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Abstract: In this paper, we list some new orthogonal main effects plans for three-
level designs for 4, 5 and 6 factors in 18 runs and compare them with designs
obtained from the existing Lis orthogonal array. We show that these new designs
have better projection properties and can provide better parameter estimates for
a range of possible models. Additionally, we study designs in other smaller run-
sizes when there are insufficient resources to perform an 18-run experiment. Plans
for three-level designs for 4, 5 and 6 factors in 13 to 17 runs are given. We show
that the best designs here are efficient and deserve strong consideration in many
practical situations.
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1. Introduction

Many orthogonal main effects designs for three-level factorial structures are
well known, are described in books such as that by Wu and Hamada (2000), and
have been used extensively in practice. It is usually assumed that identification
of factors with large main effects is the sole purpose of the experiment. Motivated
by Hamada and Wu (1992), Tsai, Gilmour and Mead (2000) used a two-stage
analysis strategy that considers interactions as well as main effects for the analysis
of screening experiments with complex aliasing patterns. Under this analysis
strategy, it is important to construct designs for screening experiments that are
efficient not only for identifying the active factors, but also for fitting a range of
possible models that can contain some interactions as well as main effects. For
constructing designs with good projection properties, Tsai et al. (2000) defined
and used a columnwise procedure to generate three-level designs for six factors
in 18 runs, all of which are equally efficient for fitting the six-factor main effects
model and any sub-model of it. They also introduced a criterion, denoted by
Q(F(k)) for a k-factor design, which averages an approximation to As-efficiency
over lower-dimensional projections of the design. This criterion is used to explore
the projection efficiencies of the design. Designs with lower Q(F(k)) are more
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likely to have efficient projections and, on average, can provide better parameter
estimates over a range of models than designs with higher Q(I'*)).

One of the frequently used three-level orthogonal arrays in industrial ex-
periments is the L1g(37), an 18-run design for seven three-level factors. Wang
and Wu (1995) and Cheng and Wu (2001) studied the projection properties of
the L13(37) orthogonal array when projected onto sets of three and four factors.
Cheng and Ye (2004) permuted the levels of the projected designs to generate
some additional 18-run designs for three and four factors. However, the designs
studied in these papers always project onto designs for three factors that are
formed by putting two regular 33~! factorials together and have either 18, 15 or
9 distinct points. In this paper, we show that by using a design procedure that
has no restriction on designs for their projections onto three factors, more new
designs can be generated. All these designs are equally efficient for fitting the
main effects model. Additionally, the best designs we have found have better
projection properties and can provide better parameter estimates for a range of
possible models. These designs deserve strong consideration in many practical
situations.

The purpose of this paper is to compare designs generated by the criterion of
Tsai et al. (2000) with those obtained by Cheng and Ye (2004) and those obtained
from the L;g orthogonal array. In Section 2, we give some new orthogonal main
effects three-level designs for 4 to 6 factors in 18 runs and compare them with
those obtained from the Lqg. Additionally, we consider the situation when there
are insufficient resources to perform an 18-run experiment. In Section 3, we
list some of the best designs for 4 to 6 factors in 13 to 17 runs, and compare
them with the D-optimal main effects designs obtained from the SAS procedure
OPTEX (SAS Institute, 1995, Pt.6). In Section 4 we summarise the conclusions.

2. Three-Level Designs in 18 Runs
2.1. Designs for three factors in 18 runs

The general procedure to construct regular three-level factorials is through
defining contrast subgroups. Consider an example of a regular 33~! factorial. The
nine level-combinations of a regular 33! factorial are determined by a defining
contrast relation such that x1 + asxs + azrs = a (mod 3), where a; = 1 or 2,
a = 0,1 or 2 and the levels of a factor, x;, are coded as 0, 1 and 2. It is easily
verified that there are twelve sets of a’s and a’s corresponding to the twelve
regular 337! factorials. Each of them can be represented by a 3 x 3 Latin square.

