
Statistica Sinica 14(2004), 1085-1103

ANALYSIS OF DISTRIBUTIONS IN FACTORIAL

EXPERIMENTS

R. C. H. Cheng and O. D. Jones

University of Southampton and University of Melbourne

Abstract: The Cramer-von Mises statistic provides a useful goodness of fit test of

whether a random sample has been drawn from some given null distribution. Its

use in comparing several samples has also been studied, but not systematically.

We show that the statistic is capable of significant generalization. In particular we

consider the comparison of the distributions of observations arising from factorial

experiments. Provided that observations are replicated, we show that our gener-

alization yields a test statistic capable of decomposition like the sum of squares

used in ANOVA. The statistic is calculated using ranked data rather than original

observations. We give the asymptotic theory. Unlike ANOVA, the asymptotic dis-

tributional properties of the statistic can be obtained without the assumption of

normality. Further, the statistic enables differences in distribution other than the

mean to be detected. Because it is distribution free, Monte-Carlo sampling can be

used to directly generate arbitrarily accurate critical test null values in online anal-

ysis irrespective of sample size. The statistic is thus easy to implement in practice.

Its use is illustrated with an example based on a man-in-the-loop simulation trial

where operators carried out self assessment of the workload that they experienced

under different operating conditions.

Key words and phrases: Cramer-von Mises statistic, distribution free, factorial
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1. Introduction

A goodness of fit test, like that based on the Cramer-von Mises statistic, is
a simple but useful basic tool of statistics. Such tests are often useful in initial,
exploratory, analyses of data to establish their broad form, before more refined
but possibly more elaborate, statistical procedures are utilized. Some limited
extensions of the Cramer-von Mises statistic have been considered. Kiefer (1959)
considered tests of several samples using statistics that are sums of indepen-
dent Cramer-von Mises statistics, Anderson (1962) considered a generalisation
to the two sample case, and a related result is given by Baumgartner, Weiss and
Schindler (1998). The purpose of this paper is show that the Cramer-von Mises
can be applied in a much wider context than those considered in the above refer-
ences, and that, in consequence, more specific structural aspects of the data can
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be tested. Our approach is based on preliminary work, previously reported in
Cheng and Jones (2000); however it develops the ideas outlined there more fully
and in a much more general framework.

We suggest that our extension of the Cramer-von Mises test is especially
appropriate for the exploratory analysis of data obtained from a factorial exper-
iment. When a linear model can be used to model factorial data, then its use
together with analysis of variance is one of the most common used statistical
techniques. However a linear model is not adequate when differences in the be-
haviour of the response variable Y at different factor level combinations is not
explicable in terms of differences in the means alone, but requires a comparison
of other features of a distribution, such as variance or shape.

We show that the Cramer-von Mises test can be extended, using a decom-
position similar to an ANOVA decomposition, to test not only for differences
in means, but more general differences. For convenience we call our extensions
EDFIT statistics. The main points of note are the following.

(i) Our proposed EDFIT statistics are intended for exploratory work and, given
that they are extensions of the Cramer-von Mises statistic, we focus on good-
ness of fit aspects. Our theoretical discussion is formulated in terms of fac-
torial data.

(ii) Though our approach is similar to ANOVA, we can relax the usual assump-
tions of normality and homoscedasticity of errors. The proposed EDFIT
statistics tests will detect general differences between distributions, not only
differences between means, but also differences in variance or shape. We do
not consider estimation problems here.

(iii)The proposed EDFIT statistics make use of ranks, rather than actual obser-
vations. The asymptotic theory is derived in this paper for the case when
the distributions are continuous. In fact critical values are easily obtained to
arbitrary accuracy by direct (computer based) resampling. Resampling can
be done not only for continuous distributions but also when distributions are
discrete, as is the case for the example in Section 7.
We discuss power issues briefly, and show in the two sample case that they
are closely related to those of the Cramer von-Mises statistic.

(iv) It should be mentioned that the Anderson-Darling statistic (1952) is also
calculated from the EDF, and is arguably more widely advocated than the
Cramer-von Mises statistic. This seems to be based mainly on the former’s
sensitivity to tail behaviour, where differences often lie. We have not con-
sidered use of the Anderson-Darling statistic, mainly on grounds of technical
difficulty, but also because use of the Cramer-von Mises statistic allows us to
make the analogy of our decompositions to those found in analysis of variance
more explicit.
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We will denote the original Cramer-von Mises statistic by W 2. The next
Section discusses the distributional behaviour of a statistic, T 2, that is a gener-
alization of W 2 which covers the situation where there are several samples. A
point of theoretical interest is that, asymptotically, T 2 is an integral involving a
multivariate Brownian Bridge whose components are correlated. Section 3 makes
explicit the similarity of T 2 to sums of squares encountered in linear models and
contains the main result, Theorem 1, which characterises the asymptotic distri-
bution of T 2 under the null. Section 4 gives the particular form that T 2 takes
in a number of explicit cases. Section 5 extends the decomposition of T 2 using
the elegant Fourier decomposition first proposed by Durbin and Knott (1972) for
W 2. Asymptotic power is discussed in Section 6. A numerical example based on
data obtained from a real-time man-in-the-loop simulation is given in Section 7.

