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Abstract: This paper proposes methods to improve Monte Carlo estimates when the

Independent Metropolis-Hastings Algorithm (IMHA) is used. Our first approach

uses a control variate based on the sample generated by the proposal distribution.

We derive the variance of our estimator for a fixed sample size n and show that,

as n tends to infinity, this variance is asymptotically smaller than the one obtained

with the IMHA. Our second approach is based on Jensen’s inequality. We use a

Rao-Blackwellization and exploit the lack of symmetry in the IMHA. An upper

bound on the improvements that we can obtain by these methods is derived.
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1. Introduction

Let Π be a target distribution on some subset X of R
d equiped with its Borel

subsets. In Markov Chain Monte Carlo (MCMC) we are interested in having a
Markov chain (Xn) with stationary distribution Π. There are several algorithms

to achieve this goal. For an introduction to Markov Chain Monte Carlo algo-

rithms, we refer the reader to Robert and Casella (1999) or Liu (2001). The
Independent Metropolis-Hastings (IMH) algorithm is among the most popular

algorithms. This algorithm works best when there is another probability measure

Q, easy to sample from, that is close to Π. Assume that Π is absolutely contin-
uous with respect to Q and let ω/c0 = dΠ/dP be its Radon Nikodým derivative

for some (maybe unknown) normalizing constant c0. The IMH algorithm works

as follows. Assume that Xn = x, then we sample independently Un+1 ∼ U(0, 1)
and Yn+1 ∼ Q, and Xn+1 is set as:

Xn+1 = x + (Yn+1 − x)1[0,α(x,Yn+1)](Un+1),

where 1A is the indicator function of the set A and α(x, y) = min (1, ω(y)/ω(x))

(α(x, y) = 1 if ω(x) = 0).
This paper is about variance reduction. We are interested in the problem

of estimating Π(f) :=
∫

f(x)Π(dx) for some integrable real-valued function f

defined on X . The basic estimator from the IMH sample (Xn) is given by:
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µ̂0 =
∑n

i=1 f(Xi)/n. The performance of µ̂0 as an estimator of Π(f) will depend
on Π, ω, f . In general, Π and f are fixed by the problem at hand. Finding the

best possible choice for ω in practice is still a largely unsolved problem. However,
for ω fixed, it is possible to improve on the basic estimator µ̂0. Typically, Q

is a well-known distribution. This means that it is easy to generate random
variables from Q but it is also easy to select a control variate, that is a function

h : X → R such that EQ(h(X)) = 0 and VarQ(h(X)) = 1. Therefore, in our first
approach, we propose and study the family of estimators µ̂β =

∑n
i=1(f(Xi) −

βh(Yi))/n. We study the estimator µ̂β in the slightly more general setting of a
Markov chain defined recursively as Xn+1 = F (Xn, Un+1, Yn+1) where (Un) is

a sequence of i.i.d. random variables with distribution U(0, 1), (Yn) a sequence
of i.i.d. random variables with distrbution Q and F : X × [0, 1] × R

d −→ X is
a measurable function. In the case of the IMH algorithm, our main result says

that n{Var(µ̂0) − Var(µ̂β)} → β2
0 − (β − β0)

2 with β0 = CovΠ(f(X), h(X)) as
n → ∞. Suprisingly, the expression for β0 is rather simple in comparison to

limn→∞ nVar(µ̂0) and this is a key element in this paper. We also discuss the
best possible choice for h. This leads us to propose the estimator:

µ̂1 = µ̂0 −
∑n

i=1 ω(Yi) (f1(Yi) − Π(f1))
∑n

i=1 ω(Yi)
,

where f1 is some function which is close to f and for which Π(f1) is known. If

such function f1 is not available, one can use f1 = f and run a pilot simulation
to obtain a crude estimate of Π(f). We use this approach in our examples. The

results are very good, around 50% improvement over µ̂0.
As a by-product of the study of µ̂β we derive a simple expression for Var(µ̂0)

for fixed n, not only for our problem but for any stationary and reversible Markov
chain.