These twelve designs are combinatorially isomorphic since a design can be
obtained from any other by permutations of rows, columns and levels of factors.
However, when we are interested in checking the linearity of the response, we use
the linear and quadratic contrasts, with coefficients (—1,0,1) and (1/2,—-1,1/2)
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respectively, to decompose the main effects of factors. Designs obtained from one
another by some relabellings of levels of factors, namely switching 0 with +1 or 0
with —1, are said to be in different design families as defined by Tsai et al. (2000),
or geometrically non-isomorphic as defined by Cheng and Wu (2001). For this
classification, the twelve regular 33~! designs are divided into two design families:
one consists of Latin squares with a center point (0,0,0); the other consists of
Latin squares without a center point. Only one design in a design family is kept
for representing designs in that design family.

By using the design procedure of Tsai et al. (2000), we generate the 13
three-level designs for three factors in 18 runs shown in Table 1. All of these
13 designs are equally efficient for fitting the main effects model assuming no
interactions exist. Eight of these designs can be obtained by putting two Latin
squares together and have either 18, 15 or 9 distinct points. Designs D(3) and
D(5) have 18 points, D(1), D(6), D(8) and D(11) have 15 points, and D(12) and
D(13) have nine repeated points.

Table 1. Plans for designs for three factors in 18 runs.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

=0 —— =0 ——0 —=0 —=0 ——— ——— ——— ———
~0— —0— —0— —0— —0— —0— —0— —00 =00 —00 —00 —0+ —00
—00 =0+ —00 —0+ —0+ —0+ —0+ —0+ —0+ —0+ —00 —0+ —00
—40 =40 =40 —+0 =40 —40 —+0 —+0 —40 —+0 —++ —4+0 —F+
—++ —F+ —t+ —++ —tt+ —+ —++ —F+ —F —F+ —++ —+0 —++
0—0 0—0 0—0 0—+ 0—— 0—+ 0—— 0—+ 0—0 0—0 0—0 0—+ 0—+
0-0 0—+ 0—+ O—+ 0=+ 0—+ O—+ 0—+ 0—+ O—+ O0—+ 0—+ 0—+
004+ 00— 00— 00— 000 000 000 00— 00— 00— 00+ 000 00—
004+ 00+ 00+ 000 00+ 000 000 000 00+ 000 00— 000 00—
0+— 04— 0+— O+— 0+— 0+— O+— 04— 0+— O+— O+— 0+— 040
0+— 040 040 040 040 O+~ O++ 040 0+0 O++ 0+0 0+— 040
bt = 4= +=0 4= 40 +=0 +—0 +—0 +-0 +—0 +-0
fet At +=0 +=0 +—+ +=0 4=+ +—0 +—+ +—+ +—+ +—0 +-0
+0— 400 400 400 +0— 40— +0— +0— 40— 40— +0— +0— +0+
+00 +00 40+ +04+ +00 40+ +0+ +0+ 400 +0+ +0+ +0— +0+
+4+0 ++— ++— ++— ++— 0 ++— = = Ft— = At
Ftt b At At e A A0 b A A0 40 o

For these designs, the linear and quadratic effects of a factor are sometimes
correlated with interactions not involving that factor, and the interactions are
correlated with each other. These designs have different efficiencies for fitting
the models that contain some interactions as well as main effects. Table 2 gives
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values of the Q(I'®)) criterion and the A, criterion (excluding the intercept) for
the second-order model for these designs. Note that Q(I'®)) is an average of an
approximate A; criterion, the average being over the 94 models that contain some
or all interactions and main effects of the three factors. (See Tsai et al. (2000) for
more details. Note that the Q(I'®) values for D(12) and D(13) in Table 1 of Tsai
et al. (2000) are misprinted.) This table shows that designs that are not formed
by putting two Latin squares together, those labelled D(2), D(4), D(7), D(9)
and D(10) in Table 1, sometimes have more efficient parameter estimates than
those obtained from the Lig, even for the second-order model. Notice that D(12)
and D(13) are sets of nine duplicated points. There are not enough degrees of
freedom to obtain unique estimates for all the effects of the second-order model
(with ten parameters). Cheng and Wu (2001) studied the projected three-factor
designs from the Lig array and did not separate D(12) and D(13).

