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Abstract: This article studies a family of multivariate skew-symmetric distribu-
tions. We show that any multivariate probability density function admits a skew-

symmetric representation. We derive several characteristics of this representation

and establish an invariance property. We present a stochastic representation of

skew-symmetric distributions which lends itself readily to simulations. The flexi-

bility of skew-symmetric distributions is illustrated through several graphical ex-
amples.
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1. Introduction

During the last decade, there has been a growing interest in the construction

of flexible parametric classes of multivariate distributions that exhibit skewness

and kurtosis which is different from the normal distribution. The motivation orig-

inates from data sets, including environmental, financial, and biomedical ones,

which often do not follow the normal law. In order to model departures from

normality, a popular approach consists of modifying the probability density func-

tion (pdf) of a random vector in a multiplicative fashion. Although this idea has

been in the literature for a long time, it is Azzalini (1985, 1986) who thoroughly

set the foundations for the univariate normal distribution, yielding the so called

skew-normal distribution. An extension to the multivariate setting was then

proposed by Azzalini and Dalla Valle (1996). They defined an n-dimensional

random vector X as having a multivariate skew-normal distribution, denoted by

SNn(µ,Ω,α), if it is continuous with pdf

2φn(x;µ,Ω)Φ(αT (x− µ)), x ∈ R
n, (1)

where φn(x;µ,Ω) is the n-dimensional normal pdf with mean µ and correlation

matrix Ω, Φ(·) is the standard normal cdf N(0, 1), and α is an n-dimensional

shape parameter. When α = 0, the pdf (1) reduces to the one of the multivariate

normal distribution Nn(µ,Ω). Statistical applications of the multivariate skew-

normal distribution were emphasized by Azzalini and Capitanio (1999).
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Generalizations of these ideas to other distributions have been proposed by

many authors. For instance, multivariate distributions such as skew-Cauchy

(Arnold and Beaver (2000)), skew-t (Branco and Dey (2001), Azzalini and Cap-

itanio (2003), Sahu, Dey and Branco (2003)), skew-logistic (Wahed and Ali

(2001)), and other skew-elliptical ones (Azzalini and Capitanio (1999), Branco

and Dey (2001), Sahu et al. (2003)) were defined in the literature. Domı́nguez-

Molina, González-Faŕıas and Gupta (2001) also introduced a general skew-normal

distribution by replacing the univariate cdf Φ in (1) by a multivariate one, thus

allowing for closure under conditioning and addition. Arnold and Beaver (2002)

discuss the construction of skew-elliptical models related to hidden truncations

and selective reporting. Arellano-Valle, del Pino and San Martin (2002) present

yet another view on skewed distributions, based on conditioning and the sign

function. Recently, Genton and Loperfido (2002) defined a class of generalized

skew-elliptical (GSE) distributions by pdfs of the form

2f(x)π(x), (2)

where f is an elliptical pdf and π is a skewing function, i.e., it satisfies 0 ≤ π(x) ≤

1 and π(−x) = 1 − π(x). It is not difficult to see that (2) encompasses many

skew-elliptical distributions defined in the papers above with appropriate choices

of f and π. Genton and Loperfido (2002) showed that the distribution of any

even function, in particular quadratic forms, in GSE random vectors does not

depend on the skewing function π. Similar results have been derived by Azzalini

and Capitanio (2003) in the context of distributions generated by perturbation

of symmetry. This has important implications for statistical inference based on

quadratic forms as noted by Genton, He and Liu (2001) and Loperfido (2001).

Indeed, the sample autocovariance function in time series, the sample variogram

in spatial statistics, and the Mahalanobis distance in multivariate analysis, are all

based on quadratic forms of the data. We will see that this invariance property

still holds for the very general class of multivariate skew-symmetric distributions

described in this article.

This paper is set up as follows. Section 2 describes the family of skew-

symmetric distributions, introduces its use to represent multivariate distribu-

tions, and presents a stochastic representation suitable for simulation. Section

3 studies its important characteristics, and gives visual examples. Section 4

presents a discussion. All proofs of propositions are provided in the Appendix.