Our second approach uses Rao-Blackwellizations and symmetry. The idea of
Rao-Blackwellization has been introduced in MCMC simulations by Gelfand and
Smith (1990) in the context of the Gibbs sampler. Suppose that (Xn, Yn) is a

Markov chain from a Gibbs sampler with stationary distribution π(x, y). Suppose
that we want to estimate some marginal quantity Eπ(f(X)). The usual estimator

is (1/n)
∑n

k=1 f(Xk). But, in the context of the Gibbs sampler, Eπ(f(X)|Y =
y) is typically available and Gelfand and Smith (1990) introduced the Rao-

Blackwellized version (1/n)
∑n

k=1 E (f(X)|Y = Yk), later proved by Liu (1994)
to be always better than (1/n)

∑n
k=1 f(Xk). Later on, Rao-Blackwellized ver-

sions of general Metropolis-Hastings samplers have been proposed by Casella and
Robert (1996) in the form E((1/n)

∑n
k=1 f(Xk)|Y1, . . . , Yn), where (Xn) is a sam-

ple from a Metropolis-Hastings algorithm and (Yn) is the sequence of proposals.
In Section 3, and following Perron (1999), we consider the IMH algorithm with

the more efficient Rao-Blackwellized version E((1/n)
∑n

k=1 f(Xk)|Y(1), . . . , Y(n)),
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where Y(1), . . . , Y(n) are the order statistics. We also work on the symmetry of
the problem. We can rearrange the estimator by introducing more symmetry and
this will reduce its variance. The second major result of this paper shows that if
we combine the approach based on a covariate with a Rao-Blackwellization, the
variance reduction obtained by the two approaches will add when combined.

The rest of the paper is organized as followed. In Section 2, we study the
control variate estimator µ̂β. We apply our results to two examples. In Section
3, we consider the use of symmetry and Rao-Blackwellization. A simulation
example is provided to illustrate our methods. Proofs are given in Section 4.

2. Variance Reduction with a Control Covariate

2.1. Control variates for Markov Chains

Throughout this paper, X denotes a nonempty subspace of R
d equiped with

its Borel subsets. Let (Xn) be a X−valued Markov chain defined on some prob-
ability space (Ω,A, P): X0 ∼ ν0 for some intial distribution ν0 and, for n ≥ 1,

Xn = F (Xn−1, Un, Yn), (2.1)

where (Un) is an i.i.d. sequence of uniformly distributed random variables, (Yn)
an i.i.d. sequence of R

d−valued random variables with distribution Q, and F :
X × [0, 1] × R

d −→ X is a measurable function. Assume that (Xn) is ergodic
with invariant distribution Π and that we are interested in the estimation of
Π(f) :=

∫

f(x)Π(dx). It is well known that

µ̂0 =
1

n

n−1
∑

k=0

f(Xk) (2.2)

is an asymptotically unbiaised estimate of Π(f). Given the recursive representa-
tion of (Xn), we wish to explore the possibility of using the i.i.d. sequence (Yn)
as a control variable to improve on µ̂0. Commonly, much is known about the
proposal distribution Q. For example we may assume that there is a real-valued
function h such that Q(h) = 0 and Q(h2) = 1. We propose the linear control
variate estimate µ̂β = µ̂0 − β(1/n)

∑n−1
k=0 h(Yk).

For definiteness, let E, Var and Cov denote the expectation, variance and
covariance, respectively, with respect to the probability measure P. Whenever a
probability distribution is known, we write Eν(t(X)) for the expectation of the
random t(X) when the law of X is ν. Let P (x,A) := E (Xn ∈ A|Xn−1 = x) be the
transition kernel of the chain (Xn). Clearly, P (x,A) =

∫

Q(dy)
∫ 1
0 1A (F (x, u, y))

du. P induces a linear operator K on real-valued function space by Kf(x) :=
∫

P (x, dy)f(y). Also, define K0 := K − π(·). We assume that Π(f 2) < ∞ and
∑

k≥0

Kn
0 f converges in L2(π). (2.3)
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Define (I − K0)
−1f :=

∑

k≥0 Kn
0 f . The transition kernel R(x,A) :=

∫

Π(dz)
∫ 1
0 1A (F (z, u, x)) du will also play an important role in what follows. Actually,

R(x,A) = E (Xn ∈ A|Yn = x,X0 ∼ Π), and it induces a bounded operator T on

real-valued functions Tf(x) :=
∫

R(x, dy)f(y). Note that for any f ∈ L2(Π),

Tf ∈ L2(Q). Here is our main result.

Theorem 2.1. Assume that (Xn) given by (2.1) is Harris ergodic with invariant

distribution Π and that f ∈ L2(Π) satisfies (2.3).

(i) If X0 ∼ Π, then

nVar (µ̂0) = Cov Π

(

(I − K0)
−1(I + K0)f(X), f(X)

)

− 2

n
Cov Π (f0,n(X), f(X)) , (2.4)

nVar (µ̂β) = nVar (µ̂0)−β2
0 +(β−β0)

2 +
2β

n
Cov Q (Tf0,n(X), h(X)) , (2.5)

where f0,n = (I − K0)
−2(I − Kn

0 )K0f and β0 = Cov Q(T (I − K0)
−1f(X),

h(X)).