Table 2. Properties of designs for three factors in 18 runs.

Design | Q(I'®) A, Design | Q(I'®) A,
1 0.5148 | 0.1121 8 0.5635 | 0.1741
2 0.5236 | 0.1158 9 0.5656 | 0.1529
3 0.5301 | 0.1334 10 0.5683 | 0.1394
4 0.5304 | 0.1289 11 0.5946 | 0.1688
5 0.5328 | 0.1187 12 0.5993 00
6 0.5378 | 0.1420 13 0.6099 00
7 0.5426 | 0.1204

2.2. Designs for four factors in 18 runs

As done for designs for three factors in 18 runs, new four-factor designs are
generated by the design procedure that does not force designs to have three-
factor projected designs formed by putting two Latin squares together, and 129
designs are obtained in total. Table 3 lists some of the orthogonal main effects
designs for four factors, in which designs 5 and 12 are the two designs from the
projections of the Lig orthogonal array. Table 4 gives the projection properties
and the values of Q(I'®) and A, for the second-order model for some four-factor
designs. It shows that the best designs with lower values of Q(I'Y) are more
likely to project onto better designs for three factors. Among the designs we
have found, design 1 is the most efficient for fitting the second-order model. It
does not always project onto designs for three factors that are formed by putting
two Latin squares together. Note that the boldface for the projected designs in
Table 4 represents the three-factor designs that are formed by putting two Latin
squares together.
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Table 3. Plans for designs for four factors in 18 runs.

Design 1 | Design 2 Design 5 | Design 12
—-—+0 -—00 ——+0 -——40
-0—-+ -0-0 - 0—-+ -0—-+
—000 - 04+ —-000 —-00—
-+ 0~ -+ 0+ -+ 0 - -+00
—+++ —++ - —+++ —+++
0—-0- 0—-0+ 0-0-— 0-00
0—-0+ 0—+-— 0—-0+ 0—++
00+ - 00—+ 00+— 00-0
00++ 0040 0040 00+ -
0+-0 0+4+——- 0+-0 0+——
0+-0 04+00 0+—+ 040+
+——+ +—-—-0 +—--=0 + -+
+—-+0 +—++ +-++ +—-0 -
+0 - +00— +0—-- + 00+
+000 +00— + 00+ +0+0
++ 0+ ++ -+ ++00 ++-0
+++ - ++4+0 +++ - +++ -

Table 4. Properties of designs for four factors in 18 runs.

Design | Q(I') Ag Three factors projections
(123, 124, 134, 234)

1 0.9276 0.1585 1226

2 0.9375 0.1860 | 2442

3 0.9460 0.1797 | 2623

5 0.9493 0.1746 | 1535

12 0.9587 0.2139 | 3553

128 1.2832 00 12 12 12 12

129 1.3214 00 131313 13

1079

If we restrict our attention to four-factor designs that project onto designs

for three factors that are formed by putting two Latin squares together, we find
that there are 36 such designs for four factors. Cheng and Wu (2001) and Cheng
and Ye (2004) studied only the four-factor designs obtained from the projections

of the Lig array and reported 21 four-factor projected designs.

2.3. Designs for five factors in 18 runs

Considering the projected five-factor designs from the existing Lig, there are
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six different designs. By the Q(I'®)) criterion, they rank 128, 129, 171, 186, 253
and 292 among the 320 five-factor designs that we generated. Table 5 lists plans
for the best three designs for five factors in 18 runs, and design 28 that is the
best design for which all its 10 sets of three-factor projections can be formed by
putting two Latin squares together.

Table 5. Plans for designs for five factors in 18 runs.