2. Skew-Symmetric Distributions

The class of skew-symmetric distributions and its construction are defined

by means of the following proposition.
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Proposition 1.(Skew-Symmetric Construction) Consider a function from R
n →

R+ of the form

2f(x − ξ)π(x − ξ), (3)

where the pdf f is symmetric around 0, i.e., f(−x) = f(x), π : R
n → [0, 1] is a

skewing function, and ξ is any point in R
n. Then (3) is a pdf.

Intuitively, the skewing function in (3) merely reallocates the density between

a point and its polar opposite. We call (3) a skew-symmetric distribution with

respect to ξ with symmetric component f and skewed component π. Azzalini and

Capitanio (2003) independently arrived at a pdf of the form

2f(x− ξ)G(w(x − ξ)), (4)

where the continuous pdf f is symmetric around 0, G : R → [0, 1] is the cdf of a

continuous random variable that is symmetric around 0, and w : R
n → R is an

odd function. It turns out that (4) describes the same class as (3).

Proposition 2.(Equivalence of Representations) The class of skew-symmetric

distributions described by (3) is the same as that described by (4).

Note that the representation of a skewing function π(·) in the form G(w(·))
is not unique. A suitable odd function w can be found for any strictly increasing

G, as can be seen from the proof of Proposition 2 in the Appendix.

The generalized skew-elliptical (GSE) distribution presented in Genton and

Loperfido (2002) is the same as (3) except that f is required to be elliptical as well

as symmetric. The motivation for (3) is that the skew-symmetric distribution

is a generalization of the GSE distribution, which in turn is a generalization of

skew-normal (SN) and related skew-elliptical (SE) distributions. The fact that

GSE’s, SE’s, and SN’s are pdfs follows directly from Proposition 1. As is shown

next, the class of skew-symmetric distributions is completely general, since any

pdf has a skew-symmetric representation.

Proposition 3. (Existence and Uniqueness of Skew-Symmetric Representation)

Let g : R
n → R+ be a pdf and ξ be any point in R

n. Then

g(x) = 2fξ(x − ξ)πξ(x− ξ), (5)

where fξ is a pdf, symmetric around 0, and πξ is a skewing function. This

representation is unique for any ξ, and

fξ(s) =
g(ξ + s) + g(ξ − s)

2
(6)

πξ(s) =
g(ξ + s)

g(ξ + s) + g(ξ − s)
. (7)
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We call (5) the skew-symmetric representation of the pdf g with respect to ξ.

It turns out that (3) has a convenient stochastic representation. Let Y be a

continuous random vector with pdf f(y). Let U be a uniform random variable

on (0, 1), independent of Y. A random vector X with pdf (3) can be simulated

via the following representation:

X =

{

Y + ξ if U < π(Y),

−Y + ξ if U > π(Y).
(8)

Azzalini and Capitanio (2003) present a slightly more complex version of the

above approach.

As an example, let X have a skew-normal pdf of the form (1) and Y have

the pdf φn(x;0,Ω). Applying the probability integral transformation to (8), we

arrive at

X =

{

Y + µ if W < αT Y,

−Y + µ if W > αT Y.

where W is N(0, 1), independent of Y. This is a familiar procedure, provided by

Azzalini and Dalla Valle (1996), for simulating the skew-normal distribution.

3. Properties of the Skew-Symmetric Representation

From (6) and (7), we can always write

fξ(0) = g(ξ), πξ(0) =
1

2
. (9)

We can also make conclusions about continuity and differentiability of fξ and πξ

from the continuity and the gradient ∇g of g.

Lemma 1. (Continuity and Differentiability)

1. Assume g is continuous at ξ + s and ξ − s. Then, fξ(s) is continuous in both

ξ and s at the point (ξ, s). If at least one of g(ξ + s) or g(ξ − s) is not zero,

then πξ(s) is also continuous in both s and ξ at the point (ξ, s).

2. Assume g is differentiable at ξ + s and ξ − s. Then ∇fξ(s) = (∇g(ξ + s) −
∇g(ξ − s))/2. If at least one of g(ξ + s) or g(ξ − s) is not zero, then

∇πξ(s) =
[g(ξ + s) + g(ξ − s)]∇g(ξ + s) − 2g(ξ + s)∇f(s)

[g(ξ + s) + g(ξ − s)]2
. (10)

3. If g is differentiable at ξ, then ∇fξ(0) = 0.

4. If g is twice differentiable at ξ, then the Hessian of fξ at 0 equals the Hessian

of g at ξ.

