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Abstract: We consider random-design nonparametric regression model in which

errors depend on predictors as well as on unobservable latent variables. Predic-

tors and latent variables may be short- or long-range dependent. In this setup

asymptotic distributions of the Nadaraya-Watson estimate of regression function

are studied under various conditions. We prove that their form depends on three

factors: amount of smoothing and strength of dependence of both predictors and

latent variables. Our results go beyond earlier ones by allowing more general de-

pendence structure.
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1. Introduction

Let (Yt,Xt)∞t=1 be a bivariate stationary process and suppose that E|Y | < ∞,
where (Y,X) = (Y1,X1). We consider the problem of nonparametric estimation
of the regression function of Y given X = x; g(x) := E(Y |X = x). The prob-
lem has been extensively studied when observations (Yt,Xt) are independent or
weakly dependent; see for example Györfi, Härdle, Sarda and Vieu (1989). For
recent developments see Nze, Bühlmann and Doukhan (2002). There has also
been recent interest in studying properties of nonparametric estimators when
observations are long-range dependent (LRD), compare e.g., Hidalgo (1997) and
Csörgő and Mielniczuk (1999, 2000). This supplements the much more frequent
studies of LRD case when parametric assumptions are made about regression
function g (see e.g., Koul (1992) and Robinson and Hidalgo (1997)).

In order to investigate distributional properties of estimators in nonpara-
metric random-design regression model for LRD data, we have to impose some
conditions on the structure of errors. Their specific form assumed here is de-
scribed in the model equation

Yt = g(Xt) + G(Zt,Xt), t = 1, 2, . . . (1)
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Errors G(Zt,Xt) depend on the explanatory variables Xt, as well as on the latent
variables Zt forming a stationary sequence, and such that E(G(Zt,Xt)|Xt) = 0
almost surely. This noise structure was first considered by Cheng and Robinson
(1994) and yields a substantial relaxation of the assumption of independence
between predictors and errors. In the case when the sequence (Xt) is i.i.d. or
weakly dependent and independent of the sequence (Zt), which is assumed to be
either Gaussian or a linear process, the properties of kernel estimators of g were
studied in Csörgő and Mielniczuk (1999, 2000).

Here we provide substantial generalization of the previous research by dis-
pensing with assumption of weak dependence of predictors and their indepen-
dence from the sequence of latent variables (Zt). Allowing for more general
structure of dependence between and within predictors and errors is desirable
e.g., in econometric applications (c.f., Cheng and Robinson (1994)). In order to
accommodate this we assume that both (Zt) and (Xt) are (possibly dependent)
linear processes

Zt =
∞∑
i=0

aiεt−i, Xt =
∞∑
i=0

ciηt−i,

where (εi, ηi)∞−∞ is an i.i.d. sequence having mean 0, E(ε2
i + η2

i ) < ∞ and
the coefficients (ai)∞0 and (ci)∞0 are square summable. Moreover, we assume
a0 = c0 = 1. In the paper we focus on the case of univariate predictors (Xt);
extensions to the multivariate case will be pursued elsewhere. The strength of
dependence of a linear process is determined by the decay rate of the coefficients.
If ai = LZ(i)i−βZ , where 1/2 < βZ < 1 and LZ(·) is slowly varying at ∞, routine
calculation based on Karamata’s theorem implies that rZ(i) := Cov(Z0, Zi) ∼
C(βZ)L2

Z(i)i−(2βZ−1)
E(ε2

i ), where C(βZ) =
∫∞
0 (x+x2)−βZ dx and an ∼ bn means

limn→∞ an/bn → 1. Thus in this case the sum of absolute values of the covari-
ances diverges. This property is called long-range dependence, or long-memory,
in contrast to short-range dependence (SRD) that features absolutely summable
covariances. Note that if

∑∞
i=0 |ai| < ∞, or β > 1 in the hyperbolic decay

condition given above, (Zt) is SRD.
In the paper we investigate limit laws of kernel estimators of (g(x1), . . .,

g(xl)) for different points x1, . . . , xl ∈ R when the sample (Y1,X1), . . . , (Yn,Xn)
pertaining to the model (1) is available. The main results follow from an asymp-
totic representation for ĝn(x), x ∈ R, given in Proposition 1 of Section 3. It
turns out that the correct standardization and asymptotic distribution of ĝn(x)
is determined by three factors: the amount of smoothing and the strength of de-
pendence of the sequences (Zt) and (Xt). This extends a smoothing dichotomy
phenomenon studied previously in the case of dependent predictors. In particu-
lar, results of Csörgő and Mielniczuk (2000) are generalized under different set
of assumptions.
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The results for the random-design model are qualitatively very similar to
those for probability density estimates based on LRD data. For the latter case
the research goes back to Robinson (1991) (paper submitted in 1988) who showed
that asymptotic distributions of a kernel density estimate at different points
may be perfectly correlated; this was extended in Cheng and Robinson (1991).
Different behaviour of the integrated mean squared error for small and large
bandwidths was discussed by Hall and Hart (1990). The smoothing dichotomy
of asymptotic distributions of a kernel density estimate was proved by Ho (1996).

The main results of the paper are consequences of an asymptotic repre-
sentation of ĝn(x) for various patterns of dependence. In particular it follows
that if the amount of smoothing is small in a given sense, the estimators be-
have asymptotically as if (Zt) and (Xt) are independent. For a large amount of
smoothing, crudely speaking, the standardization and the limiting law is usually
determined by strength of dependence of the more strongly dependent sequence
among (Zt) and (Xt). However, the outcome depends also on a pair of integers
(l1, l2), defined in (18), which yield generalization of a power rank of a function
with respect to a given distribution. In the considered context the previous state-
ment holds when l1 = l2. If l2 is larger than l1 it may happen, as it happens
for mutually independent sequences (Zt) and (Xt), that the limiting behavior is
determined by the strength of dependence of (Zt) which is actually weaker than
that of (Xt). In this context we refer to Choy and Taniguchi (2002) who discuss
similar phenomenon in the case of a linear model without intercept. The devel-
opment depends on the decomposition of a centered Nadaraya-Watson estimate
into three terms (cf. equation (4)): a martingale term Mn, a sum of conditional
expectations Nn and a term Pn pertaining to bias of the estimator. When both
(Zt) and (Xt) are SRD, only Mn determines the asymptotic law. In the LRD
case, all three terms may influence the asymptotic distribution. Analysis of Nn

relies on a projection method developed in Wu (2003) and Wu and Woodroofe
(2002) to prove limit theorems for linear LRD processes, whereas analysis of Pn

is partly based on Wu and Mielniczuk (2002). In Section 2 we state and discuss
our assumptions. Section 3 contains the main results and some of their conse-
quences for particular submodels of the regression model (1). Section 4 contains
auxiliary lemmas and all proofs.

2. Definitions and Assumptions

The following notation will be used throughout the paper. Let Wt := (Zt,Xt)
and Wt,k = E(Wt|W̃k), where W̃t = (. . . , εt−1, ηt−1, εt, ηt) is a shift process; let
ft be the density of Wt − Wt,0 = (

∑t−1
i=0 aiεt−i,

∑t−1
i=0 aiηt−i)T with aT denoting

transposition of a vector a. Moreover, ft,Z and ft,X denote the marginal densities
of ft. In particular, f1 stands for the density of (ε0, η0) and f∞ the density of
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(Z,X) = (Z1,X1) with its marginal densities h and f . Marginal densities of f1

will be denoted by fε and fη, respectively instead of f1,Z and f1,X . Let ‖ξ‖ =
(E|ξ|2)1/2 be the L2-norm of a random vector ξ and Pkξ = E(ξ|W̃k)−E(ξ|W̃k−1),
k ∈ N, be the projection differences.

