Let F̂ (t) = (1/n)
∑n

i=1 1[εi ≤ t] denote the empirical distribution based on

the actual innovations. Since the empirical process νn = n1/2(F̂ − F ) satis-

fies sup|u|≤bn
supt∈R

|νn(t − u) − νn(t)| = op(1), we obtain that supt∈R
|F̂s(t) −

F̂ (t) −
∫

(F (t + bnu) − F (t))k(u) du| = op(n
−1/2). As k has mean zero, we see

that ∆ = supt∈R
|
∫

(F (t + bnu) − F (t))k(u) du| ≤ sup|u|≤bn
supt∈R

|F (t − u) −

F (t) + uf(t)|. If f is Lipschitz, then ∆ = O(b2n) and f is absolutely continuous.

Thus we have the following expansion for the difference between the smoothed

and weighted residual-based empirical distribution function and the empirical

distribution function based on the true innovations.

Theorem 4.1. Suppose (A1)−(A3) hold. Let f be Lipschitz and ‖f ′‖1 < ∞.

Then

sup
t∈R

∣

∣

∣

ˆ̂
F sw(t) − F̂ (t) + ct

1

n

n
∑

i=1

εi − (ct + f(t))E[ṙϑ(X)]>(ϑ̂− ϑ)
∣

∣

∣ = op(n
−1/2).

The terms involving ct come from weighting the kernel estimator. Weighting

usually leads to a smaller asymptotic variance. The gains can be considerable as

the next example shows.

Example 4.1. Consider the classical autoregressive process Xt = ϑXt−1 + εt of

order one with |ϑ| < 1. In this case E[ṙϑ(X)] = E[X0] = 0 and supt∈R
|
ˆ̂
F sw(t) −

F̂ (t) + ct(1/n)
∑n

i=1 εi| = op(n
−1/2) for any n1/2-consistent estimator of ϑ. The

smoothed but unweighted estimator
ˆ̂
F s, which is the distribution function of

ˆ̂
f , satisfies supt∈R

|
ˆ̂
F s(t) − F̂ (t)| = op(n

−1/2). The asymptotic variances of the

estimators
ˆ̂
F sw(t) and

ˆ̂
F s(t) for a fixed t are F (t)(1−F (t))− c2tσ

2 and F (t)(1−

F (t)). For the standard normal distribution F and t = 0 we calculate these

asymptotic variances as 1/4−1/(2π) and 1/4. Thus using the weighted estimator

yields a reduction of the asymptotic variance of about 64 percent.

To address efficiency issues we assume from now on that f has finite Fisher

information for location. This means that f is absolutely continuous with a.e.

derivative f ′, and E[`2(ε)] =
∫

`2(y)f(y) dy is finite, where ` = −f ′/f is the score

function for location. Then f is V -smooth for each f -square integrable V . This

follows from the inequality

‖f ′‖2
V =

(

∫

V (y)|`(y)|f(y) dy
)2

≤

∫

V 2(y)f(y) dy

∫

`2(y)f(y) dy.

There exists a rich literature on efficient estimators of the finite-dimensional

parameter in related semiparametric time series models; see for example Kreiss
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(1987a, b), Linton (1993), Jeganathan (1995), Drost and Klaassen (1997) and
Drost, Klaassen and Werker (1997), and Schick and Wefelmeyer (2002b). Koul
and Schick (1997) have characterized and constructed efficient estimators for ϑ
in nonlinear autoregression with mean zero innovations as needed here. Such
an efficient estimator ϑ̂ satisfies ϑ̂ = ϑ+ Λ−1(1/n)

∑n
i=1 S(Xi−1, εi) + op(n

−1/2),
where S(X, ε) = (ṙϑ(X)−E[ṙϑ(X)])`(ε)+σ−2E[ṙϑ(X)] ε, and Λ is the covariance
matrix of S(X, ε). For such an estimator we have

ˆ̂
F sw(t) = F̂ (t)−ct

1

n

n
∑

i=1

εi+(ct+f(t))E[ṙϑ(X)]>Λ−1 1

n

n
∑

i=1

S(Xi−1, εi)+op(n
−1/2).

This is the characterization of an efficient estimator for F (t), see Schick and
Wefelmeyer (2002a).