2. Distributional Result

Our asymptotic results apply in general only when the distributions are
continuous, and we assume this from now on as far as the theoretical derivations
are concerned. The distributions of the example in Section 7 are in fact discrete
but, as will become clear, our methodology still can be used provided we use
resampling to calculate critical values.

Let there be q separate design points (by a design point we mean a combi-
nation of factor levels at which observations are obtained). Suppose, at the ith
design point, that yij, j = 1, . . . , ni, is a random sample from the distribution Gi.
This will be our main requirement: that at each design point there is a random
sample, rather than just one observation. From now on we consider only the
situation where the sample sizes of the q samples remain in the same proportion,
that is, ni = pin, i = 1, . . . , q, with the pi > 0 remaining fixed. Thus in what
follows, n → ∞ implies ni = pin → ∞ for all i. The most useful case is where the
pi are all equal, but we derive the main results for the general case of unequal pi

as this is not much more difficult to do.
Our starting point is tests of the null hypothesis H0 : G1 = G2 = · · · = Gq

(= G0, say) using a generalisation of W 2, the Cramer-von Mises EDF goodness
of fit test statistic. It is well known that W 2 has an asymptotic null distribution
that is the same as that of the integral

∫ 1
0 W 2(u)du, where W (u) is a Brownian

bridge (see Shorack and Wellner (1986) for example). We consider extensions of
W 2 to a framework analogous to that of testing in ANOVA.

Let Si(u) be the EDF of the ith sample and let V(u) be the multivariate
process with (independent) components

Vi(u) =
√

ni(Si(u) − G0(u)). (1)
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The EDF of the combined samples will be denoted S̄(u). The test statistics that
we consider have the form

T 2 =
∫ ∞

−∞
YT (u)CY(u)dS̄(u), (2)

where C is a positive semidefinite matrix, Y = HV, H = I − RRT and R =
(
√

p1, . . . ,
√

pq)T . From (1), the components of Y are

Yi(u) =
√

ni(Si(u) − S̄(u)). (3)

Suppose that all q samples are combined. Let rij be the rank of observation
yij in the combined sample and let n =

∑q
i=1 ni. As 1 ≤ rij ≤ n, it will be more

convenient to work with scaled ranks: sij = rij/n. The EDF of the combined
sample ranks is obviously the same as its CDF, and is given by S̄∗(u) = �un�/n,
0 ≤ u ≤ 1. This can be written as S̄∗(u) =

∑q
i=1(ni/n)S∗

i (u), where

S∗
i (u) =

∑ni
j=1 I[0,u](sij)

ni
, 0 ≤ u ≤ 1

is the empirical distribution function (EDF) of the scaled ranks of the i th sample
and I[0,u] is the indicator function of the unit interval.

Now, if y(k) is the kth ordered point in the combined sample, then Si(y(k)) =
S∗

i (k/n) and Yi(y(k)) =
√

ni(S∗
i (k/n) − k/n). Thus from (2) we see that T 2

reduces to the simple sum

T 2 =
1
n

n∑
k=1

Y∗T (k/n)CY∗(k/n),

where the components of Y∗ are Y ∗
i (u) =

√
ni(S∗

i (u) − S̄∗(u)). This shows that
T 2 is distribution free. So, for the remainder of this section, in considering the
asymptotic form of T 2, we can without loss of generality assume that G0 is the
uniform distribution on [0, 1]. Then, it is well-known (see Shorack and Wellner
(1986) for a full discussion) that Vi(u) →w Wi(u) as ni → ∞, i = 1, . . . , q,
where →w denotes weak convergence, and the Wi(u) are independent, Brownian
bridges.

Weak convergence then implies that, if D is a continuous function, D(Vi) →d

D(Wi), where →d denotes convergence in distribution. A precise statement of
this result is given in Shorack and Wellner (1986, Theorem 2.3.5). We require a
multivariate version of this result, and this is provided by the following Lemma
(a related result is given as Lemma 2 of Kiefer (1959)).

Lemma 1. Let D : R
q → R+ be continuous, and let W1, . . . ,Wq be independent

Brownian bridges. Then for G1, . . . , Gq uniform on [0, 1],∫ 1

0
D(V1(u), . . . , Vq(u))dSj(u) →d

∫ 1

0
D(W1(u), . . . ,Wq(u))du as n→ ∞.
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Proof. We show first that we can assume D is bounded and uniformly continu-
ous. Define Dr(x1, . . . , xq) to be D(x1, . . . , xq) when each |xi| ≤ r and bounded
and uniformly continuous elsewhere. From Dvoretzky, Kiefer and Wolfowitz
(1956) (see Csörgö and Révész (1981), Theorem 4.1.3) we have the following
large deviation rate: there exists a constant C such that, for all n and r,

P (sup
u

|Vi(u)| ≥ r) ≤ Ce−2r2
.