We estimate g by means of the Nadaraya-Watson estimate

ĝn(x) =

∑n
t=1 K

(
x−Xt

bn

)
Yt∑n

t=1 K
(

x−Xt
bn

) , (2)

where K is a bounded symmetric probability density supported on [−1, 1] and
bn > 0 is a sequence of deterministic bandwidths tending to 0 in such a way that
nbn → ∞. Bandwidth b = bn determines the amount of smoothing employed
by the kernel estimator for sample size n. Setting Kb(x) := b−1K(x/b), put
f̂n(x) := n−1∑n

t=1 Kbn(x−Xt) to be a kernel estimate of the marginal density f

of X. We further define v̂n(x) := ĝn(x)f̂n(x), Jt(x) = G(Zt,Xt)Kb(x − Xt) and

gn(x) =
Ev̂n(x)
Ef̂n(x)

=
E(Kbn(x − X)Y )
E(Kbn(x − X))

. (3)

Let ĝn(x) − g(x) = Dn(x) + gn(x) − g(x), where Dn(x) = ĝn(x) − gn(x). As
gn(x)−g(x) is a non-stochastic term which under standard conditions is of order
b2
n (cf. (16)) we study asymptotic behaviour of Dn(x). Assumptions C1, C6 − C7

below imply that f̂n(x) is a weakly consistent estimate of f(x). Thus when
f(x) �= 0, in order to investigate asymptotic laws of Dn given (1), it is enough to
study laws of Dn(x)f̂n(x), which is equal to

1
n

n∑
t=1

(Yt − gn(x))Kb(x − Xt)

=
1
n

n∑
t=1

[Jt(x) − E(Jt(x)|W̃t−1)] +
1
n

n∑
t=1

E(Jt(x)|W̃t−1)

+
1
n

n∑
t=1

(g(Xt) − gn(x))Kb(x − Xt) := Mn(x) + Nn(x) + Pn(x). (4)

Note that Mn(x) admits a martingale structure. We prove in Lemma 3 of Section
4 that (nbn)1/2Mn(x) is asymptotically normal regardless of how strongly the
dependent the sequences (Zt) and (Xt) are. The behavior of the terms Nn(x)
and Pn(x) is studied in Lemmas 4 and 6 respectively.

Let C(k)(U) denote the family of k times differentiable functions on an open
set U ; let |v| = (

∑l
i=1 v2

i )
1/2 be the norm of a vector v = (v1, . . . , vl)T ∈ R

l and
|A| = (

∑l,q
j,k=1 a2

j,k)
1/2 the norm of (l × q)-matrix A. We put Ai = diag(ai, ci).

For an l-dimensional random variable V , ‖V ‖ denotes L2-norm of |V |.



ON RANDOM-DESIGN MODEL WITH DEPENDENT ERRORS 1109

We now state and discuss assumptions under which our results hold.

C1: f1 is bounded, twice continuously differentiable with bounded derivatives;

C2: E{|B1(y) − B1(x)|} → 0 as y → x, where

Bt(y) :=
∫

G2(z, y)f1(z − Zt,t−1, y − Xt,t−1) dz ;

C3: EḠ2(Z) < ∞, where Ḡ(z) = supy:|y−x|<δ0 |G(z, y)| for some δ0 > 0;

C4: Let R2,t(z, y) = ft−1(z −Zt,1, y −Xt,1)− ft−1(z −Zt,0, y −Xt,0) +∇fT
t−1(z −

Zt,0, y − Xt,0)At−1
(ε1

η1

)
. There exist C > 0 and δ0 > 0 such that for sufficiently

large t ∈ N,

sup
y:|y−x|<δ0

‖
∫

G(z, y)[∇ft−1(z − ξ1, y − ξ2) −∇ft−1(z, y)] dz‖ ≤ C‖(ξ1, ξ2)‖ (5)

holds for (ξ1, ξ2) = (Zt,0,Xt,0) and (ξ1, ξ2) = (Zt,1,Xt,1), and

sup
y:|y−x|<δ0

‖
∫

G(z, y)R2,t(z, y) dz‖ ≤ C|At−1|2; (6)

C5: g ∈ C(2)(U(x, δ0)), where U(x, δ) = {y : |y − x| < δ};
C6: There exist a sequence γt ↓ 0 such that

1∑
ι=0

sup
y

‖f (ι)
t−1,X(y−Xt,1)−f

(ι)
t−1,X(y−Xt,0)+f

(ι+1)
t−1,X(y−Xt,0)ct−1η1‖ ≤ γt−1|ct−1|,

(7)
1∑

ι=0

sup
y

[‖f (ι+1)
t−1,X(y − Xt,0) − f

(ι+1)
t−1,X(y)‖ + ‖f (ι+1)

t−1,X(y − Xt,1) − f
(ι+1)
t−1,X(y)‖] ≤ γt−1;

(8)

C7: Innovation coefficients (ci)∞i=0 satisfy one of the following:

(i)
∑∞

i=0 |ci| < ∞;
(ii)

∑∞
i=0 |ci| = ∞ and there exists i0 ∈ N and τ > 0 such that for all j ≥ i ≥ i0

|ci + · · · + cj | ≥ τ(|ci| + · · · + |cj |).
Conditions C2, C3 and the boundedness of f1 are used to derive asymptotic nor-
mality of Mn(x), conditions C1 and C4 (respectively, C5−C7) ensure that suitable
approximation of Nn(x) (respectively, Pn(x)) holds. Condition C2 is the basic
condition used to prove convergence of the conditional variance part in the mar-
tingale CLT for Mn(x). Here we provide some sufficient conditions for it. Observe
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that, using the triangle inequality, we have

|Bt(y) − Bt(x)|
≤
∫

|G2(v, y)−G2(v, x)|f1(v − Zt,t−1, x − Xt,t−1)dv

+
∫

G2(v, y)|f1(v − Zt,t−1, y−Xt,t−1)−f1(v − Zt,t−1, x−Xt,t−1)|dv. (9)

As we have Ef1(z − Zt,t−1, y − Xt,t−1) = f∞(z, y) it is easily seen from (9),
using the change of integration order, that the condition C2 is implied by the
conjunction of following two conditions:

C′
2 : E(|G2(Z, y) − G2(Z, x)| |X = x) → 0 when y → x;

C′′
2 : supy:|y−x|<δ0

∫
G2(v, y)Eg̃(v − Zt,t−1) dv < ∞, where |f1(v, y) − f1(v, x)| ≤

g̃(v)h̃(y − x) and h̃(z) → 0 when z → 0.

In particular when ε1 and η1 are independent, and since fη is Lipschitz continuous
in view of C1, one can take g̃(v) = fε(v) and h̃(y) = Cy for some constant
C. Condition C′′

2 is then implied by supy:|y−x|<δ0 EG2(Z, y) < ∞ as Efε(v −
Zt,t−1) = h(v). In turn, the last condition is implied by condition C3. Thus,
when predictors and latent variables are independent, C2 may be replaced by C′

2

which then coincides with L2-continuity of G(Z, ·) at x. In the general case when
independence of ε1 and η1 is not assumed, condition C′′

2 in view of (9) may be
always replaced by supy:|y−x|<δ0

∫
G2(v, y) dv < ∞ because of Lipschitz continuity

of f1. Condition C3 is used to check Lindeberg’s condition in the martingale CLT.
It is slightly stronger than finiteness of EG2(Z, y) in the neighborhood of x.