(ii) Irrespective of the initial distribution of X0, n (Var (µ̂β) − Var (µ̂0)) −→ β2
0 −

(β − β0)
2.

Proof. See Section 4.

Theorem 2.1 (ii) implies that the best (asymptotically) β for µ̂β to improve

on µ̂0 is β0. This result is not very useful in practice because β0 is not known

and its estimation seems even more challenging than Π(f). But it turns out that

in the case of the IMH algorithm, some simplifications are possible.

Remark 2.1.

(i) The representation (2.1) can suit many MCMC Markov chains. For exam-

ple, for the Independent Metropolis-Hastings algorithm (IMH), F (x, u, y) =

y1[0,α(x,y)](u) + x1(α(x,y),1](u); for the Random Walk Metropolis algorithm,

F (x, u, y) = (x+ y)1[0,α(x,y)](u)+x1(α(x,y),1](u), where α(x, y) = min(1, (π(x

+y)/π(x))) with the obvious assumption that Π is absolutely continuous with

respect to the Lebesgue measure with density π.

(ii) In the assumption (2.3),
∑

k≥0 Kn
0 f is a solution of the so-called Poisson

equation g − K0g = f . The purpose of the assumption is to guarantee

that a central limit theorem holds for (1/n)
∑n−1

k=0 (f(Xk) − Π(f)). This is

satisfied in many practical situations. For example, if (Xn) is geometrically

ergodic and Π−reversible then (2.3) holds for any f ∈ L2(Π) (see Roberts and

Rosenthal (1997)). Note that (I−K0)
∑

k≥0 Kn
0 f =

(

∑

k≥0 Kn
0 f
)

(I−K0) =

f , where I is the identity operator of L2(Π). Therefore it makes sense to



IMPROVING ON THE INDEPENDENT METROPOLIS-HASTINGS ALGORITHM 7

define (I−K0)
−1f :=

∑

k≥0 Kn
0 f . Also note that (2.3) implies that

∑

k≥0 Kn
0 g

converges in L2(Π) when g is any finite linear combination of the functions
Kif .

(iii) Formula (2.4) gives an alternative formula for the variance of µ̂0 for fixed
n. As n → ∞, it follows from (2.3) that f0,n converges to some function
in L2(Π). Therefore nVar (µ̂0)−CovΠ

(

(I − K0)
−1(I + K0)f(X), f(X)

)

dies
out at the rate 1/n. From the definition of (I −K0)

−1f , it easily follows that

CovΠ

(

(I − K0)
−1(I + K0)f(X), f(X)

)

= Cov(f(X0), f(X0)) + 2
∞
∑

k=1

Cov
(

Kk
0 f(X0), f(X0)

)

,

which is the form the asymptotic variance for additive functional of Markov
chains usually takes (Chan and Geyer (1994)).

2.2. Application to the independent metropolis-hastings sampler

Here we assume that Π is absolutely continuous with respect to Q and write

ω(x)/c0 = Π(dx)/Q(dx) for some normalizing constant c0 that is not necessarily

known. In the IMH algorithm, if Xn = x, a proposal move Yn+1 is sampled from

Q and uniformly distributed random variable Un+1 is sampled. Then Xn+1 =

F (Xn, Un+1, Yn+1) where F (x, u, y) = y1[0,α(x,y)](u) + x1(α(x,y),1](u). Clearly,

if the acceptance rate of the algorithm is high, (Xn) and (Yn) will be highly

correlated.

Corollary 2.1. Assume that IMH chain (Xn) is ergodic and f ∈ L2(Π) satisfies

(2.3).

(i) One has n (Var (µ̂β) − Var (µ̂0)) −→ β2
0 − (β −β0)

2, where β0 = CovΠ(f(X),

h(X)). The choice β = β0 is asymptotically optimal.

(ii) With the choice h(x) = (f(x) − EQ(f(X)))/(VarQ(f(X))), β0 > 0, and for

any β ∈ (0, 2β0), limn→∞ n (Var (µ̂β) − Var (µ̂0)) < 0.

Proof. See Section 4.

Corollary 2.2. The best possible choice for h for reducing the asymptotic vari-

ance of µ̂β is given by h∗(y) = ω(y)(f(y) − Π(f))/
√

VarQ (ω(Y )(f(Y ) − Π(f))).

For this choice of h we obtain: µ̂β0 = µ̂0−(1/c0)((1/n)
∑n

i=1 ω(Yi)(f(Yi)−Π(f))),

where c0 is the normalizing constant of ω.

Proof. See Section 4.

Remark.

(i) First of all, Corollary 2.1 (i) shows that the applicability of control variates

for the IMH algorithm as proposed in this paper is of the same order of
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difficulty as in the i.i.d. Monte Carlo setting, namely the computation of β0.