Thus for any ε > 0, we can choose r large enough that

P (D(V1(u), . . . , Vq(u)) = Dr(V1(u), . . . , Vq(u)) on [0, 1]) > 1 − ε,

whence
∫ 1
0 Dr(V1(u), . . . , Vq(u))dSj(u) → ∫ 1

0 D(V1(u), . . . , Vq(u))dSj(u) in proba-
bility as r→ ∞. Similarly

∫ 1
0 Dr(W1(u), . . . ,Wq(u))du→ ∫ 1

0 D(W1(u), . . . ,Wq(u))
du in probability as r→ ∞.

Now, from Komlós, Major and Tusnády (1975) (see Csörgö and Révész
(1981, Theorem 4.4.1)) we have the following strong approximation. For each
i we have a sequence of Brownian bridges W 1

i ,W 2
i , . . . such that for all ε >

0, P (supu |Vi(u) − W n
i (u)| > ε) < ε for all n large enough. Thus, suppos-

ing D is uniformly continuous, for all ε > 0 we have for all n large enough.
P (supu |D(V1(u), . . . , Vq(u)) − D(W n

1 (u), . . . ,W n
q (u))| > ε) < ε, whence

P

(∣∣∣∣
∫ 1

0
D(V1(u), . . . , Vq(u))dSj(u) −

∫ 1

0
D(W n

1 (u), . . . ,W n
q (u))dSj(u)

∣∣∣∣>ε

)
<ε.

(4)
It is well known that for any Brownian bridge W

lim
h→0

sup
0≤s≤1−h

sup
0≤t≤h

|W (s + t) − W (s)|√−2h log h
= 1 almost surely.

In particular, W is uniformly continuous with probability 1. Thus, as D is
also uniformly continuous, for any ε > 0 we can find h > 0 such that, for all n,
P (|D(W n

1 (u), . . . ,W n
q (u))−D(W n

1 (v), . . . ,W n
q (v))| < ε for all |u−v| < h) > 1−ε.

Finally, since Sj(u) → u uniformly on [0, 1] with probability 1, we can choose n

large enough that |Sj(u) − u| < h on [0, 1], whence

P

(∣∣∣∣
∫ 1

0
D(W n

1 (u), . . . ,W n
q (u))dSj(u)−

∫ 1

0
D(W n

1 (u), . . . ,W n
q (u))du

∣∣∣∣>ε

)
<ε.

(5)
Combining (4) and (5) gives the result.

Clearly VT (u)HTCHV(u)=YT (u)CY(u) satisfies the conditions of Lemma
1. Moreover, since S̄(u) =

∑q
i=1(ni/n)Si(u), the expression (2) for T 2 is the sum
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of terms each of the form
∫ 1
0 D(V1(u), . . . , Vq(u))dSj(u) appearing in Lemma 1.

Application of the lemma to T 2 thus yields the following.

Lemma 2. Under H0, for any common continuous distribution G0, as all nj →
∞, T 2 →d

∫ 1
0 WT (u)HTCHW(u)d(u), where W(u) = (W1(u), . . . ,Wk(u))T is

a vector of independent Brownian bridges.

In the remainder of this section we derive an expansion for the limiting form
of T 2. Write

Z(u) = HW(u). (6)

Clearly E(Z(u)) = 0. We have, for u < v, E[Z(u)ZT (v)] = HE[W(u)WT (v)]HT

= u(1 − v)H2 = u(1 − v)H, on noting that H is symmetric and idempotent.
It is well-known (Mercer’s Theorem, see Anderson and Darling (1952)) that

the symmetric correlation function k(u, v) = min(u, v) − uv can be expressed
as k(u, v) =

∑∞
j=1(λj)−1fj(u)fj(v), where λj is an eigenvalue and fj(u) is the

corresponding normalized eigenfunction of the integral equation

λ

∫ 1

0
k(u, v)f(u)du = f(v)

and one can write W (u) =
∑∞

j=1(λj)−1/2Xjfj(u), where the Xj are independent
N(0, 1) variables. Applying this to Z(u) = HW(u) we have

Lemma 3. Z(u) has the same distribution as
∑∞

j=1(λj)−1/2Xjfj(u) where Xj ∼
MV N(0,H) with H = I − RRT , R = (

√
p1,

√
p2, . . . ,

√
pq)T , and with Xi and

Xj independent if i 	= j.

3. A Linear Model Analogue for EDFs

Let Fi(u) be the (discrete) cumulative distribution function (CDF) of obser-
vations in the ith sample of scaled ranks {sij j = 1, . . . , ni}. We write F(u) =
(F1(u), . . . , Fq(u))T , and consider the model F(u) = Ab(u), where

A = [1q|A1] (7)

is a given matrix and b(u) =

(
b0(u)
b1(u)

)
is a column vector of unknown functions.

In analogy with the common assumption in the standard linear model, inclusion
of the column unit vector 1q is to allow for explicit inclusion of an overall mean
b0(u) = �un�/n. We assume that A1 has c columns and has column rank r,
possibly less than c. (If c = q, then r < q, as rank(A1) < q.)

In this section, we obtain an estimator for b1, and a test for the null hypoth-
esis

H0 : b1(u) = 0, or equivalently Fi(u) = b0(u) for all i. (8)
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Let

D =




√
p1 0 · 0
0

√
p2 · 0

...
...

. . .
...

0 0 · √
pq


 , p = DR =




p1

p2
...
pq


 .