We discuss now condition C4. Notice that the difference (z−Zt,1, y−Xt,1)−
(z−Zt,0, y−Xt,0) = (−at−1ε1,−ct−1η1) and its L2-norm is equal to |At−1|. Thus
(5) and (6) basically assert the validity of the first and second order Taylor’s
expansion of the functionals

∫
G(z, y)∇ft−1(z − ·, y − ·)dz and

∫
G(z, y)ft−1(z −

·, y − ·)dz, respectively. It is easily seen that C4 is implied by

C′
4: supy:|y−x|<δ0 supt∈N

∫ |G(z, y)|ft,i(z, y) dz < ∞ for i = 2, 3 and some δ0 > 0,
where

ft,2(w)= sup
s∈R2

|∇ft(w−s)−∇ft(w)|
|s| and ft,3(w)= sup

s∈R2

|D2ft(w−s)−D2ft(w)|
|s| .

Moreover, when ∇f1 and D2f1 are Lipschitz continuous, then

ft,i(w) ≤
∫

f1,i(w − t)f̃(t) dt, i = 2, 3,

where f̃ is the density of (
∑t−1

i=1 aiεt−i,
∑t−1

i=1 ciηt−i)T. Thus C4 follows from the
following condition on f1,i:



ON RANDOM-DESIGN MODEL WITH DEPENDENT ERRORS 1111

C′′
4 : supw2∈U(x,δ0)

∫ |G(w)|f1,i(w − t) dw1 < C < ∞, i = 2, 3

uniformly in t ∈ R
2, where w = (w1, w2).

We discuss now condition C6. Observe that it holds when f1 is three times
continuously differentiable with bounded derivatives, γt−1 being a constant mul-
tiply of |ct−1| in (7) and of (

∑∞
s=t−1 c2

s)
1/2 in (8). This follows from Taylor’s

expansion and an observation analogous to Lemma 1. Conditions C5 − C7 en-
tail asymptotic expansions for certain partial sum processes dealt with in proof
of Lemma 6. In particular it follows from the proof that (43), which provides
asymptotic representation of centered kernel density estimate for LRD obser-
vations, actually holds under weaker assumptions than those used in Wu and
Mielniczuk (2002), namely it is sufficient to assume that fη is twice continuously
differentiable with bounded derivatives. This is implied by Lemma 7 which is
used in place of Ho and Hsing (1996) results (see also Wu (2003) for improvements
and generalizations of the last paper).

Condition C7 is used only to derive suitable approximation of Nn(x) (cf.
Lemma 6 in Section 4). Its part (i) corresponds roughly to the assumption that
the Xi are SRD, part (ii) is a mild condition assumed for the LRD case: it implies
that Var(X1 + · · · + Xn)/n → ∞. It holds when (ci) satisfies (10) below, with
LX(·) a slowly varying function ultimately of constant sign.

Put σ2
n,Z = E(

∑n
t=1 Zt)2 and σ2

n,X = E(
∑n

t=1 Xt)2. When

ai = LZ(i)i−βZ , ci = LX(i)i−βX with 1 > βZ, βX > 1/2, (10)

where LZ(·), LX (·) are slowly varying at infinity, application of Karamata’s the-
orem implies that

σ2
n,Z ∼ D(βZ)n2−(2βZ−1)L2

Z(n)E(ε2
1), σ2

n,X ∼ D(βX)n2−(2βX−1)L2
X(n)E(η2

1),
(11)

where D(β) = {(2 − 2β)(3/2 − β)}−1C(β). Then noting that σ2
n,Z → ∞ when

n → ∞ it follows from Theorem 18.6.5 in Ibragimov and Linnik (1971) (see also
Lemma 8) that

σ−1
n,Z

n∑
t=1

Zt =⇒ N1, (12)

where ⇒ denotes convergence in distribution and N1 is the standard normal
random variable. The analogous result holds for

∑n
t=1 Xt.

3. Results

We first state a crucial approximation of ĝn(x)−gn(x) from which asymptotic
distributions of ĝn(x) − g(x) are derived. To this end define

St(x) = −
∫

G(z, x)∇T f∞(z, x) dz × Wt,t−1, Ñn(x) = n−1
n∑

t=1

Kb 	 St(x),
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where 	 denotes the convolution, and

Ξ2
n = nΘ2

n +
∞∑
i=1

(Θn+i −Θi)2, Θn =
n∑

i=1

θi, θi = |Ai−1|
√

Ai−1 and Ai =
∞∑
j=i

|Aj |2.

Moreover, let

C1(x) = µ2[−g′(x)f ′′(x) + g′(x)f ′2(x)/f(x)], (13)

where µi =
∫

xiK(x) dx for i ∈ N.

Proposition 1. Assume that conditions C1 − C7 hold and f(x) �= 0. Then

ĝn(x) − gn(x) = (Mn(x) + Ñn(x) + Pn(x))/f̂n(x) + OP (Ξn/n), (14)

where finite-dimensional distributions of
√

nbnMn are asymptotically normal,
Pn(x) = oP ((nbn)−1/2) under C7(i) and

Pn(x) = C1(x)
b2
n

n

n∑
t=1

Xt,t−1 + oP ((nbn)−1/2 + b2
nσn,X/n) (15)

provided C7(ii) holds. If |An| = O(L(n)n−β) for some β > 1/2 and slowly varying
function L, then Ξn = O[

√
n
∑2n

i=1 i1/2−2βL2(i) + n2−2βL2(n)].

We are now in position to state our main results. Consider distinct points
x1, . . . , xl ∈ R such that f does not vanish at any of them. We assume that
conditions C1 −C7 are satisfied for all xi, i = 1, . . . , l. Observe that since, in view
of C1 and C5, gf(·) is two times continuously differentiable in a neighborhood of
x, assumptions on kernel K yield

gn(x) − g(x) = CB(x)b2
n + o(b2

n), (16)

where CB(x) = µ2(2f(x))−1((fg)′′(x) − gf ′′(x)). Theorems below are direct
consequences of Proposition 1, Lemmas 3 and 8 in Section 4, and (16).

3.1. Short-range dependent sequences

We first consider the case when both (Zt) and (Xt) are short-range depen-
dent. In the following result assume that nb5

n → C2, where C is a nonnegative
constant. Thus the result covers the case of bandwidths of order n−1/5 which
is MSE-optimal order under independence. Although Theorem 1 appears to be
new, the asymptotic law of ĝn(x) is precisely the same as under independence
or other weak dependence conditions such as strong mixing (cf. Robinson (1983)
for the result under an α-mixing condition). This phenomenon, known as the
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whitening by windowing principle, is widely known to occur for weakly depen-
dent data. The main results of the paper are thus Theorems 2 and 3 which show
when this principle fails under LRD, and how in this case the asymptotic law is
affected by strength of dependence.

Theorem 1. If
∑∞

i=0 |Ai| < ∞, nb5
n → C2 ≥ 0 and (16) holds, then

(nbn)1/2 (ĝn(xi) − g(xi), 1 ≤ i ≤ l) =⇒
(σ(xi)
f(xi)

Ni + µ(xi), 1 ≤ i ≤ l
)
, (17)

where σ2(x) = κ2
∫

G2(v, x)f∞(v, x)dv with κ2 =
∫

K2(s)ds, Ni are independent
standard normal variables and µ(x) = CCB(x).