We are now able to discuss the modality of g and of the symmetric compo-

nent fξ.
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Proposition 4. (Modality and Concavity of Symmetric Component)
1. If g has a local (global) maximum (minimum) at m, then fm has a local

(global) maximum (minimum) at 0. If g is locally (globally) monotonic along
every ray from m, fm is locally (globally) monotonic along every ray from 0.

2. If g is concave (convex) on an open convex set N , then for all ξ ∈ N , fξ

is concave (convex) on Sξ and is maximized (minimized) on Sξ at 0, where
Sξ = {s|ξ + s ∈ N and ξ − s ∈ N}.

3. Conversely, if fξ has a local maximum (minimum) at ∀ξ in an open convex
set N , then g is concave (convex) on N .

Consider the case of a pdf g which is concave in a neighborhood of the
mode m and convex outside that neighborhood. Then fξ will be (at least in a
neighborhood of 0) unimodal for ξ inside the inflection points of g. As we move ξ

farther from m, the mode of fξ at 0 will become less and less distinct. Finally, at
an inflection point of g, the mode of fξ at 0 will disappear entirely. If we continue
to move ξ farther away from m, fξ will exhibit multimodality. For instance, take
g(x) = φ(x), the univariate standard normal pdf. Its mode is m = 0 and it has
inflection points at ±1. The first column of Figure 1 illustrates the shape of fξ

in the skew-symmetric representation (5) for ξ = 0,−0.5,−1,−1.5.

Figure 1. Graphical illustration of the skew-symmetric representation (5)
of the univariate standard normal pdf for ξ = 0,−0.5,−1,−1.5: symmetric
component (column 1), skewed component (column 2).
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The following proposition concerns the skewed component.

Proposition 5. (Monotonicity of the Skewed Component)

1. πξ(s) R πξ(−s) ⇐⇒ g(ξ + s)/g(ξ − s) R 1.

2. πξ(s) has the same monotonicity as g(ξ + s)/g(ξ − s).

3. If g is differentiable at ξ and g(ξ) 6= 0, then ∇πξ(0) = 2(∇g(ξ))/g(ξ).

Part 3 of Proposition 5 implies that the skewed component with respect to

the mode will be flat at 0. Consider, as a special case, a differentiable univariate

distribution g on a neighborhood on which it is unimodal. At a point ξ to the

left of the local mode m, the third result of Proposition 5 tells us that πξ is

increasing in a neighborhood of 0. Then, using (9), we know that in a region

to the immediate right of 0, πξ(s) > 1/2, and that to the immediate left of 0,

πξ(s) < 1/2. At ξ = m, πξ is flat at 0 and thus close to 1/2 in a neighborhood

of 0. Whether and to what extent πξ deviates from 1/2 as s moves away from 0

depends on the degree of asymmetry in g, embodied in g(ξ + s)/g(ξ − s). If g is

symmetric around ξ, then πξ is simply the constant function 1/2. The behavior of

πξ(s) at values of s far from 0 depends on the tail behavior of g(ξ + s)/g(ξ − s),

which depends upon both g and ξ. Typically, lims→∞ πξ(s) equals 1, 0, or 1/2.

The second column of Figure 1 illustrates the shape of πξ in the skew-symmetric

representation (5) of g(x) = φ(x) for ξ = 0,−0.5,−1,−1.5. It is more difficult

to analyze the behavior of fξ and πξ if g is a multivariate distribution. However,

one can get around the problem of multiple dimensions by characterizing fξ and

πξ along a particular line through the origin.

The distributional invariance property of even functions of GSE random vec-

tors (Genton and Loperfido (2002)) is a powerful tool for evaluating the distribu-

tions of quadratic forms, which are even functions. It generalizes the chi-square

properties of univariate skew-normal distributions (Azzalini (1985)) and mul-

tivariate skew-normal distributions (Azzalini and Dalla Valle (1996)), see also

Wang, Boyer and Genton (2004). The skew-symmetric representation allows us

to extend an even function distributional invariance result to all random vectors.