Indeed, if we choose Q = Π so that Xi = Yi, then our estimate µ̂β is exactly

the classical control variate estimate in the i.i.d. Monte Carlo setting and the

optimal β is β0 as given above.

(ii) Corollary 2.1 (ii) suggests using the estimator

µ̂β0 = µ̂0 −
β0

n

n
∑

k=1

(f(Yk) − η)

σ
, (2.6)

where η = EQ (f(X)) and σ2 = VarQ (f(X)). Typically, η and σ are known.

Different strategies can be used to estimate β0 = VarΠ(f(X))/VarQ(f(X)):

pilot simulation can be used; one can estimate β0 directly from the sample

(Xn) generated by the IMH algorithm (call this approach the in-line strat-

egy). In our simulations we find this second approach interesting because it

is computationally cheaper and still compares very well with the pilot simu-

lation approach. But when the acceptance rate of the algorithm in low, these

two estimates derived from (2.6) perform poorly.

(iii)Corollary 2.2 is not very useful either; because c0 is not known and of course

Π(f) is not known. But it suggests that if we can find a function f1 that is

close in shape to f and for which Π(f1) is known then

µ̂1 = µ̂0 −
∑n

i=1 ω(Yi) (f1(Yi) − Π(f1))
∑n

i=1 ω(Yi)

could perform well compared to µ̂0. Finding such function in practice can be

difficult. Another possible strategy is to run a pilot simulation to obtain an

estimate Π̂(f) of Π(f) and to use

µ̂2 = µ̂0 −
∑n

i=1 ω(Yi)(f(Yi) − Π̂(f))
∑n

i=1 ω(Yi)
. (2.7)

In our simulation results below, we find that this strategy works quite well.

(iv) If (Xn) is geometrically ergodic then (2.3) is automatically satisfied for any

f ∈ L2(Π). The geometric ergodicity of the IMH algorithm is well under-

stood. It happens if and only if ω is essentially bounded (Mengersen and

Tweedie (1996)).

2.3. Simulation examples

2.3.1. Bayesian estimation of a correlation ρ

This is Example 2.3 in Chen, Shao and Ibrahim (2000). Let D = {Y1, . . .,

Yn}, where Yi = (Yi,1, Yi,2)
′ is an i.i.d. sample from N(0,Σ) with Σ =

(

1 ρ

ρ 1

)

.
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We want to estimate ρ. We assume a flat prior U(−1, 1) for ρ. Let S1 =
∑n

i=1 Y 2
i,1,

S2 =
∑n

i=1 Yi,1Yi,2 and S3 =
∑n

i=1 Y 2
i,2. The posterior density of ρ can be written

π(ρ|D) ∝ (1 − ρ2)−n/2 exp

{

− 1

2(1 − ρ2)
(S1 − 2ρS2 + S3)

}

.

We make the change of variable ρ = (−1 + eτ )/(1 + eτ ) to obtain the following

distribution on R:

π(τ |D) = π(ρ|D)
2eτ

(1 + eτ )2
.

For the simulations, we used data simulated from a N(0,Σ) with ρ = 0.5.

Table 1. Simulated data set from N(0, Σ) with ρ = 0.5.

Y1 -1.066 0.274 1.257 -0.203 -0.420 1.328 0.255 -0.561 1.336 -0.536

Y2 -1.468 -0.013 0.152 -0.597 0.137 2.130 -1.820 0.604 0.271 -0.900

To sample from π(τ |D), we used an IMH algorithm with a normal proposal

having mean given by the maximum likelihood estimate of τ and variance equal

to the inverse of the Fisher information. These quantities were estimated numer-

ically. We ran a pilot simulation for 5, 000 iterations to obtain estimates τ̂0 of

Eπ(τ) and θ̂0 of Varπ(τ). These were τ̂0 = 0.883 and θ̂0 = 0.305.

We compare different estimators of τ and the results are presented in table

2. These results are based on 100 independent replications of the IMH algorithm

each run for 5,000 iterations. The acceptance rate of the algorithm is around

60%. We normalize the proposal and use it as a control variate. The estimate τ̂1

represents the basic estimate (2.2); τ̂2 is the estimator µ̂β0 given in (2.6) where

the optimal β0 is estimated from the results of the pilot simulation; τ̂3 is the

same as τ̂2 but the optimal β0 is estimated from the same sample that estimates

τ̂1 (this is what we called the in-line strategy in the remarks and discussion of

Section 2.2); τ̂4 is the estimator in (2.7) where Π(f) is estimated from the pilot

simulation. In all our examples, we measure the improvement of an estimator µ̂

over the IMH algorithm estimator µ̂0 by 1 − Var(µ̂)/Var(µ̂0).