The theorem follows from Proposition 1 upon noting that for absolutely
summable Ai we have Ξ2

n = O(n) and Ñn(x) and Pn(x) are both OP (n−1/2). Ob-
serve that in view of (16), (nbn)1/2(gn(x)−g(x)) = (nb5

n)1/2CB(x)+o((nbn)1/2b2
n)

−→ µ(x), which explains the form of the asymptotic mean µ(x) in (17). The im-
posed condition on (bn) is used solely to ensure convergence above. Noting that
σ2(x)/f(x) = E((Y − g(X))2|X = x), we see that the limiting distribution is the
same as if (Zi,Xi) were independent.

3.2. Long-range dependent sequences

Consider the case when either (Zi) or (Xi) is long-range dependent. Let
αn(x) := Kbn 	 I1(x) and βn(x) := Kbn 	 I2(x), where

I1(x) := −
∫

G(v, x)f (1,0)
∞ (v, x) dv and I2(x) := −

∫
G(v, x)f (0,1)

∞ (v, x) dv.

Then

Ñn(x) =
αn(x)

n

n∑
t=1

Zt,t−1 +
βn(x)

n

n∑
t=1

Xt,t−1 =: ÑZ,n(x) + ÑX,n(x).

In the LRD case we need to know the order of magnitude of αn(x) and βn(x)
when n → ∞. To this end define for i = 1, 2,

li(x) = min{s ≥ 0 : I
(s)
i (x)

∫
xsK(x) dx �= 0}, (18)

where we assume that derivatives of Ii(x) of sufficient order exist. We let
li(x) = ∞ if the above condition is not fulfilled for any s. Then using standard
reasoning it is easy to see that αn(x) ∼ b

l1(x)
n I

(l1(x))
1 (x)µl1(x)/l1(x)! and βn(x) ∼

b
l2(x)
n I

(l2(x))
2 (x)µl2(x)/l2(x)!. Let li := min{li(x1), . . . , li(xl)}. Then ‖ÑZ,n(xk)‖,
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k = 1, . . . , l is dominated by ‖ÑZ,n(xk0)‖, where k0 is the index of xk, k = 1, . . . , l
for which the minimal value l1 is attained.

3.2.1. Some examples

Below we discuss some examples of the regression model (1) with various
dependence structures of (Z,X), functions G(z, x) and (l1(x), l2(x)). It turns
out that the asymptotic distribution of ĝn(x) depends on the pair (l1(x), l2(x)).

Example 1. Assume that Z is independent of X. Then I2(x) ≡ 0 regardless of
the form of G(z, x), and l2(x) = ∞. Indeed, in this case, f∞(z, y) = h(z)f(y)
and

I2(x) = −
∫

G(z, x)f (0,1)
∞ (z, x) dz

= −f ′(x)
∫

G(z, x)h(z) dz = −f ′(x)EG(Z, x) = 0.

Moreover, if limz→±∞ G(z, x)h(z)=0, then I1(x)=f(x)G′∞(0, x), where G∞(z, x)
= E(G(z + Z, x)). Thus l1 = 0 is equivalent to the fact that the power rank of
the function G(·, x) w.r.t. distribution of Z (c.f., Ho and Hsing (1997)) is equal
to 1.

Example 2. Consider the case of multiplicative errors G(z, x) = G1(z)G2(x).
Observe that the situation when errors don’t depend on explanatory random
variables, i.e., G(z, x) = G(z), is a special case of this example. This also holds
for the ARCH-type error function G(z, x) = G(x)z. As in Example 1, we have
I2(y) ≡ 0 in a neighborhood Ux of x provided G2(y) �= 0 in Ux. In this case∫

G1(z)f∞(z, y)dz ≡ 0 in Ux and the remark follows by taking derivatives w.r.t. y

of both sides. In particular, assume additionally that Z is independent of X,
EG1(Z) = 0, EG′

1(Z) = − ∫ G1(z)h′(z)dz �= 0 and (fG2)(x) = (fG2)′(x) =
· · · = (fG2)(k−1)(x) = 0, (fG2)(k)(x) �= 0 for some even k ∈ N. Then I1(y) =
EG′

1(Z)(fG2)(y) and l1(x) = k, thus in this case (l1(x), l2(x)) = (k,∞).

Example 3. Suppose that (Z,X) has the bivariate normal distribution
N(0, 0, 1, 1, ρ) with ρ �= 0, and that G(z, x) satisfies

∫
G(z, x)f∞(z, x)dz = 0.

Then f
(1,0)
∞ (z, x) = −f∞(z, x)(z − ρx)/(1 − ρ2) and f

(0,1)
∞ (z, x) = −f∞(z, x)(x −

ρz)/(1 − ρ2), which entails (1 − ρ2)[I2(x) + ρI1(x)] = − ∫ G(z, x)f∞(z, x)(1 −
ρ2)xdz = 0 and ρI2(x) + I1(x) = − ∫ zG(z, x)f∞(z, x)dz. The last two identities
imply that l1(x) = l2(x). If the conditional mean E[ZG(Z,X)|X = x] �= 0 at
point x, then l1(x) = l2(x) = 0. This example shows, interestingly, that in the
dependent bivariate normal case l1(x) and l2(x) are necessarily the same. One
has to consider non-normal models to obtain different l1 and l2.
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Example 4. We construct an example of a model for which (l1(x), l2(x)) =
(0, 2) for some x ∈ R. To this end, let Z be standard normal with the density
φ(z), X = Z + Ω, where Ω is independent of Z with the density fΩ(z), and
G(z, x) = z − t(x), where t(x) = E(Z|X = x). Then f∞(z, x) = φ(z)fΩ(x − z)
and f

(0,1)
∞ (z, x) + f

(1,0)
∞ (z, x) = −zφ(z)fΩ(x − z). Thus

I1(x) = −
∫

G(z, x)f (1,0)
∞ (z, x)dz =

∫
G(1,0)(z, x)f∞(z, x)dz = f(x).

As E(G(Z,X)|X = x) = 0, I1(x) + I2(x) equals

−
∫

[f (0,1)
∞ (z, x) + f (1,0)

∞ (z, x)]G(z, x) dz =
∫

[z − t(x)]2φ(z)fΩ(x − z) dz.

Whence

I1(x) + I2(x)
f(x)

= E([Z − t(X)]2|X = x) = Var(Z|X = x).

By Example 3, to obtain l1(x) �= l2(x), one has to try non-normal random vari-
ables Ω. Let fΩ(z) = z2φ(z). Then it is easily seen that I1(x) = f(x) =
e−x2/4(2 + x2)/8

√
2π �= 0. It follows that l1(x) = 0 and I2(x) = (Var(Z|X =

x) − 1)f(x). Thus for x0 such that Var(Z|X = x0) = 1 and I
(2)
2 (x0) �= 0,

we have l2(x0) = 2. It can be checked that t(x) = x(−2 + x2)/2(2 + x2) and

Var(Z|X = x) = (12 + x4)/2(2 + x2)2, and then x0 =
√√

20 − 4 satisfies both
above conditions.