Elementary manipulations, using (7), yield D(F(u)−1qb0(u)) = D(I−1qpT )A1

b1(u). In this equation F(u) and b1(u) are unknown. Now at each experimental
design point i, our random sample of observations is represented by the EDF of
scaled ranks S∗

i (u). We therefore replace F(u) with its EDF S∗(u) and note that
b0(u) = S̄∗(u). By analogy with the conventional linear model, we write

1√
n
Y∗(u) = D(S∗(u) − 1qS̄

∗(u))

= Bb1(u) + ε(u),

where B = D(I − 1qpT )A1 and ε(u) is a vector of unknown error functions.
The least squares estimate of b1(u) is b̂1(u) = GBTY∗(u)/

√
n, where G is a

generalised inverse (g-inverse) of BTB. The following result gives the asymptotic
distribution of a statistic T 2 which can be used to test H0.

Theorem 1. Let C = BGBT . Then, under H0, the statistic T 2 =
∫∞
−∞ YT (u)

CY(u)dS̄(u) = n−1∑n
k=1 Y∗T (k/n)CY∗(k/n) has the asymptotic representation

T 2 =
∑∞

j=1(λj)−1χ2
j , where the λj are as in Lemma 3, and the χ2

j are indepen-
dently distributed χ2(m) variables, with m = trace(CH) = rank(BT B).

Proof. Under H0, from Lemma 2, as n → ∞,

∫ ∞

−∞
YT (u)CY(u)dS̄(u) →d

∫ 1

0
ZT (u)CZ(u)d(u),

where Z(u) is as defined in (6). It follows from Lemma 3 that

∫ 1

0
ZT (u)CZ(u)d(u) =

∞∑
j=1

1
λj

XT
j CXj .

It is known (See for example Searle (1971, Corollary 2.2)) that if Xj ∼ MV N(0,
H) then XT

j CXj ∼ χ2(trace(CH)) if and only if HCHCH = HCH. Using
the fact that a g-inverse G of BTB satisfies BGBTB = B, we have C2 =
BGBTBGBT = C so that C is idempotent. Moreover, as p = DR and 1T

q D =
RT , we have BTR = AT

1 (I−p1T
q )DR = AT

1 (DR−DRRTR) = 0c as RT R =1.
It follows that CR = 0q and that CHC = C(I − RRT )C = C and hence
HCHCH = HCH.
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Finally trace(CH) = trace(BGBT − BGBTRRT ) = trace(BGBT ), using
again the fact that BT R = 0c. Now for any two matrices E and F, trace(EF) =
trace(FE) provided EF and FE both exist. Therefore trace(BGBT ) =
trace(GBTB), and by Searle (1971, Section 1.2, Lemma 1), trace(GBTB) =
rank(BT B).

Corollary 1. Under H0, the asymptotic distribution of T 2 has the representation

T 2 →d

m∑
i=1

∞∑
j=1

1
λj

X2
ij ,

where the X2
ij are independent χ2(1) variables. Thus, asymptotically, T 2 behaves

as the sum of m independent and identically distributed W 2 statistics.

The asymptotic distribution of a sum of independent W 2 statistics is given
by Kiefer (1959). For completeness we restate it here.

Theorem 2. Under H0, T 2 has the asymptotic CDF FT 2(z) =
∑∞

j=0 Rj(z),
where

R(j, z) =
Γ(j + m/2)21/2+m/2z−m/4

Γ(j + 1)Γ(m/2)π1/2
exp

(
−(4j + m)2

16z

)
Dm/2−1

(
4j + m

2z1/2

)
.

Here Da(x) is the Whittaker parabolic cylinder function, defined for example in
Abramovitz and Stegun (1992, Chap.19).

Kiefer (1959) gives a method of calculating Da(x) using Hermite polynomials
and Bessel functions. An alternative formula is the following.

Corollary 2. Dk/2−1((4j + k)/2z1/2) = U(1/2− k/2, (4j + k)/2z1/2), where
U(·, ·) is the cylinder function given in Abramovitz and Stegun (1992, Chap.19).
Then, using their formulas 19.12.2, 13.133 and 13.2.5, we find that the right hand
side can be expressed as an integral

U

(
1
2
− k

2
,
4j + k

2z1/2

)
=

2k/4−2z−1/2(4j + k)
Γ(1 − k/4)

exp

(
−(4j + k)2

16z

)

×
∫ 1

0
u−k/4(1 − u)−3/2 exp

(
−(4j + k)2

8z
u

1 − u

)
du.

The only integer values of k for which this formula holds are k = 0, 1, 2, 3. How-
ever for k ≥ 4 we can apply the recursion U(1/2 − k/2, x) = xU(3/2 − k/2, x) +
(2−k/2)U(5/2−k/2, x) repeatedly until all terms on the right have U ’s with first
arguments that are in the range [−1, 1/2]. Thus for any k ≥ 4, U(1/2−k/2, x) can
always be expressed as a linear combination of the pair U(1/2, x) and U(−1/2, x)
when k is odd, or else of the pair U(0, x) and U(−1, x) when k is even.
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4. Examples

We give some examples which are likely to be of use in practice.

One way classification. Here we compare the distributions of q separate sam-
ples by testing if H0 as given in (8) is true.

Lemma 4. Let A1 =Iq×q. Then the test statistic reduces to T 2 =
∑q

i=1

∫∞
−∞ Y 2

i (u)
dS̄(u) =

∑q
i=1 W 2

i . Under the null T 2 is asymptotically the sum of independent
weighted χ2(q − 1) variables as given in Theorem 1.