Table 2. Performance of the different estimates of τ . The improvement are

computed with respect to τ̂1.

τ̂1 τ̂2 τ̂3 τ̂4

mean 0.868 0.868 0.868 0.883

Variance(10−3×) 0.102 0.093 0.093 0.050

Improv. (in %) 8.56 8.58 50.6
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Two strategies stand out from these results: τ̂3 and τ̂4. The estimate τ̂3 is

interesting because it does not use results from the pilot simulation, but it likely

performs poorly if the acceptance rate of the algorithm is low. When information

from a pilot simulation is available, τ̂4 is expected to perform very well compared

to τ̂1.

2.3.2. A nonlinear regression example

We consider a data set given in Bates and Watts (1988, p.307). The data

has been modeled by Newton and Raftery (1994) as follows: response Yi to input

Xi is

Yi = β1 +
β2

1 + exp {−β4(Xi − β3)}
+ εi,

where εi are i.i.d. N(0, σ2) i = 1, . . . , 21. Following Gilks, Roberts and Sahu

(1998), we use the prior p(β, σ2) ∝ σ−2, where β = (β1, . . . , β4). We integrate

analytically over σ to obtain the posterior

π(β|D) ∝
{

n
∑

i=1

(

Yi − β1 −
β2

1 + exp {−β4(Xi − β3)}
)2}−2−n

2 .

We are interested in the posterior mean of β4. Although it is not the best

sampler for this problem, we used the IMH algorithm with a normal proposal

with mean given by the maximum likelihood of β, computed numerically. The

variance-covariance matrix of the proposal was zero off-diagonal and with di-

agonal equal to the inverse of the diagonal of the Fisher information matrix,

also computed numerically. We ran 100 independent chains each with 8, 000

iterations. The acceptance rate of the algorithm was low, around 15%. As a

control variate, we used the normalized version of the fouth component of the

proposal. We ran a pilot simulation to estimate the optimal β0 and E(β4). We

obtained β̂0 = 0.5 and β̂4,0 = −1.285. As in the last example, we compare dif-

ferent strategies. Now β̂4,1 is the basic estimate µ̂0; β̂4,2 is the estimate (2.6)

with the pilot estimate of β0; β̂4,3 is the inline version of (2.6); β̂4,4 is (2.7) where

Π̂(f) = β̂4,0 = −1.285, the estimate of Π(f) from the pilot simulation.

Table 3. Performance of the different estimates of β4. The improvements

are computed with respect to β̂4,1.

β̂4,1 β̂4,2 β̂4,3 β̂4,4

mean -1.267 -1.267 -1.266 -1.260

Variance 0.0128 0.0129 0.0129 0.0068

Improv. (in %) -0.42 -0.32 46.78
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As expected, β̂4,2 and β̂4,3 performed poorly because in this case the accep-
tance rate of the algorithm was low, while β̂4,4 performed very well.

3. Variance Reduction via Rao-Blackwellizations and Symmetry

3.1. Variance reduction via symmetry

Consider the setting of the IMH algorithm given in the introduction. Let
S be the group of permutations on {1, . . . , n}. For s ∈ S, (s(1), . . . , s(n))
is a permutation of (1, . . . , n). The Metropolis-Hasting estimator is based on
((U1, Y1), . . . , (Un, Yn)). For any s ∈ S we say that µ̃0(s) is equal to µ̂0 evaluated
at ((Us(1), Ys(1)), . . . , (Us(n), Ys(n))). The estimators {µ̃0(s): s ∈ S} are differ-
ent from one another but they share the same distribution. For example, Y1

may appears up to n times in µ̃0((1, . . . , n)) but it can appear at most once in
µ̃0((2, 3, . . . , n, 1)).

Let π be a distribution on S. Let πµ̃0 =
∑

s∈S π(s)µ̃0(s). Since all of the
µ̃0(s) have the same distribution, we obtain from Jensen’s inequality that