3.2.2. Limit theorems

From now on we assume that coefficients (ai) and (ci) decay hyperbolically
according to (10) and bandwidths bn satisfy

b2
n

1
(nbn)1/2 + σn,Zb

l1
n

n + σn,Xb
l2
n

n

−→ C ≥ 0. (19)

Observe that when (Zi) and (Xi) are short-range dependent, standard deviations
σn,Z and σn,X are both of order

√
n and (19) coincides with the condition on

bandwidths imposed in Theorem 1. Note that (19) cannnot hold if, e.g., σn,Zbl1
n /n

is the largest term in the denominator and l1 ≥ 2. We consider first the case
when (l1, l2) = (0, 0). Define

D(β, γ) =
1

(1 − β)(1 − γ)

∫
R
[(1−u)1−β

+ −(−u)1−β
+ ][(1−u)1−γ

+ −(−u)1−γ
+ ]du, (20)
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where 1/2<β, γ <1. Moreover, let τ =ρD(βZ , βX )/[D1/2(βZ , βZ)D1/2(βX , βX)],
ρ = E(εiηi)/

√
Eε2

i Eη2
i . It can be shown that D(βZ , βZ) equals D(βZ) defined in

(11).

Theorem 2. Assume that (l1, l2) = (0, 0), Ii(·) are continuous at xk, k =
1, . . . , l, i = 1, 2, and (19) is satisfied.
(a) Assume that βZ < βX . If (i) σn,Z/n = o((nbn)−1/2) then (17) holds; if (ii)

(nbn)−1/2 = o(σn,Z/n), then

n

σn,Z
(ĝn(xi) − g(xi), 1 ≤ i ≤ l) =⇒

(
N1

I1(xi)
f(xi)

+ µ(xi), 1 ≤ i ≤ l

)
, (21)

where µ(x) is defined in Theorem 1.
(b) Assume that βZ > βX . Then (a) holds with the role of σn,Z taken over by

σn,X and I1(x) replaced by I2(x).
(c) Assume that βZ = βX . If (i) σn,Z/n = o((nbn)−1/2) then (17) holds; if (ii)

(nbn)−1/2 = o(σn,Z/n) and limt→∞LX(t)/LZ(t) → A, then

n

σn,Z
(ĝn(xi) − g(xi), 1 ≤ i ≤ l)

=⇒
(
N 0

1

I1(xi)
f(xi)

+ N 0
2

AI2(xi)
f(xi)

+ (1 + A)µ(xi), 1 ≤ i ≤ l

)
,

where (N 0
1 ,N 0

2 ) has bivariate normal distribution with standard normal mar-
ginals and correlation τ defined below (20).

The proof of Theorem 2 (c)(ii) follows from Lemma 8. We consider now
cases when only one of li is equal to 0. Observe that as K is symmetric, the
smallest possible nonzero value of li is 2.

Theorem 3. Assume that (l1, l2) = (0, 2) and Ii(·) ∈ C(2)(U(xk, δ0)) for some
δ0 > 0 and k = 1, . . . , l, i = 1, 2, and that (19) is satisfied. Moreover, let
bn = L̄(n)n−γ for some γ > 0 and slowly varying function L̄(·).
(a) Assume that βZ < min(βX + 2γ, 2βX − 1/2). If (i) σn,Z/n = o((nbn)−1/2)

then (17) holds; if (ii) (nbn)−1/2 = o(σn,Z/n) then (21) holds.
(b) Assume that βX + 2γ < min(βZ , 2βX − 1/2). If σn,Xb2

n/n = o((nbn)−1/2)
then (17) holds.

When (l1, l2) = (2, 0), an analogue of Theorem 3 is true with σn,Z (re-
spectively σn,X) replaced by σn,X (respectively σn,Z) and βZ (βX) replaced by
βX (βZ).

If (nbn)−1/2 = o(σn,Xb2
n/n) under conditions of Theorem 3 (b), one would

expect the normalization n/(σn,Xb2
n) to yield non-degenerate asymptotic law for

centered ĝn. However, this is the case when we center at gn(x) instead of g(x),
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as n/(σn,Xb2
n)(gn(x) − g(x)) → ∞ under (16) since (19) is not satisfied. Let

Ī2(x) = C1(x) + 2−1I
(2)
2 (x)µ2, where C1(x) is defined in (13) and assume that

there exists k ∈ {1, . . . , l} such that Ī2(xk) �= 0. Moreover, assume that βX+2γ <

min(βZ , 2βX − 1/2). Then if (nbn)−1/2 = o(σn,Xb2
n/n),

n

σn,Xb2
n

(ĝn(xi) − gn(xi), 1 ≤ i ≤ l) =⇒ N1

(
Ī2(xi)
f(xi)

, 1 ≤ i ≤ l

)
. (22)

Analogously, for the case (l1, l2) = (2, 0) when Ii(·) ∈ C(2)(U(xk, δ0)) for some
δ0 > 0 and k = 1, . . . , l, i = 1, 2, βZ + 2γ < min(βX , 2βZ − 1/2) and (nbn)−1/2 =
o(σn,Zb2

n/n), we have

n

σn,Zb2
n

(ĝn(xi) − gn(xi), 1 ≤ i ≤ l) =⇒ N1
µ2

2

(
I

(2)
1 (x)
f(x1)

, 1 ≤ i ≤ l

)
. (23)

The difference between the cases (l1, l2) equal to (0,2) and (2,0) exhibited by
the different scaling constants in the last two asymptotic laws is due to the fact
that in the asymptotic representation of ĝn(x)− gn(x) in Proposition 1, the sum∑

Xt,t−1 appears in both Ñn and Pn whereas here there is only one term Ñn

involving
∑

Zt,t−1.
Consider the case (l1, l2) = (2, 2). If (nbn)−1/2 + σn,Xb2

n/n = o(σn,Zb2
n/n),

then (23) holds. In this case (19) is violated. If σn,Zb2
n/n + σn,Xb2

n/n =
o((nbn)−1/2), then we have (17) under condition (19). If (nbn)−1/2 + σn,Zb2

n/n =
o(σn,Xb2

n/n), then (22) is valid.
By a standard approach one may consider a kernel of order k higher than

2 to center at g(xi), i = 1, . . . , l, in the two last results. This would require
imposing a modified (19) with b2

n replaced by bk
n.

In view of Theorem 3 (a) it may happen that, although dependence of (Zt)
is weaker than that of (Xt), the asymptotic law of ĝn(x) is determined by the
dependence of (Zt) alone. For similar phenomena in the linear model with no
intercept, see Choy and Taniguchi (2002). Note that for bn defined in Theorem 3,
σn,Z/n = o((nbn)−1/2) holds for γ > 2(1−βZ ), whereas σn,Zb2

n/n = o((nbn)−1/2)
holds for γ > (2/5)(1−βZ ). In Theorem 2 (a)(ii) (19) reduces to nb2

n/σn,Z → C,
and this together with (nbn)−1/2 = o(σn,Z/n) implies βZ < 9/10.

In case I2(·) ≡ 0, as in Examples 1 and 2, the asymptotic law of ĝn(x)−g(x)
may be analogously described by comparing the magnitudes of Mn(x), I1(x) and
Pn(x). We omit the statement of this result.

The question of how to use the presented results in inference is a challenging
open problem. In particular, note that since Zt are latent variables, no obvious
estimate of σn,Z in (11) exists. Csörgő and Mielniczuk (1999, p.216) proposed a
heuristic approach to this problem when explanatory variables are independent;



1118 JAN MIELNICZUK AND WEI BIAO WU

see also Robinson (1997) for a solution to an analogous problem in fixed-design
regression.

4. Auxiliary lemmas and proofs

Proof of Proposition 1. Clearly (14) follows from (4) and Lemmas 3, 4 and
6 below, since f̂n(x) → f(x) > 0 in probability. Indeed, f̂n(x) − Ef̂n(x) → 0 in
probability in view of (43) and Ef̂n(x) → f(x) as f(·) is continuous under C1.