Proof. If A1 = Iq×q then BT B = D2 − ppT . This is singular of rank q − 1. It
has g-inverse

G =

(
H 0q−1

0T
q−1 0

)
,

where

H =




1/p1 + 1/pq 1/pq · · · 1/pq

1/pq 1/p2 + 1/pq · · · 1/pq
...

...
. . .

...
1/pq 1/pq · · · 1/pq−1 + 1/pq


 .

H is of full rank q − 1 so G and BT B are also of rank q − 1. Some elementary
algebra shows that C = BGBT = I − RRT . Thus

YT (u)CY(u) =
q∑

i=1

Y 2
i (u) −

( q∑
i=1

√
piYi(u)

)2

=
q∑

i=1

Y 2
i (u),

as
∑q

i=1
√

piYi(u) = 0 from the definition (3) of Yi(u).

Comparison of two samples. Another obvious application is the comparison
of distribution functions of the responses at different experimental design points.
In general this is not straightforward when the proportions pi are unequal. How-
ever there are simple special cases. An elementary case is when there are just
two unequal samples. We can then set A1 = (−1/p1, 1/p2), in which case

T 2 =
∫ ∞

−∞
p1p2 (Y1(u)/

√
p1 − Y2(u)/

√
p2)

2 dS̄(u)

=
∫ ∞

−∞
p1p2n (S1(u) − S2(u))2 dS̄(u) (9)

→d

∞∑
j=1

1
λj

X2
j as n → ∞,



1094 R. C. H. CHENG AND O. D. JONES

where X2
j are independent χ2 variates each with one degree of freedom. Thus in

this case T 2 provides a direct measure of G1(u) − G2(u) through the difference
S1(u) − S2(u) between the sample EDFs. We note that the form of T 2 in this
example reduces to exactly that of the statistic T discussed by Anderson (1962).
Anderson tabulates critical values for this statistic showing they remain very
stable even for small sample sizes.

Two-way classification. Limitations of space prevents our discussing this in
full generality. (The authors know of no larger published matrix than the full
design matrix for a two-way cross-classification as given by Stuart and Ord (1991,
equation 29.35)) However, the two factor case each at two levels, clearly illustrates
the EDFIT version. Let the number of observations in each of the four cells
(1,1), (1,2), (2,1), (2,2) corresponding to the different (Factor1, Factor2) level
combinations be respectively: rsn, r(1 − s)n, (1 − r)sn, (1 − r)(1 − s)n. In this
case let

A1 =




1 − r 1 − s (1 − r)(1 − s)
1 − r −s −(1 − r)s
−r 1 − s −r(1 − s)
−r −s rs


 .

Then BTB is diagonal, and

T 2 = r(1 − r)
n∑

k=1

(S∗
1·(k/n) − S∗

2·(k/n))2 + s(1 − s)
n∑

k=1

(S∗
·1(k/n) − S∗

·2(k/n))2

+rs(1 − r)(1 − s)
n∑

k=1

(S∗
11(k/n) − S∗

12(k/n) − S∗
21(k/n) + S∗

22(k/n))2

= T 2
1 + T 2

2 + T 2
3 , say,

where S∗
ij(k/n), i, j = 1, 2 are the EDFs of the ranked observations at level i

of Factor1 and level j of Factor2; S∗
i·(k/n), i = 1, 2, are the EDFs of the ranked

observations at level i of Factor1 with both levels of Factor2 combined; and
S∗·j(k/n) j = 1, 2 is similarly defined for Factor2. Under the null, the three T 2

j

are asymptotically independently distributed as W 2 statistics. T 2
1 tests whether

there is a difference between the two levels of Factor1 whilst T 2
2 tests whether

there is a difference between the two levels of Factor2. T 2
3 tests the interaction.

Orthogonal contrasts. A more general set of contrasts can be simultaneously
tested using the following.

Lemma 5. If all the pi = 1/q and A1 = (a1, . . . ,ac) = (aij) is a set of c < q

orthonormal contrast vectors, so that aT
i aj = δij and

∑q
i=1 aij = 0, then BTB =
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q−1Ic, whence C = A1AT
1 and

T 2 =
c∑

j=1

1
q

n∑
k=1

( q∑
i=1

aijS
∗
i (k/n)

)2

=
c∑

j=1

T 2
j say.

Under the null the T 2
j →d

∑∞
i=1(λi)−1X2

ij as n → ∞ where the X2
ij are indepen-

dent χ2(1) variables.

Typical application of Lemma 5 is in polynomial regression where the con-
trasts can be formed to assess linear, quadratic and higher order effects. In
ANOVA, regression coefficients can be checked sequentially with the power of
one test not depending on the power of others. Likewise in our situation different
contrasts can be checked sequentially for significance using the above decomposi-
tion of the T 2 statistic. Note however that significance of one contrast, through
T 2

i say, can affect the power of another statistic, T 2
j , to detect a difference.