E[πµ̃0] = µ and Var[πµ̃0] < Var[µ̂0],

if π is not a Dirac distribution. A natural thing to do is to consider the uniform
distribution on S. However, if we cannot find any simplifications, the algorithm
will involve n! evaluations and it will become untractable for large values of n.
The simplifications that we have found so far do not help that much. A second
approch would be to replace πµ̃0 by an approximation. For example, it could
be a Monte Carlo simulation of fixed size or a numerical approach such as quasi
Monte Carlo. A third approach that we shall develop consists of taking π to be
the uniform distribution on some small subset of S. Define [i] = 1 + (i− 1)modn

and let S0 = {(k, [k + 1], . . . , [k + n − 1]): k = 1, . . . , n}. Let µ̃k = µ̃0((k, [k +
1], . . . , [k + n − 1])). Now consider

z(i) =
n−1
∑

j=0

j
∏

k=0

I(U[i+k]w(X0) > w(Y[i+k])),

m(i) = 1 +
n−1
∑

j=1

j
∏

k=1

I(U[i+k]w(Yi) > w(Y[i+k])),

sj(i) =

{

z([i]) if j = 1,

sj−1(i) + m([i + sj−1(i)]) if j > 1,

`(i) = max{j: sj(i) ≤ n, j ≥ 1}.
We obtain

µ̃k =
1

n
{z(k)h(X0)+

`(k)
∑

j=1

m([k+sj(k)])h(Y[k+sj (k)])−(s`(k)+1(k)−n)h(Y[k+s`(k)(k)])}
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and, if π is the uniform distribution on S0, then πµ̃0 = 1/n
∑n

k=1 µ̃k.

3.2. Variance reduction via Rao-Blackwellization

Cesella and Roberts (1996) suggest taking the conditional expectation of the

Metropolis-Hastings estimator given that Y1, . . . , Yn are fixed. Let us call this

estimator µ̂∗
0. It is easy to improve µ̂∗

0 by simply considering the conditional ex-

pectation given that Y(1), . . . , Y(n) are fixed, as Perron (1999) did for a different

problem. However, in our context, conditioning on the order statistics will involve

too many calculations, infeasable for large values of n. Here again, the evaluation

of µ̂∗
0 on (Y1, . . . , Yn) will be different than the evaluation of µ̂∗

0 on (Y2, Y3, . . . , Y1).

Let us say that µ̃∗
k is equal to µ̂∗

0 evaluated at (Yk, Y[k+1], . . . , Y[k+n−1]), for ex-

ample, µ̃∗
1 = µ̂∗

0. In general, if we set

p∗(i, j) = 1 ∧ w(Yj)/w(Yi) for i, j = 1, . . . , n,

p∗(0, j) = 1 ∧ w(Yj)/w(X0)) for j = 1, . . . , n,

q∗(i, j) = 1 − p∗(i, j),

f∗(i, `) =
∏̀

j=1

q∗(i, [i + j]) with f ∗(i, 0) = 1,

ϕ∗(k, `) =
∏̀

j=1

q∗(0, [k + j − 1]),

δ∗(k, 1) = p∗(0, [k]) and for ` > 1,

δ∗(k, `) = ϕ∗(k, ` − 1)p∗(0, k + ` − 1)

+
`−1
∑

j=1

δ∗(k, j)f ∗([k + j], ` − j − 1)p∗([k + j], [k + `]),

we can write

µ̃∗
k =

1

n

n
∑

`=1

{ϕ∗(k, `)h(X0) + [
n−
∑̀

j=0

f∗([k + `], j)]δ∗(k, `)h(Y[k+`])}

and, if π is the uniform distribution on S0, then πµ̃∗
0 = 1

n

∑n
k=1 µ̃∗

k.

Remark 3.1. As is mentioned in Casella and Robert (1996) the evaluations of

f∗ are very time consuming. For µ̂∗
0, f∗(i, `) has to be evaluated at i = 1, . . . , n,

` = 1, . . . , n − i. For πµ̃∗
0, f∗(i, `) has to be evaluated at i, ` = 1, . . . , n. Thus,

even if πµ̃∗
0 is an average of n estimators similar to µ̂∗

0 it requires only twice the

number of evaluations of f ∗ than µ̂∗
0.

Now we shall see that the reduction in the variance produced by a Rao-

Blackwellization is rather limited. In fact, Var[µ̂∗
0] is of the order of O(1/n).
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Remark 3.2. If we take into account how time consuming is the Rao-Black-

wellization for large values of n, it is better to increase the sample size than to

perform a Rao-Blackwellization when we want to reduce the variance in case n

is large. A better strategy might be to run several parallel chains based on small

sample sizes with Rao-Blackwellizations instead of running one chain with a large

sample size.

Lemma 3.1. Let Z be a satistic based on (U1, Y1), . . . , (Un, Yn) such that the

vector of the order statistics (Y(1), . . . , Y(n)) is a function of Z, and assume that

h is a covariate. We obtain that

Cov
[

E

(

n
∑

i=1

f(Xi)|Z
)

,
n
∑

j=1

h(Yj)
]

= Cov
[

n
∑

i=1

f(Xi),
n
∑

j=1

h(Yj)
]

.

Proof. See Section 4.