Proposition 6. (Distributional Invariance of Even Functions) If a random vector

X has a skew-symmetric representation of the form (5), then the distribution of

τ(X−ξ), where τ is an even function, does not depend on the skewing function πξ.

Because of our Proposition 2, Proposition 6 is equivalent to Proposition 2

in Azzalini and Capitanio (2003). We give however an alternative proof, see the

Appendix. Normal distribution theory can be used in conjunction with Propo-

sition 6 to derive the distribution of quadratic forms of random vectors whose

symmetric component is a normal pdf. For instance, if a random vector X has

a skew-symmetric representation of the form (5), fξ is a multivariate normal pdf

with nonsingular covariance matrix Ω of rank p, then (X− ξ)T Ω−1(X− ξ) ∼ χ2
p.
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Next, we provide several graphical examples of skew-symmetric distributions.
Figure 2 displays the skew-symmetric representation of five different univariate
pdfs, each with respect to a certain value of ξ. The first row displays the rep-
resentation for a skew-normal SN1(0, 1, 4) distribution with ξ = 0. In this case,
fξ is simply the standard normal distribution, and πξ is simply Φ(4x), as can be
seen in (1).

Figure 2. Graphical illustration of the skew-symmetric representation (5) of
five univariate pdfs plotted in the first column: skew-normal (row 1), chi-
squared (row 2), double-exponential (row 3), Cauchy (row 4), extreme value
(row 5).

Row 2 shows the representation of the χ2
3 pdf with respect to its mode ξ = 1.

In cases where ξ + s or ξ − s is outside the support of the original density, πξ(s)
will be either zero or one. Consistent with Propositions 4 and 5, fξ is maximized
at 0 and π is flat at zero.

Row 3 displays the representation with respect to ξ = −0.25 of the double
exponential pdf with location parameter 0 and scale parameter 1; without con-
cavity in the neighborhood of the mode, there is no guarantee of a neighborhood
for ξ around the mode for which fξ is locally concave at zero.

In the fourth row the Cauchy(0, 1) pdf is represented with respect to ξ = −4,
illustrating part 2 of Proposition 4. If ξ is far enough out in the tails, fξ will have
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a local minimum at 0, and thus of necessity be bimodal, even if g is unimodal.

In such cases, πξ will often be a cdf which rises steeply in the neighborhood of

0. However, if g has thick enough tails, πξ may approximate a cdf around 0 but

asymptote to limits other than 0 and 1. With the Cauchy, these limits are 1/2,

1/2 no matter what the value of ξ.

Row 5 displays the extreme value distribution g(x)=exp(−x)exp(− exp(−x)))
with ξ = −0.5. This representation looks similar to that of the skew-normal,

illustrating Propositions 4 and 5, which indicate the existence of a region to the

left of the mode such that for all ξ in the region, fξ is unimodal near 0 and πξ is

increasing in the neighborhood of 0.

Which ξ should be used for a skew-symmetric representation of a pdf g? A

natural choice is to take the mean, the median, or the mode of g. For each of

them, there is a unique skew-symmetric representation (5) as shown in Proposi-

tion 3. However, many other choices of ξ are possible and each of them will imply,

along with the characteristics of g, different shapes and properties of the sym-

metric and skewed component as shown in Propositions 4 and 5. For instance,

the choice ξ = µ in the multivariate skew-normal distribution (1) of Azzalini and

Dalla Valle (1996) does not correspond to its mean, median, or mode. The skew-

symmetric representation (5) is of theoretical and conceptual interest because it

generalizes the ideas of skew-normal and other skew-elliptical distributions. In

practice however, a parametric family of symmetric (or elliptical) pdfs f and

of skewing functions π are chosen, and the skew-symmetric construction (3) of

Proposition 1 is used. The vector ξ is then a location parameter which can be

estimated from data.

4. Discussion

This paper extends the line of work which seeks to generalize the univariate

skew-normal distribution of Azzalini (1985). We have examined some properties

of skew-symmetric distributions which includes all GSEs, but is very general since

any multivariate pdf admits a skew-symmetric representation. We have shown

that this family has a succinct mathematical form and can be easily simulated.