For example, consider the case of three samples (with pi = 1/3 for i = 1, 2, 3).
Then for

A1 =


−1 1

0 −2
1 1




we have T 2
1 = (1/3)

∑n
k=1(S

∗
3(k/n) − S∗

1(k/n))2 and T 2
2 = (1/3)

∑n
k=1(S

∗
3(k/n)

+S∗
1(k/n)−2S∗

2(k/n))2. Thus T 2
2 tests if F2(u) = (1/2)(F1(u)+F3(u)) so that T 2

2

gives information about the relative position of the ranks of the second sample
compared with those of the other two samples. Irrespective of whether F2(u) =
(1/2)(F1(u)+F3(u)) or not, T 2

1 will provide a test whether F1(u) = F3(u) or not.

5. Finite Sample Analysis

The above asymptotic analysis can be replaced by a more exact finite sample
analysis which gives a precise decomposition of individual components. We shall
not attempt full generality but focus on the decomposition of the individual
components Yh. We adopt the approach of Durbin and Knott (1972).

Theorem 3.

W 2
h =

∫ ∞

−∞
nh(Sh(u) − S̄(u))2dS̄(u)

=
nh

n

n∑
k=1

(S∗
h(k/n) − k/n)2 =

n−1∑
j=1

z2
nj

(jπ)2
, (10)
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where

znj =
nh∑
l=1

jπ[sin{jπrhl/n} − sin{jπ(rhl − 1)/n}]
n
√

2nh[1 − cos(jπ/n)]
for j = 1, . . . , n − 1 (11)

and rhl, l = 1, . . . , nh, are the ranks of the hth sample in the total combined
sample. Moreover E(znj) = 0 and E(znjznk) = 0 if j 	= k.

Proof. In this proof alone the letter i is used to denote
√−1. Consider the Fourier

expansion S∗
h(k/n) − k/n =

∑n
j=1 β̂j sin(jπk/n). If we multiply this equation by

sin(lπk/n) and sum over all k, we find, on using the usual orthogonality property
of the sine basis functions, that β̂l = (2/n)

∑n
k=1(S

∗
h(k/n) − k/n) sin(lπk/n),

l = 1, . . . , n. Now
∑n

k=1[S
∗
h(k/n) − k/n] sin(lπk/n) is simply the imaginary part

of
∑n

k=1[S
∗
h(k/n) − k/n] exp(i lπk/n). Moreover from the form of S∗

h(k/n) we
have that

∑n
k=1 S∗

h(k/n) exp(i lπk/n) = (nh)−1∑nh
j=1

∑n
k=rhj

exp(i lπk/n). Also
we have

∑n
k=1(k/n) exp(i lπk/n) = n−1∑n

j=1

∑n
k=j exp(i lπk/n). Using these two

expression we find, after some not inconsiderable manipulation, that

β̂l = Im
2
n

n∑
k=1

(S∗
h(k/n) − k/n) exp(i lπk/n)

=
1

nnh[1 − cos(jπ/n)]

nh∑
j=1

[sin(lπrhj/n) − sin(lπ(rhj − 1)/n)]. (12)

From Parseval’s Theorem we have that W 2
h = (nh/2)

∑n
l=1 β̂2

l . Using the expres-
sion (12) for β̂l (where β̂n = 0) and rearranging then yields (10).

E(znj) is evaluated by summing the expression for znj over all possible com-
binations of (ranked) positions that the nh observations of the hth sample can
take in the combined sample of size n. By symmetry each possible value, viz
1, . . . , n, that rhl can take, occurs the same number of times in the total summa-
tion. Thus the expectation takes the form

E(znj) = A(j, nh, n)
n∑

l=1

[sin{jπl/n} − sin{jπ(l − 1)/n}] = 0.

Similarly we have

E(znjznk) = A′(j, k, nh, n)
n∑

l,m=1

[sin{jπl/n} − sin{jπ(l − 1)/n}] ×

[sin{jπm/n} − sin{jπ(m − 1)/n}] = 0.

Remark. Here the znj,to within a scale factor, are the discrete analogues of the
regression coefficients defined in Durbin and Knott (1972, Equation 2.11). They
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therefore are essentially the principal components of the n dimensional vector
with components

√
nh/n(S∗

h(k/n) − k/n), k = 1, . . . , n. (There are only n − 1
non-trivial components, the nth being identically zero.)

The properties of the znj are not as simple as in the Cramer-von Mises W 2

case, though there are obvious similarities. Thus the znj are uncorrelated with
mean zero, and they are similarly, but not identically, distributed; in particular
their variances are all close to unity. Each znj is the sum of nh identically
distributed random variables, but they are not independently distributed as in the
case of W 2. This makes difficult analytic calculation of the precise distribution of
any given znj, and we do not attempt to do so here. However, from simulations
not reported here, it is clear that the distributions, like those of the Durbin-Knott
zj, are very nearly normal.

However it is quite easy to calculate, by Monte-Carlo simulation, the distri-
bution of any given znj , and hence its percentage points. This can be done to
arbitrary accuracy as follows: znj variates can be sampled from their null distri-
bution simply by sampling nh values uniformly from the set {1, . . . , n} without
replacement, and treating these as the ranks rhl, l = 1, . . . , nh, at (11). We can
therefore generate a random sample of znj ’s, of size M say, and use the EDF of
this random sample to estimate the CDF. This can be done to arbitrary accu-
racy by choosing M sufficiently large. This method of calculating the percentage
points of the distribution of znj is sufficiently easy to do to incorporate into online
analyses.