Theorem 3.1. Under the conditions of Lemma 3.1, lim infn→∞ nVar [E[µ̂0|Z]] ≥
Var Q [ω(Y )(f(Y ) − µ)].

Proof. See Section 4.

Remark 3.3. Finally, Lemma 3.1 tells us that it is possible to combine the result

of this section with that of the previous section. It suggests the estimator πµ̂∗
β0

=

πµ̃∗
0−β0ḡ. Moreover, from Lemma 3.1 we see that the improvement of πµ̂∗

β0
over

µ̂0 is the improvement due to the use of a covariate plus the improvement due to

the use of symmetry combined with the Rao-Blackwellization.

3.3. Simulation example: Computation of the mean µ of a Gamma

distribution

This example comes from Casella and Roberts (1996) and will be used to

illustrate the methods developed in Section 3. The target is a Gamma distribu-

tion with pdf π(x) ∝ xαe−x. We use a proposal with the same mean but easier

to sample from: Q(x) ∝ xe−(2/α)x. Clearly, if α is close to 2, we shall have very

few rejections in the IMH algorithm. In these situations, the method using a

covariate will be very efficient for reducing the variance. However, if α is much

larger than 2 then we shall have many repetitions in the IMHA and the meth-

ods developed in Section 3 will take advantage of these repetitions. We want to

compute µ, the mean of π. A possible control variate is h(x) =
√

2(x − α)/α so

EQ (h(X)) = 0, Var Q (h(X)) = 1. Here the (asymptotically) optimal value of β

can be computed exactly, β0 =
√

2. Our analysis is based on an estimation of

these variances based on 10,000 replications. The parameter α will vary from 2.2

to 22.0.
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Figures 1 and 2 present the improvements (computed as 1−Var(µ̂)/Var(µ̂0))

of each method for different values of the parameter α. In Figure 1 we consider the

case n = 100. This graph shows that the covariate approach is very good when

the proposal is close to the target and the method provides a small improvement

even when there is a big difference between the proposal and the target. Finally,

the estimation of the best possible choice for β0 works well. Initially, we had

considered the case n = 1, 000, but in this situation it was too difficult to see a

difference between the case where β0 is fixed and the one where it is estimated.

Figure 1. Improvements of the control variate estimators over the classical

estimator.

MHC: optimal β.

MHCE: estimated β.

MHCO: optimal β optimal covariate.

In Figure 2 we study the different estimators proposed in this paper for the

case n = 25. The case n = 25 has been chosen to keep Rao-Blackwellization

manageable. We see that the Rao-Blackwellizations helps a lot when there are

many rejections in the IMHA and, to a lesser extent, this is also true for the

symmetric versions. We see also, graphically, that the improvement given by

the approach developed in Section 2 is added to the one given by an approach

developed in Section 3 when the two approaches are combined. It is surprising

that the use of a covariate is still good, considering that the choice of the covariate

has been made on the basis of asymptotic considerations. If we take into account

evaluation time and algorithm complexity, perhaps the use of a symmetric version

with a covariate would be a nice approach.
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Figure 2. Improvements of the new estimators over the classical estimator.

MHC: control variate. MHS: symmetry. MHCS: control variate and sym-

metry.

RB: Rao-Blackwellization. RBC: Rao-Blackwellization and control variate.

RBSC: Rao-Blackwellization and symmetry and control variate.

RBS: Rao-Blackwellization and symmetry.

4. Proofs of the Results

Proof of Theorem 2.1. First, it is easy to verify that

n−1
∑

`=0

(n − `)K`
0 = n(I − K0)

−1 − (I − K0)
−2(I − Kn

0 )K0.

(i) Since X0 ∼ Π, (Xn) is stationary and we have

nVar[µ̂0] =
2

n

∑

1≤i≤j≤n

Cov[f(Xi), f(Xj)] −
1

n

∑

1≤i≤n

Var[f(Xi)]

=
2

n

n−1
∑

`=0

(n − `)Cov[f(X`+1), f(X1)] − Var[f(X0)]

=
2

n
Cov

[

n−1
∑

`=0

(n − `)K`
0f(X0), f(X0)

]

− Var[f(X0)]

= Cov
[

(I − K0)
−1(I + K0)f(X0), f(X0)

]

− 2

n
Cov

[

(I − K0)
−2(I − Kn

0 )K0f(X0), f(X0)
]

.
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For µ̂β, we have

nVar[µ̂β ] = nVar[µ̂0] − 2
β

n
Cov





n
∑

i=1

f(Xi),
n
∑

j=1

h(Yj)



+ β2.