By Karamata’s theorem, we have An =O[
∑∞

i=n(L(i)i−β)2]=O[n1−2βL2(n)],
and

∞∑
i=n+1

(Θn+i − Θi)2 =
∞∑

i=n+1

O[(nθi)2] = n2
∞∑

i=n

O[i1/2−2βL2(i)]2 = n4−4βL4(n).

Note that Ξ2
n = O[2nΘ2

2n+
∑∞

i=n+1(Θn+i−Θi)2]. Thus Ξ2
n =O[nΘ2

2n+n4−4βL4(n)]
proves the theorem.

In order to prove auxiliary lemmas we note first that easy reasoning along
the lines of the proof of Lemma 1 in Wu and Mielniczuk (2002) implies that the
property listed in the condition C1 for f1 is inherited by ft for t = 2, 3, . . . , and
f∞. We state this fact as a separate lemma for future reference.

Lemma 1. (a) If C1 holds, then ft is twice continuously differentiable with
bounded derivatives for t = 2, . . . ,∞. In particular, ∇ft is Lipschitz continuous
for t = 2, . . . ,∞. Moreover, ∇f∞(z, y) = E∇ft(z − Zt,0, y − Xt,0).

We now state and prove a crucial auxiliary lemma which is used to find an
approximation for Nn.

Lemma 2. Let Uk be a stationary sequence such that Uk is W̃k-measurable and
EUk = 0. Then

‖
n∑

t=1

Ut‖2 ≤
n∑

k=−∞
(

n∑
t=1

‖P1Ut−k+1‖)2. (24)

Proof of Lemma 2. Noticing that Pk, k ∈ Z are orthogonal, (24) follows from
‖∑n

t=1 Ut‖2 = ‖∑n
k=−∞Pk

∑n
t=1 Ut‖2 =

∑n
k=−∞‖Pk

∑n
t=1 Ut‖2 and ‖Pk

∑n
t=1 Ut‖

≤∑n
t=1 ‖PkUt‖ =

∑n
t=1 ‖P1Ut−k+1‖ by the triangle inequality and stationarity.

In Lemma 3 we derive asymptotic finite-dimensional distributions for Mn(x),
while asymptotic representations for Nn(x) and Pn(x) are stated in Lemmas 4
and 6.

Lemma 3. Assume that C2 and C3 for any x = xi, i = 1, . . . , l, and that f1 is
bounded. Then√

nbn (Mn(x1),Mn(x2), . . . ,Mn(xl)) =⇒ (N1σ(x1),N2σ(x2), . . . ,Nlσ(xl)) ,

(25)
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where σ2(x) = κ2
∫

G2(v, x)f∞(v, x) dv with κ2 =
∫

K2(s) ds, and the Ni are
independent standard normal.

Proof of Lemma 3. We prove the lemma for l = 1, the extension to the
case l > 1 is routinely obtained by the Crámer-Wold device. Recall Jt(x) =
G(Zt,Xt)Kb(x−Xt). Let Mn,t = Jt(x)− E[Jt(x)|W̃t−1]. Since the summands of
Mn form (triangular-array) martingale differences, it suffices to check conditions
for the martingale CLT, namely Lindeberg’s condition and

E

∣∣∣∣bn

n

n∑
t=1

E(M2
n,t|W̃t−1) − σ2(x)

∣∣∣∣→ 0. (26)

In order to prove (26) note that since f1 is bounded, using reasoning as in
proof of Lemma 2 in Wu and Mielniczuk (2002), it is enough to check (26) with
Mn,t replaced by Jt(x). Thus we show E|n−1∑n

t=1 pt(x) − σ2(x)| → 0, where

pt(x) := bnE[J2
t (x)|W̃t−1]

=
∫

K2(u)G2(v, x − ubn)f1(v − Zt,t−1, x − Xt,t−1 − ubn) du dv, (27)

recalling that a0 = c0 = 1. Let st(x) =
∫

K2(u)G2(v, x)f1(v − Zt,t−1, x −
Xt,t−1) dudv. Noting that integrand of st(x) is nonnegative, we have

Est(x) = κ2

∫
G2(v, x)Ef1(v − Zt,t−1, x − Xt,t−1) dv

= κ2

∫
G2(v, x)f∞(v, x)dv

by changing the order of integration. Write

E

∣∣∣∣∣ 1n
n∑

t=1

pt(x) − σ2(x)

∣∣∣∣∣ ≤ E

∣∣∣∣∣ 1n
n∑

t=1

pt(x) − 1
n

n∑
t=1

st(x)

∣∣∣∣∣ + E

∣∣∣∣∣ 1n
n∑

t=1

st(x) − σ2(x)

∣∣∣∣∣.
Note that st(x) is ergodic as an instantaneous transformation of a linear process is
ergodic (c.f., Theorem 1.3.3 in Taniguchi and Kakizawa (2000)). By the Ergodic
Theorem, the second term in the above bound tends to 0. The first term is
bounded by

E|p1(x) − s1(x)| = E

∣∣∣∣∫ K2(u)(B1(x − ubn) − B1(x)) du

∣∣∣∣
≤
∫

K2(u)E|B1(x − ubn) − B1(x)| du

≤ κ2 sup
y∈U(x,bn)

E|B1(y) − B1(x)| → 0

in view of C2, since the support of K is contained in [−1, 1] and bn → 0.
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To check Lindeberg’s condition, it is enough to verify that

1
bn

∫
{(s,t): G2(s,t)K2((x−t)b−1

n )≥εnbn}
G2(s, t)K2

(
x − t

bn

)
f∞(s, t) dsdt → 0

by Corollary 9.5.2 in Chow and Teicher (1988). Since K is bounded and com-
pactly supported, for sufficiently large n the left hand side is bounded by

C

∫
{(s,t): Ḡ2(s)≥εC−1nbn,t∈R}

Ḡ2(s)f∞(s, t) dsdt = C

∫
{s:Ḡ(s)≥εC−1nbn}

Ḡ2(s)h(s) ds

with C = supK2(·), and the bound tends to 0 under C3 as nbn → ∞.

Lemma 4. Assume C1 and C4. Then

‖Nn(x) − Ñn(x)‖ = O(Ξn/n), (28)

where Ñn(x) and Ξn are defined in Proposition 1.

Proof of Lemma 4. The summands of Nn can be written as E(Jt(x)|W̃t−1) =
Kb 	 Tt(x), where Tt(x) =

∫
G(z, x)f1(z − Zt,t−1, x − Xt,t−1) dz. Observe that

‖Pi[Kb 	Tt(x)−Kb 	St(x)]‖ = 0 for i ≥ t as Tt(·) and St(·) are W̃t−1-measurable.
Thus (28) follows from Lemma 2 provided

‖P1[Kb 	 Tt(x) − Kb 	 St(x)]‖ ≤ Cθt (29)

for sufficiently large t. Indeed, it is easy to see that

n∑
k=−∞

( ∑
t=1+k+

θt−k+1

)2 ≤
0∑

k=−∞

( n∑
t=1

θt−k+1

)2
+

n∑
k=1

( n∑
t=1+k+

θt−k+1

)2

≤
∞∑

k=1

(Θn+k − Θk)2 + nΘ2
n = Ξ2

n,

where k+ = max(0, k). Now we verify (29). Taking into account compactness
of support of K and the fact that K is bounded it is easy to see that for any
(ξv)v∈R,

E

[∫
Kb(x − v)ξv dv

]2
≤
∫ ∫

|Kb(x − v)||Kb(x − v′)|E(|ξv ||ξv′ |) dv dv′

≤
∫ ∫

|Kb(x − v)||Kb(x − v′)|‖ξv‖‖ξv′‖ dv dv′ ≤ sup
v:|v−x|≤bn

‖ξv‖2.
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Observe that −P1Kb 	 St(x) =
∫

Kb(x − y)G(z, y)∇Tf∞(z, y)At−1
(ε1
η1

)
dz and

P1[Kb 	 Tt(x) − Kb 	 St(x)] equals∫ ∫
Kb(x− y)G(z, y)[P1f1(z −Zt,t−1, x−Xt,t−1) +∇Tf∞(z, y)At−1

(
ε1

η1

)
] dzdy.