Suppose a pdf is smooth (differentiable) and locally concave on some convex

neighborhood (as in the neighborhood of a local mode, for instance). Lemma

1 and Proposition 4 then imply that the symmetric component with respect to

any point in that neighborhood will be smooth and locally concave. This means

that locally, its contours will typically be both convex and smooth. Thus, for

an entire range of possible ξ’s, the symmetric component can be arguably well-

approximated by an elliptical density. It might then be possible, as in the fifth

row of Figure 2, to choose such a ξ (or let the data do so) at which the skewing

component is well-approximated by a function, such as that in (1), which is
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practical for empirical analysis. Thus, GSE models as proposed by Genton and

Loperfido (2002) may well have wide applicability.

Note that one can use other skew-symmetric representations of a pdf g. For

instance, one referee suggested replacing the arithmetic mean of g(ξ + s) and

g(ξ − s) in (6) by a general mean of the form ψ−1[(ψ(g(ξ + s)) +ψ(g(ξ − s)))/2],

where ψ is a suitable function, typically a power function. For instance, the choice

ψ(x) = log(x) yields the geometric mean and therefore yields an alternative skew-

symmetric representation g(x) = Cf̃ξ(x − ξ)π̃ξ(x − ξ), where

f̃ξ(s) = C−1
√

g(ξ + s)g(ξ − s), π̃ξ(s) =

√

g(ξ + s)

g(ξ − s)
.

The function f̃ξ is a symmetric pdf once the normalizing constant C has been

computed. Note that C = 1 when ψ(x) = x, that is for our skew-symmetric

representation (5). The function π̃ξ has the same monotonicity as πξ, but has

different characteristics: 0 ≤ π̃ξ(x) < ∞ and π̃ξ(−x) = 1/π̃ξ(x). Among all

these alternative skew-symmetric representations, our motivation for the one

corresponding to ψ(x) = x, given in Proposition 3, was that it be analogous

to the skew-normal distribution introduced by Azzalini (1985) and all similar

generalizations that have since been seen in the literature.
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Appendix

Proof of Proposition 1. Since f(x) ≥ 0 and π(x) ≥ 0, we need only show that

(3) sums or integrates to 1. We prove the result for continuous f with ξ = 0. The

proof for general ξ follows from the fact that g(x−ξ) is in the same location family

as g(x). Let A+ = {(x1, . . . , xn); x1 ≥ 0} andA− = {(x1, . . . , xn); x1 < 0}. Since

A+ ∪A− = R
n and A+ ∩A− = ∅,

∫

Rn

2f(x)π(x)dx =

∫

A+

2f(x)π(x)dx +

∫

A−

2f(x)π(x)dx

= 2

∫

A+

[f(x)π(x) + f(x)(1 − π(x))]dx

=

∫

Rn

f(x)dx = 1,

where we use the properties of f and π.
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Proof of Proposition 2. We show that the class of functions of the form

G(w(·)) is identical to the class of skewing functions. By the properties of G

and w, G(w(−s)) = G(−w(s)) = 1 −G(w(s)); so G(w(·)) is a skewing function.

Conversely, let H be a strictly increasing cdf of a random variable symmetric

around 0. We can write, for any skewing function π, π(s) = H(k(s)), where

k(s) ≡ H−1(π(s)). By the properties of H and π, H−1(π(−s)) = H−1(1−π(s)) =

−H−1(π(s)); so k(s) is an odd function.

Proof of Proposition 3. To prove existence, we can write

g(x) = 2
g(ξ + (x − ξ)) + g(ξ − (x − ξ))

2

g(ξ + (x − ξ))

g(ξ + (x− ξ)) + g(ξ − (x − ξ))
.

The required symmetric and skewed components are then

fξ(s) =
g(ξ + s) + g(ξ − s)

2
, (11)

πξ(s) =
g(ξ + s)

g(ξ + s) + g(ξ − s)
. (12)

Since g(ξ + s) and g(ξ − s) are members of the same location family as g, fξ(s)

is an average of pdfs and thus a pdf. It is also clearly symmetric around 0.