When the null hypothesis is not satisfied it is clear from the form of the znj

that zn1 will be correlated with, and hence will measure deviation of the hth
sample mean from, the mean of other samples. Similarly zn2 measures deviation
of the variance of the hth sample from that of other samples.

6. Power

We briefly consider the limiting power of EDFIT statistics as n → ∞. The
analysis used by Durbin and Knott for the one-sample case can be easily extended
to our case. We first outline their method.

Durbin and Knott suppose that the distribution is of the form G(y, θ) where
θ is a vector of parameters that specifies the distribution completely, and that G

is a differentiable function of θ. They consider the null hypothesis H0: θ = θ0

versus the alternative H1θ = θ0 + n−1/2γ, where γ is a constant vector. We put
x = G(y,θ0), Y (x) =

√
n{G(x) − x} and g(x) = ∂G(y,θ)/∂θ|θ0 , expressing this

derivative as a function of x by means of the transform x = G(y,θ0). Then under
H1 as n → ∞, E{Y (x)} → γTg(x). The asymptotic covariance function of Y (x)
on H1 is the same as that on H0. It then follows that the limiting distribution of
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W 2 on H1 is that of W 2 =
∑∞

j=1 z2
j /(jπ)2, where the zj are independent normal

N(γT δj , 1) variables, with δj =
√

2jπ
∫ 1
0 g(x) sin(jπx)dx.

For the EDFIT case we take as our hypotheses H0 : Fi(u) = b0(u) all i, and
H1 : F(u) = Ab(u), where

b(u) =

(
b0(u)

n−1/2b̃1(u)

)
. (13)

A and b̃1(u) are independent of n but will depend on p. From Theorem 1 we
have that T 2 = n−1∑n

k=1 Y∗T (k/n)CY∗(k/n) =
∑m

i=1 W 2
i , where the W 2

i are
independent W 2 statistics under H0. We can apply Durbin and Knott’s argument
to each W 2

i . The precise detail depends on the precise decomposition used. We
only consider the most useful case in practice which is where each takes the
simple form

W 2
i = n−1

n∑
k=1

{cT
i Y∗(k/n)}2. (14)

All the examples of Section 4 are of this form.
In this case W 2

i =
∑n−1

j=1 z
(i)2
j /(jπ)2 and we find, following Durbin and

Knott’s argument, that as n → ∞, the z
(i)
j are asymptotically normal and inde-

pendent with mean

E(z(i)
j ) = cT

i B{
√

2jπ

∫ 1

0
b̃1(x) sin(jπu)du}.

This is the equivalent of Durbin and Knott’s expression E(znj) = γT δj .

Power considerations follow easily from this result. We consider only the
two sample case of Section 4 in any detail, where two distributions are com-
pared. Here T 2 = W 2

1 where W 2
1 is of the form (14) with c1 = (−√

p2,
√

p1)T .

Moreover from (13), we have F1(u) − F2(u) = n−1/2(p1p2)−1b̃1(u). We there-
fore take b̃1(u) = γ̃p1p2g(u), so that we are considering a difference n−1/2γ̃g(u)
which does not depend on p1 and p2. Then E(z(1)

j ) = γ̃(p1p2)1/2δj , where δj =√
2jπ

∫ 1
0 g(u) sin(jπu)du is the direct analogue of δj given by Durbin and Knott.

The interesting power results given by Durbin and Knott concerning the use
of different components to investigate differences between means and variances
therefore apply here. The only difference is that γ as given by Durbin and Knott
is replaced by γ̃(p1p2)1/2. This shows there is some loss of power especially in
comparing two distributions using unbalanced samples.

7. Application

As an example of the above discussion we consider data from a real-time
man-in-the-loop simulation trial comparing two different methods of operating
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a certain piece of equipment processing a certain product. The particular data
set to be considered here, being essentially ordinal in form, might of course be
analysed by statistical methods developed for this specific form of data (see for
example McCullagh and Nelder (1983, Chap.5 and Chap.6)). We should point
out, therefore, that the data is only a small part of a much bigger data set mea-
suring a very large number of different characteristics of process (and operator)
behaviour under the two methods of equipment operation. The full data set
comprised a large number of samples of all sorts, including continuous as well as
ordinal data, and it was not clear at the outset which samples and which char-
acteristics would be important to look at. In this situation, the use of EDFIT
statistics allowed a rapid initial exploration of the full data set, with both contin-
uous and discrete data handled in the same way. Thus it was possible to rapidly
determine those characteristics which appeared to behave differently under the
two methods of equipment operation, whatever the form these differences took.
This then allowed special follow-up analyses to be more effectively employed,
focusing on just those characteristics revealed by the EDFIT analysis to behave
differently under the two modes of operation.

A very brief preliminary analysis of the specific data set considered here has
previously appeared in Cheng and Jones (2000). Note that the analysis used
there does not include a Fourier decomposition, as described below.

The output comprised 782 independent observations of (real-time simulated)
operator activity for each method, where each observation was on a simple inte-
gral scale ranging from 0 through 5 (0 indicating low activity, 5 indicating high
activity). The observations were assumed to be independent. The observed ac-
tivity level was also expected to be dependent on the production level which could
be set at one of four levels. The two methods of operation were each simulated
782 times, with production levels 1, 2, 3 and 4 occurring a total of 50, 140, 346
and 246 times respectively.