Alternative estimators to
ˆ̂
F sw(t) are

ˆ̂
Fw(t) = (1/n)

∑n
i=1 ŵi1[ε̂i ≤ t] and

ˆ̂
F (t) = (1/n)

∑n
i=1 1[ε̂i ≤ t]. If f is uniformly continuous, and Condition R is

strengthened to max1≤i≤n sup|τ−ϑ|≤Cn−1/2 |rτ (Xi−1)−rϑ(Xi−1)− ṙϑ(Xi−1)
>(τ −

ϑ)| = op(n
−1/2), then Schick and Wefelmeyer (2002a) show that supt∈R

|
ˆ̂
F (t) −

F̂ (t) − f(t)E[ṙϑ(X)]>(ϑ̂ − ϑ)| = op(n
−1/2) and supt∈R

|ĉt − ct| = op(1) with

ĉt =
∑n

i=1 ε̂i1[ε̂i ≤ t]
/

∑n
i=1 ε̂

2
i . Because of the identity ŵi = 1 − λ̂ŵiε̂i, we get

supt∈R

∣

∣

∣

ˆ̂
Fw(t) −

ˆ̂
F (t) + λ̂(1/n)

∑n
i=1 ε̂i1[ε̂i ≤ t]

∣

∣

∣ = op(n
−1/2). Thus

ˆ̂
Fw has the

same uniform stochastic expansion as the smoothed version
ˆ̂
F sw, under weaker

assumptions on f . The estimators
ˆ̂
Fw and

ˆ̂
F sw have the advantage that they

are true distribution functions. The alternative efficient estimator of Schick and
Wefelmeyer (2002a), F̃ (t) =

ˆ̂
F (t)− ĉt(1/n)

∑n
i=1 ε̂i, is not a distribution function.

5. Smoothed and Weighted Empirical Moments

Let m be an integer greater than 1. As a further application of our results on
density estimators we consider estimation of the m-th moment µm =

∫

ymf(y) dy
of f . Our estimator is the smoothed and weighted empirical moment based on
the residuals,

ˆ̂µm,w =

∫

ym ˆ̂
fw(y) dy.

Since µ̂m =
∫

ymf̂(y) dy = (1/n)
∑n

i=1

∫

(εi + bnu)
mk(u) du = (1/n)

∑n
i=1 ε

m
i +

O(b2n), an application of Theorem 3.3 with V (y) = (1 + |y|)m gives the following
expansion.

Theorem 5.1. Suppose (A1)−(A3) hold. Let f have a finite absolute moment

of order greater than 2m+ 1 and be V -smooth for V (x) = (1 + |x|)m. Then

ˆ̂µm,w =
1

n

n
∑

i=1

εmi −
µm+1

σ2

1

n

n
∑

i=1

εi+
(µm+1

σ2
−mµm−1

)

E[ṙϑ(X)]>(ϑ̂−ϑ)+op(n
−1/2).
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Let
ˆ̂
f (y) = (1/n)

∑n
i=1 k̂bn(y−ε̂i) denote the unweighted kernel estimator, and

ˆ̂µm =
∫

ym ˆ̂
f (y)dy the unweighted (smoothed) empirical moment. The weighted

(smoothed) empirical moment ˆ̂µm,w can have considerably smaller asymptotic

variance. Consider for simplicity a linear autoregressive model. Then E[ṙϑ(X)] =

0 and

ˆ̂µm =
1

n

n
∑

i=1

εmi + op(n
−1/2), ˆ̂µm,w =

1

n

n
∑

i=1

εmi −
µm+1

σ2

1

n

n
∑

i=1

εi + op(n
−1/2).

The asymptotic variances of ˆ̂µm and ˆ̂µm,w are µ2m and µ2m − µ2
m+1/σ

2, respec-

tively. For m = 3 and f normal these variances are 15σ6 and (15 − 9)σ6 = 6σ6,

respectively.

If we also assume that f has finite Fisher information for location, then
ˆ̂µm,w is efficient by Schick and Wefelmeyer (2002a) if ϑ̂ is. They construct an

alternative efficient estimator

µ̃m =
1

n

n
∑

i=1

ε̂mi −

∑n
i=1 ε̂

m+1
i

∑n
i=1 ε̂

2
i

1

n

n
∑

i=1

ε̂i

under weaker assumptions; they only require Condition R and a finite moment

of order 2m. Another efficient estimator is given by

1

n

n
∑

i=1

ŵiε̂
m
i .

Indeed, because of the identity ŵi = 1 − λ̂ŵiε̂i, this estimator is asymptotically

equivalent to µ̃n by (3.15), (3.17) and (3.19).
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