Since g is a pdf and always greater than zero, 0 ≤ πξ(s) ≤ 1. Straightforward

algebra verifies that πξ(−s) = 1 − πξ(s). Note here that πξ(s) is not defined if

g(ξ + s) + g(ξ − s) = 0. Since this implies fξ(s) = 0, without loss of generality

we can simply define πξ(s) ≡ 1/2 ≡ πξ(−s) if g(ξ + s) + g(ξ − s) = 0. In order

to prove uniqueness, let g(x) = 2fξ(x − ξ)πξ(x − ξ) for some ξ, where fξ is

symmetric around 0 and πξ is a skewing function. Straightforward algebra, using

the properties of fξ and πξ, can be used to verify that fξ and πξ must satisfy (11)

and (12).

Proof of Lemma 1. The first result is evident from (11) and (12). The second

and third are obtained by differentiating both sides of (11) and (12). The fourth

can be shown by taking two derivatives of (11).

Proof of Proposition 4. We prove the results that pertain to maxima.

1. Let g(m) ≥ g(x) ∀ x in some open ball of radius δ around m. From (11)

and (12), fm(0) = (g(m) + g(m))/2 ≥ (g(m + s) + g(m − s))/2 = fm(s),

∀s in an open ball of radius δ around 0. If g has a global maximum at

m, then δ = ∞. Suppose in addition that g monotonically decreases along

any ray in an open ball of radius δ and s1 > s0. Then by (11), fm(s0) =

(g(m + s0) + g(m − s0))/2 ≥ (g(m + s1) + g(m − s1))/2 = fm(s1) if s0 and

s1 have length ≤ δ. This proves the unimodality of fm.
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2. Let ξ ∈ N and let s ∈ Sξ. Then fξ(0) = g(ξ) = g((1/2)(ξ+s)+(1/2)(ξ−s)) ≥

(1/2)g(ξ + s) + (1/2)g(ξ − s) = fξ(s). Let s1 and s2 ∈ Sξ and let 0 ≤ λ ≤ 1.

Then using (11),

fξ(λs1+(1−λ)s2) =
g(ξ + λs1 + (1 − λ)s2) + g(ξ − λs1 − (1 − λ)s2)

2

=
g(λ(ξ+s1)+(1−λ)(ξ+s2))+g(λ(ξ−s1)+(1−λ)(ξ−s2))

2

≥
λg(ξ+s1)+(1−λ)g(ξ+s2)+λg(ξ−s1)+(1−λ)g(ξ−s2)

2
= λfξ(s1)+(1−λ)fξ(s2).

3. For all ξ ∈ N , fξ(0) = g(ξ) ≥ (g(ξ + s) + g(ξ − s))/2 = fξ(s) ∀ s in some

neighborhood of 0. By the same line of reasoning that is used to prove that

concave functions are continuous, one can use this fact to show that g is

continuous on N . We can now prove our result by contradiction. Suppose

g is not concave on N . Then, by the continuity of g and the definition of

concavity, there are points ξ1 and ξ2 in N such that for all ξ on the line

segment L connecting ξ1 and ξ2, g(ξ) ≤ GL(ξ), with strict inequality on

some interval, where GL is the linear function on L such that GL(ξ1) = g(ξ1)

and GL(ξ2) = g(ξ2). By the continuity of g, there exists a set of points that

minimize g(ξ)−GL(ξ) on L. For at least one such point ξ∗, fξ∗ cannot attain

a local maximum at 0. (The details of this last point have been left out for

brevity.) Here is our contradiction.

Proof of Proposition 5. The first two results can be verified from (12) using

straightforward algebra and the two properties of a skewing function. The third

follows directly from (10).

Proof of Proposition 6. Consider the characteristic function of τ(X − ξ),

h(t) = Eeiτ(X−ξ)t. We have

h(t) =

∫

R
n

2eiτ(x−ξ)tfξ(x− ξ)πξ(x − ξ)dx

=

∫

A+

2eiτ(y)tfξ(y)πξ(y)dy +

∫

A−

2eiτ(y)tfξ(y)πξ(y)dy (let y = x− ξ)

= 2

∫

A+

eiτ(y)tfξ(y)(πξ(y) + 1 − πξ(y))dy

=

∫

R
n

eiτ(y)tfξ(y)dy

does not depend on πξ, where A+ ={(y1, . . . , yn), y1≥0} and A−={(y1, . . . , yn),

y1 < 0}.
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