The number of observed activity levels for the different combinations of
method (i = 1, 2) and production (j = 1, 2, 3, 4) levels are given in Table 1.

Use of ANOVA is clearly not appropriate in this case. A possible, though
not ideal, method of analysis is to use the well known Friedman non-parametric
test for a two-way layout (see for example Hollander and Wolfe (1973)). This
test allows a number of matched samples to be compared. If we take the two
operating methods as being the two ‘treatments’ and pair off each of the 50
observations at Production Level 1 using Operating Method 1 with a randomly
selected observation using Operating Method 2, then this gives us 50 ‘matched’
pairs. Doing the same thing with the observations at other Production Levels
gives us a total of 782 ‘matched’ pairs. The test statistic is calculated from this
set of matched samples. (Details of the calculation are given in Hollander and
Wolfe (1973).)
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Table 1. Structure of data in the example.

Operating Method 1 Operating Method 2
Production Level 1 2 3 4 Production Level 1 2 3 4
Activity Level Activity Level

0 0 1 6 4 0 1 3 6 7
1 7 9 8 1 1 0 7 25 7
2 20 83 200 153 2 24 86 188 150
3 23 43 132 79 3 25 36 110 72
4 0 4 0 9 4 0 8 17 9
5 0 0 0 0 5 0 0 0 1

Total 50 140 346 246 Total 50 140 346 246

There will be a large number of ties in the observations, and these are handled
using the correction method given in Hollander and Wolfe (1973). The test value
obtained was 0.465. To determine the level of significance, we used bootstrap
resampling to form 1, 000 bootstrap test values under the null. This was done
by obtaining two samples each of size 782, using bootstrap resampling, only with
both bootstrap samples obtained from the one original sample corresponding to
Operating Method 1. (To make sure that corresponding observations in each
bootstrap sample were matched, each such pair was sampled from observations
made at the same production level. This ensured that there was proper matching
of production levels as in the original samples.)

Friedman statistic

Figure 1. EDF for Friedman statistic and observed value.

Figure 1 shows the bootstrap EDF of 1, 000 values of the Friedman test
statistic calculated from paired samples formed in this way. This EDF yields
an estimate of the critical value at the 90% level of significance as 2.806, and a
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value of 3.704 at the 95% level of significance. This latter value is depicted in
the figure. The actual test value of 0.465 is therefore nowhere near significant at
either of these levels.

We also applied an EDFIT test. This was done by comparing, for each pro-
duction level, the distribution of observations obtained under Operating Method
1 with that obtained under Operating Method 2, using T 2 as defined in (9).
Thus there were four such statistics T 2

i i = 1, 2, 3, 4 corresponding to the four
production levels.

We then decomposed each into Fourier components using Theorem 3, T 2
i =∑ni

j=1 t2ij. For simplicity, as the example is for illustration only, we did not consider
the T 2

i separately but considered the combined Fourier coefficients Cj =
∑4

i=1 t2ij,
j = 1, 2, 3, R = T 2 − C1 − C2 − C3, where T 2 =

∑4
i=1 T 2

i . Thus C1, C2 and C3

provide overall measures of the difference in means, variances and shapes, respec-
tively, of the distributions of activity level between the two operating methods
across all four production levels. R is a more complicated measure of any remain-
ing overall difference between the distributions under the two operating methods.
Table 2 gives the observed values of these quantities together with their p-values.
The table also gives 90% and 95% critical values. The p-values and critical values
were all obtained by bootstrap resampling. Figure 2 shows the null EDFs of T 2,

C1, C2, C3 and R, together with the observed values.

Table 2. EDFIT analysis of real-time simulation data.

Component Observed Value p-value 90% point 95% point
T 2 0.756 0.164 0.90 1.08
C1 0.280 0.441 0.68 0.86
C2 0.347 0.002 0.16 0.19
C3 0.007 0.930 0.07 0.09
R 0.123 0.092 0.12 0.13

It is seen that T 2, the overall measure of difference between distributions
under the two operating methods, has a value of 0.756 which is not significant
at the 90% level. The measure of difference between means, C1 is not significant
either. However C2, the difference in variability, is significant at 95%. The value
of R is just significant at 90% but not 95%.

Closer examination of the spread of observations in the data set corroborates
these findings. Though there is little to choose between the means under the two
different operating methods, the variability about the mean does appear to be
greater for the second operating method than for the first, and this feature of
the data has been clearly exposed by the EDFIT analysis.
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Figure 2. EDFs of T 2 and its components.

8. Conclusions

In factorial experiments where observations are replicated, the discussion
suggests that the EDFIT statistic can provide a much more sensitive test for dis-
tinguishing differences between responses at different factor combinations. This
is backed up by the example, where a standard, normally quite powerful non-
parametric test did not reveal differences between two treatments. In contrast
the EDFIT test indicated a significant difference. The reason why it gives a
much more statistically significant result in this case is because the difference is
not all that great between the means of the two samples. However there is a
significant difference in the variability of the two samples. The sensitivity of the
EDFIT statistic to any difference between samples has therefore enabled this
difference to be detected.
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