Thus the following Lemma 5 entails (29).

Lemma 5. Assume C1 and C4. Then for sufficiently large t,

sup
y:|y−x|<δ0

‖
∫

G(z, y)[P1f1(z−Zt,t−1, y−Xt,t−1)+∇Tf∞(z, y)At−1

(
ε1

η1

)
]dz‖≤Cθt.

(30)

Proof of Lemma 5. Let R1,t(z, y) = ∇ft−1(z−Zt,0, y−Xt,0)−∇ft−1(z, y) and
R′

1,t(z, y) = ∇ft−1(z − Zt,1, y − Xt,1) −∇ft−1(z, y). By Lemma 1, ER′
1,t(z, y) =

∇f∞(z, y)−∇ft−1(z, y). Using |Eξ| ≤ ‖ξ‖ and (5), we get supy:|y−x|<δ0 |
∫

G(z, y)
[∇f∞(z, y)−∇ft−1(z, y)] dz| ≤ C

√
At−1. Using the last inequality and (5) again,

we obtain via the triangle inequality that

sup
y:|y−x|<δ0

‖
∫

G(z, y)[∇ft−1(z−Zt,0, y−Xt,0)−∇f∞(z, y)]dz‖≤C
√

At+C
√

At−1.

(31)
Let w = At−1(ε1, η1)T. The last inequality implies

sup
y:|y−x|<δ0

‖
∫

G(z, y)[∇Tft−1(z − Zt,0, y − Xt,0) −∇Tf∞(z, y)]w dz‖

≤ 2C|At−1|
√

At−1. (32)

Let (ε′i, η′i)∞−∞ be an i.i.d. copy of (εi, ηi)∞−∞, Z∗
t,1 = Zt,1 − at−1ε1 + at−1ε

′
1 and

X∗
t,1 = Xt,1− ct−1η1 + ct−1η

′
1. Namely Z∗

t,1 and X∗
t,1 are Zt,1 and Xt,1 with ε1 and

η1 replaced by ε′1 and η′1, respectively. Let R∗
2,t(z, y) be R2,t(z, y) with ε1 and

η1 replaced by ε′1 and η′1, respectively. Hence (6) entails supy:|y−x|<δ0 ‖
∫

G(z, y)
R∗

2,t(z, y) dz‖ ≤ C|At−1|2 and

sup
y:|y−x|<δ0

‖
∫

G(z, y)[R2,t(z, y) − R∗
2,t(z, y)] dz‖ ≤ 2C|At−1|2. (33)

Observe that P1f1(z − Zt,t−1, y − Xt,t−1) = ft−1(z − Zt,1, y − Xt,1) − ft(z −
Zt,0, y −Xt,0) and ft(z −Zt,0, y−Xt,0) = E[ft−1(z −Z∗

t,1, y−X∗
t,1)|W̃1]. We have

E[R2,t(z, y)−R∗
2,t(z, y)|W̃1] = P1f1(z −Zt,t−1, y −Xt,t−1) +∇Tft−1(z −Zt,0, y −

Xt,0)w, which implies (30) by (33), (32) and the definition of θt = |At−1|
√

At−1

as |At−1|2 = O(|At−1|
√

At−1).
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Lemma 6. Assume C5 and C6. If (i) C7 holds, then

Pn(x) = OP

( bn√
n

)
; (34)

If (ii) C7 holds, then

Pn(x) = C1(x)
b2
n

n

n∑
t=1

Xt,t−1 + OP (
√

bn/n) + oP (b2
nσn,X/n), (35)

where C1(x) is defined in (13).

Note that the OP (
√

bn/n) and OP (bn/
√

n) terms appearing in the approxi-
mations of Pn(x) are oP (1/

√
nbn), and consequently oP (Mn(x)).

The following lemma plays a crucial role in the proof of Lemma 6.

Lemma 7. Let Hn(y) =
∑n

t=1 fη(y − Xt,t−1) − f(y). Assume C6 and C7. Then

(i)
1∑

ι=0

sup
y

‖P1[f (ι)
η (y − Xt,t−1) − f (ι)(y) + f (ι+1)(y)Xt,t−1]‖ = O(γt−1|ct−1|),

(36)

(ii) sup
y

‖Hn(y) +
n∑

t=1

f ′(y)Xt,t−1‖ + sup
y

‖H ′
n(y) +

n∑
t=1

f ′′(y)Xt,t−1‖ = o(σn,X),

(37)
when condition C7 (ii) holds and o(σn,X) is replaced by O(

√
n) under C7 (i).

Proof of Lemma 7. (i) The proof is similar to that of Lemma 5. Recall that
X∗

t,1 = Xt,1 − ct−1η1 + ct−1η
′
1 as in the proof of Lemma 5. Similarly as in (33),

(7) implies that

1∑
ι=0

sup
y

‖f (ι)
t−1,X(y − Xt,1) − f

(ι)
t−1,X(y − X∗

t,1) + f
(ι+1)
t−1,X(y − Xt,0)ct−1(η1 − η′1)‖

≤ 2γt−1|ct−1|.

Observe that P1f
(ι)
η (y −Xt,t−1) = f

(ι)
t−1,X(y −Xt,1)− f

(ι)
t,X(y −Xt,0) and f

(ι)
t,X(y −

Xt,0) = Ef
(ι)
t−1(z − X∗

t,1)|W̃1). Reasoning as in Lemma 5 we get from the last
displayed inequality,

1∑
ι=0

sup
y

‖P1[f (ι)
η (y − Xt,t−1) + f

(ι+1)
t−1,X(y − Xt,0)ct−1η1]‖ ≤ 2γt−1|ct−1|.

To establish (36), it suffices to verify that supy‖f (ι+1)
t−1,X(y − Xt,0)−f (ι+1)(y)‖ ≤

2γt−1. Since Ef
(ι+1)
t−1,X(y−Xt,1)=f (ι+1)(y), (8) implies supy |f (ι+1)(y)−f

(ι+1)
t−1,X(y)| ≤
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γt−1, and as at (31), supy ‖f (ι+1)
t−1,X(y−Xt,0)−f (ι+1)(y)‖ ≤ supy ‖f (ι+1)

t−1,X(y−Xt,0)−
f

(ι+1)
t−1,X(y)‖ + supy |f (ι+1)(y) − f

(ι+1)
t−1,X(y)| ≤ 2γt−1.

(ii) By Lemma 2 and part (i), ‖Hn(y) +
∑n

t=1 f ′(y)Xt,t−1‖2 = O[
∑n

k=−∞(
∑n

t=1

γt−k|ct−k|)2]. Notice that σ2
n,X =

∑n
k=−∞(

∑n
t=1 ct−k)2. Assume that C7 (ii) holds

(the proof in the other case is similar but simpler). Let sk =
∑k

i=0 ci. As σ2
n,X ≥∑n

k=1(
∑n

t=1 ct−k)2 ≥∑n
k=1 s2

n−k, then, since sn → ∞, it follows that n = o(σ2
n,X).