For ` ≥ 0, taking the conditional expectation gives

E[f(X`+1)|Y1 = y] = E [E (f(X`+1)|Y1 = y,X1) |Y1 = y]

= E [E (f(X`+1)|X1) |Y1 = y]

= E

(

K`f(X1)|Y1 = y
)

= TK`f(y).

Using this expression we obtain

Cov
[

n
∑

i=1

f(Xi),
n
∑

j=1

h(Yj)
]

=
∑

1≤j≤i≤n

Cov[f(Xi), h(Yj)]

=
n−1
∑

`=0

(n − `)Cov[f(X`+1), h(Y1)]

=
n−1
∑

`=0

(n − `)Cov [E[f(X`+1)|Y1], h(Y1)]

=
n−1
∑

`=0

(n − `)CovQ

[

TK`
0f(X), h(X)

]

=Cov Q

[

n−1
∑

`=0

(n − `)TK`
0f(X), h(X)

]

=nβ0−CovQ[T (I−K0)
−2(I−Kn

0 )K0f(X), h(X)].

(ii) The Harris recurrence of (Xn) implies the Harris recurrence of (Xn, Yn) which

implies that the asymptotic distribution of (Xn, Yn) doesn’t depend on the

initial distribution of this chain. So, without any loss of generality, we can

assume that X0 ∼ Π. Then from (i) it is sufficient to show that f0,n =

(I −K0)
−2(I −Kn

0 )K0f converges in L2(Π). But this obviously follows from

the fact that the series
∑

Kn
0 f converges in L2(Π).

Proof of Corollary 2.1.

(i) We only have to show that in the case of the IMH algorithm, β0 = CovΠ

(f(X), h(X)). From Theorem 2.1, we have β0 = CovQ(T (I − K0)
−1f(X),

h(X)). Therefore, since Π
(

(I − K0)
−1f

)

= 0, it is sufficient to show that

Tf(x) = ω(x)(I − K0)f(x) for any f ∈ L2(Π) with Π(f) = 0.
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For x ∈ X and A measurable,

R(x,A) =

∫

Π(dz)

∫ 1

0
1A(F (z, u, x)du

=

∫

Π(dz) {α(z, x)1A(x) + (1 − α(z, x))1A(z)}

= 1A(x)

∫

α(z, x)Π(dz) +

∫

A
(1 − α(z, x))Π(dz).

Now, noting that ω(z)α(z, x) = ω(x)α(x, z) and with some straightforward
computations we get for f ∈ L2(Π) such that Π(f) = 0, Tf(x) = ω(x)(I −
K0)f(x).

(ii) With the choice h(x) = (f(x) − EQ(f(X)))/(VarQ(f(X))), β0 = VarΠ(f(X))
/VarQ(f(X)) > 0 and limn→∞ n (Var (µ̂β) − Var (µ̂0)) = (β − β0)

2 − β2
0 < 0

for β ∈ (0, 2β0).

Proof of Corollary 2.2. From Corollary 2.1 the asymptotic variance will be
minimized if we can maximize β2

0 . We have

β2
0 = Cov2

Π (f(X), h(X))

= Cov2
Π ((f(X) − Π(f)), h(X))

= Cov2
Q (ω(X)(f(X) − Π(f)), h(X)) /c2

0

≤ VarQ (ω(X)(f(X) − Π(f))) /c2
0

with equality if h(y) = (ω(y)(f(y) − Π(f)))/(c0

√

VarQ(ω(X)(f(X) − Π(f)))).

Proof of Lemma 3.1.

Cov
(

n
∑

i=1

f(Xi),
n
∑

j=1

h(Yj)
)

= Cov
[

E

(

n
∑

i=1

f(Xi)|Z
)

,
n
∑

j=1

h(Yj)
]

+E

[

Cov
({

n
∑

i=1

f(Xi),
n
∑

j=1

h(Yj)
}

|Z
)]

,

but
∑n

j=1 h(Yj) is fixed when Z is fixed.

Proof of Theorem 3.1. Assume that g(y) = w(y)(f(y) − µ), with µ = Π(f)
and let ḡ =

∑n
j=1 g(Yj)/n. We obtain

nVar[E[µ̂0|Z]] = nVar[E[µ̂0|Z] − Cov[E[µ̂0|Z], ḡ]

Var[ḡ]
ḡ] + n

(Cov[E[µ̂0|Z], ḡ])2

Var[ḡ]

≥ n
(Cov[E[µ̂0|Z], ḡ])2

Var[ḡ]

= n
(Cov[µ̂0, ḡ])2

Var[ḡ]

→ VarQ[ω(Y )(f(Y ) − µ)] as n → ∞,
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where the last equality comes from Lemma 3.1 and the limiting result is explained

in the proof of Theorem 2.1.
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