Design 1 Design 2 Design 3 Design 28
0| ————— —____0 | —————
--0+0| ——4+00|] —==00—-| ——4+0+
-0-0—-| -0—-++] -0—++| —0—++
-0+-+| -00-0| -0++—-1] —=00-0
-+00+| —+0+-| —+0—-+| —+00—
-+++-] —++0+| —++00| —+++0
0-00+] 0-00~-}] 0—-+—-+1] 0-000
0O—+—-——] 0—-4+++| 0—+4+0| 0—++—
00—-—++] 00-00] 00-0+] 00—-0—
00+00| 004+-——-] 00000 | 004+—+
O+-+0] 04+-—+| 0+———=1| 04+—--0
0+0-—-|] 0+0+0| O+0+—] O+0++
+--0-| +-—+0| +-—=0~-| +——+0
+-+++| +-0—-+| +-0++| +-0—-+
+00-0| +000+| +00-0| +00+—
+00+—-| +0++—-] +0+——| +0+00
++-—4+| ++-0—-| +4+—-4+0| ++-0+
+++00| +++-0| +++0+ | +++——

Table 6 gives the values of Q(I'®)) for these designs, along with the corresponding
averages of their four- and three-factor projections. It shows that designs 1 and 2 with low
values of Q(I'®)) have better projection properties than other designs. For information
on designs for six factors in 18 runs, the reader is referred to Tsai et al. (2000).

Table 6. Properties for designs for five factors in 18 runs.

Design|Q(I'®))|Average Q(I'®)|Average Q(I'®)
111.6018 0.9574 0.5288
2/ 1.6040 0.9683 0.5313
3/ 1.6141 0.9694 0.5329
28| 1.6489 0.9734 0.5320
128/ 1.7051 0.9984 0.5382
129(1.7055 0.9853 0.5328
320{ 2.0079 1.0992 0.5574
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3. Designs with Fewer Runs

Designs for four, five and six factors in 13 to 17 runs are generated and compared
to the corresponding D-optimal main effects designs obtained from the SAS procedure
OPTEX (SAS Institute, 1995, Pt.6). A brief summary of these results was given in Tsai
et al. (2000). Here, we list some of the best designs for four, five and six factors in 13 to
17 runs.

Designs in 17 runs.

Lin (1993) found that the best two-level designs in 4n — 1 runs could be obtained
by deleting any point from the best designs in 4n runs. Similarly we found that the best
17 run designs were obtained by deleting a point from the best 18-run designs. However,
with the three-level factors it is important to delete an appropriate point. It turns out
to be better to delete points with as many 0’s as possible, rather than points with many
+1’s.

The best design for three factors, with Q(I'®)) equal to 0.5396, is obtained by
deleting the point (—,0,0) or (4,0,0) from D1 in Table 1. The best design for four factors,
with Q(T'™) equal to 0.9719, is obtained by deleting the point (,0,0,0) or (+,0,0,0) from
Design 1 in Table 3. The best design for five factors, with Q(I'®)) equal to 1.6576, is
obtained by deleting the point (0,0,—,0,0) from Design 2 in Table 5. For information on
designs for six factors in 17 runs, the reader is referred to Tsai et al. (2000).

Designs in 16 runs.

Table 7 gives the plans for the best design for four, five and six factors in 16 runs
under the @ criterion. Table 8 gives the values of the @ criterion and the D; criterion

Table 7. Plans for best designs for four, five and six factors in 16 runs.

F=1 F=5 F=6

. ———00+
——00 ——0+0 | ——+——0
—0—+ | —0-0+ | —0—-0+—
—0+0 —04+—-0 | —00+—0
—4+0+ | —400— | —+0-0-
—t++— | —Ftt+ | A+
0—0+ 0—0—+ | 0-0—++
0—+4— 0—4+0+ | 0—++0—
0000 00000 | 00———+
004+ 00++— | 000000
0+—— O+—40 | 04+—+——
+--0 +——+— | +-—=++0
=44+ | +=400 | +-00——
00— | +00++ | +0+—+-
++—+ | ++-—+ | ++--00
+++0 +++—— | +++0-+
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Table 8. Properties of designs in 16 runs.