For any fixed integer κ≥ i0,
∑m

t=κ|γtct|≤γκ|∑m
t=κ ct|/τ , so we have by elementary

manipulations and n = o(σ2
n,X) that lim supn→∞σ−2

n,X

∑n
k=−∞(

∑n
t=1|γt−kct−k|)2

≤ γ2
κ/τ2, which proves the lemma since γt ↓ 0 and κ is arbitrarily chosen. The

other inequality is proved similarly.

Proof of Lemma 6. We first prove part (ii). Let Qt = [g(Xt)−g(x)]Kb(x−Xt),
Wn = n−1∑n

t=1 Qt and X̃t = (. . . , ηt−1, ηt). Let Dn(g − g(x)) = n−1∑n
t=1[Qt −

E(Qt|X̃t−1)] and Bn(g−g(x)) = n−1∑n
t=1[E(Qt|X̃t−1)−EQt]. Then Wn−EWn =

Dn(g − g(x)) + Bn(g − g(x)) and

Pn =
1
n

n∑
t=1

(g(Xt) − gn(x))Kb(x − Xt)

= Dn(g − g(x)) + Bn(g − g(x)) − (f̂n(x) − Ef̂n(x))(gn(x) − g(x)). (38)

As the summands of Dn(g − g(x)) are uncorrelated, we have in view of C1 and
C5 that

‖Dn(g − g(x))‖2 =
1
n
‖Qt − E(Qt|X̃t−1)‖2 ≤ 1

n
‖Q1‖2

=
1

nbn

∫
(g(x − ubn) − g(x))2fη(x − ubn)K2(u) du = O(bn/n).

Recall that Hn(y) =
∑n

t=1 fη(y − Xt,t−1) − f(y) as in Lemma 7. Observe that
Bn(g − g(x)) = n−1

∫
(g(x − ubn) − g(x))K(u)Hn(x − ubn) du. As g is two times

continuously differentiable in the neighborhood of x we have that, uniformly,

g(x − ubn) − g(x) = −bnug′(x) +
1
2
b2
nu2g′′(x) + o(b2

n) (39)

for |u| ≤ 1. By (ii) of Lemma 7, supy E|Hn(y)| ≤ supy ‖Hn(y)‖ = O(σn,X).
Hence

nBn(g − g(x)) =
∫

[−bnug′(x) +
1
2
b2
nu2g′′(x)]K(u)Hn(x − ubn) du + oP (b2

nσn,X).

(40)
Again by (ii) of Lemma 7, since K has support within [−1, 1] and E|ξ| ≤ ‖ξ‖,

E

∣∣∣∣∣
∫

u2K(u)Hn(x − ubn) du +
∫

u2K(u)f ′(x − ubn) du
n∑

t=1

Xt,t−1

∣∣∣∣∣ = o(σn,X)

(41)
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and, since f ′′ is continuous at x,

sup
|y−x|≤bn

E|H ′
n(y) − H ′

n(x)|

≤ sup
y

E|H ′
n(y) +

n∑
t=1

f ′′(y)Xt,t−1|

+ sup
|y−x|≤bn

E|
n∑

t=1

[f ′′(y) − f ′′(x)]Xt,t−1| + E|H ′
n(x) +

n∑
t=1

f ′′(x)Xt,t−1|

= o(σn,X).

Notice that Hn(x − ubn) − Hn(x) =
∫−ubn
0 H ′

n(x + v)dv. Thus we have

E

∣∣∣∣∫ uK(u)[Hn(x − ubn) − Hn(x) + ubnH ′
n(x)]du

∣∣∣∣
≤
∫

|uK(u)|
∫ |ubn|

−|ubn|
E|H ′

n(x + v) − H ′
n(x)|dvdu = o(bnσn,X). (42)

Collecting (40), (41) and (42), we have by another application of (ii) of Lemma
7 that

nBn(g − g(x)) = C∗
nb2

n

n∑
t=1

Xt,t−1 + o(b2
nσn,X) = Cb2

n

n∑
t=1

Xt,t−1 + o(b2
nσn,X),

where C = µ2[−g′′(x)f ′(x)/2− g′(x)f ′′(x)] in view of C∗
n = −(g′′(x)/2)

∫
u2K(u)

f ′(x − ubn)du − g′(x)f ′′(x)µ2 = C + o(1). By the proof of Theorem 2 Wu and
Mielniczuk (2002) and Lemma 7, we have under C6 and C7 that

f̂n(x) − Ef̂n(x) = M ′
n(x) − n−1f ′(x)

n∑
t=1

Xt,t−1 + oP (max((nbn)−1/2, σn,X/n)),

(43)
where M ′

n = n−1∑n
i=1 Kb(x−Xi)−E(Kb(x−Xi)|X̃i−1), with X̃t = (. . . , ηt−1, ηt)

a martingale such that (nbn)1/2M ′
n = OP (1). The lemma is proved using (16)

and (43), and noting that C1(x) = CBf ′(x) + C and b2
nM ′

n = o((bn/n)1/2).
Part (i) follows from (40) and Lemma 7 by using supy ||Hn(y)|| = O(

√
n).

The last lemma is used to investigate the boundary case βZ = βX in Theo-
rem 2.

Lemma 8. We have (σ−1
n,Z

∑n
t=1 Zt, σ

−1
n,X

∑n
t=1 Xt) =⇒ N(0,Σ), where Σ is a

2 × 2 matrix with Σ11 = Σ22 = 1 and Σ12 = Σ21 = τ defined above Theorem 2.

Proof of Lemma 8. We use the Crámer-Wold device. For n ≥ 1, let un =∑n
j=0 aj ∼ LZ(n)n1−βZ/(1 − βZ) and vn =

∑n
j=0 cj ∼ LX(n)n1−βX/(1 − βX);
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put ui = vi = 0 for i < 0. Then for c1, c2 ∈ R, we have c1σ
−1
n,Z

∑n
t=1 Zt +

c2σ
−1
n,X

∑n
t=1 Xt =

∑n
j=−∞[c1σ

−1
n,Z(un−j − u−j)εj + c2σ

−1
n,X(vn−j − v−j)ηj ]. Using

the Lindeberg-Feller CLT, we need to verify (i)
∑n

j=−∞ E[c1σ
−1
n,Z(un−j −u−j)εj +

c2σ
−1
n,X(vn−j − v−j)ηj ]2 → c2

1 + c2
2 + 2c1c2Σ12 and (ii) the Lindeberg condition.

For (i) we focus on the cross-product term. Using Karamata’s theorem, we can
show that

n∑
j=−∞

(un−j − u−j)(vn−j − v−j)

∼ LZ(n)LX(n)
(1 − βZ)(1 − βX)

∫ n

−∞
[(n − x)1−βZ

+ − (−x)1−βZ
+ ][(n − x)1−βX

+ − (−x)1−βX
+ ]dx

∼ LZ(n)LX(n)
(1 − βZ)(1 − βX)

n1−βZn1−βXnD(βZ , βX),

where a+ = max(a, 0). The Lindeberg condition follows from the proof of Theo-
rem 18.6.5 in Ibragimov and Linnik (1971) which asserts that σ−1

n,Z

∑n
t=1 Zt =⇒

N1. We omit the details.
A functional weak convergence result for multivariate linear processes under

a different set of conditions can be found in Marinucci and Robinson (2000).
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