#Factor|Design|Q(I'F))|log, (D)
F=4 1 1.0281 | 8.7815
D |1.1419| 8.8095

F=5 1 ]1.7391 | 10.6802
D | 1.9452| 10.6802

F=6 1 2.2253 | 12.2463
D 2.4274 | 12.5419

(on a log scale), excluding the intercept, of the main effects models for the best
designs for 4 to 6 factors in 16 runs, along with those for the corresponding D-
optimal designs. It shows that designs generated by the design procedure sacrifice
a little D-efficiency for fitting the main effects model. However, they gain a lot
over all possible models. The best designs that we generate appear clearly better
than the D-optimal design with respect to the @ criterion.

Similar phenomena are observed for n = 13,14 and 15 runs. Tables 9, 10
and 11 give plans for the best designs for 4 to 6 factors in 15, 14 and 13 runs
respectively. Note also that for some D-optimal designs, the levels of some factors
do not appear equally often, as nearly as possible. Unless one level of a factor is
more important than the others, it is usually preferred that each level of a factor
appears equally often, as nearly as possible.

Table 9. Plans for best designs for 4 to 6 factors in 15 runs.

F=4 F=5 F=6
——— | = ==40 | —=—==- 0
=0+ | ——+—— | ——+00-
—0—+ | —0——+ | —0—++-
—0+— | —O0+++ | —00—++
—4+00 4000 | —400—+
0—+0 0-004+ | 0——+0+
000 - 00-0— | 000000
0000 00040 | 004———
0+—— O++—+ | 04+-0+0
0+++ O+++— | O4+++++
+--0 +——=0 | +-0—+—
-0+ | +=0+— | +—++-0
+040 +0+00 | +0-0—+
44—+ | ++-0+ | ++0+0-
+++- | ++0-—| +++-00
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Table 10. Plans for the best designs for 4 to 6 factors in 14 runs.

F=4 F=5 F=6
—___ | ——_—__ ] ——_—__ 0
——+0 ——+4+0 | ——++0-
—0—4 | —0—++ | —0—+++
—+0— | —4+0—+ | —+0—+-
—t+4++ | —++0— | —++0—+

0000 00000 000000

00+— 00000 | 000000
0+—— O+—+— | 0+—+—-—
+--0 +-—0+4+ | +——0+-
+—++ | +-0+—- | +-0+—+
+00— | +04+—— | +0+———

++—+ | ++-=0 | ++-——0+
+++0 +++++ | +++++0

Table 11. Plans for the best designs for 4 to 6 factors in 13 runs.

F=4 F=5 F=6

———— | —=00+ | ——=0+0
——+0 ——4-0 | ——+--0
~00+ | —0——— | —0++40-
—+—+ | —+-40 | —4+--0-
—t++— | —++0- | —+0+-+
O——+ | 0——+— | 0-0+4——
0000 00000 | 00—0—+
00+— 00+++ | 000000
0400 O+——4 | O4++—++
00— | 40— | +———0+
+0-0 | +0-00 | +00—+-—
f4—— | ++0+— | ++—++0

++++ | +++-+ | +++0-—-

4. Conclusion

In this paper, we have listed some of the best designs for 4 to 6 factors in 13
to 18 runs. The best four-factor designs in 18 runs generated by our procedure
not only are the most efficient designs for fitting the main effects models, but
also for the second-order model and any sub-model of it. For designs for five and
six factors in 18 runs, for most subsets of factors the best designs have better
projections and can provide better parameter estimates over a range of possible
models that contain some interactions as well as main effects.
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For designs in smaller run sizes, the best designs generated by the design
procedure sacrifice a little efficiency for fitting the main effects model. However,
they gain a lot over all possible models. Therefore, the best designs we have
found deserve strong consideration in many situations.
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