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Abstract: Linear models where the response is a function, but the predictors are

vectors are considered. A functional F test for choosing among two nested func-

tional linear models is developed. Its null distribution is derived and a convenient

approximation is presented. A simple way to test individual predictors is presented.

The test is applied to some data from Ergonomics and compared to some competing

tests. The ability to detect certain types of differences between models is explored.

A simulation study is conducted to assess the size and power of the tests.
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1. Introduction

The need to analyze functional observations now arises more often as tech-
nology for collecting data at high frequency becomes widespread. Here we are
interested in modeling functional response data yi(t), i = 1, . . . n, t ∈ τ , where τ

is a real interval. We wish to build a regression model to predict this response in
terms of a vector of predictors xi of length p. The model takes the familiar form

yi(t) = xT
i β(t) + εi(t).

We can estimate β(t) by least squares as β̂(t) = (XT X)−1XT Y (t), where X

is the usual n × p design matrix while Y (t) is a vector of functions of length
n formed from the yi(t)’s. Each εi(t) is an independent, mean zero, Gaussian
stochastic process with a covariance function r(s, t) that can be estimated by

r̂(s, t) =
1

n − p
(Y (s) − Xβ̂(s))T (Y (t) − Xβ̂(t)).

In practice, the functional data will be collected at a finite number of points
in τ . The model becomes

yi(tij) = xT
i β(tij) + εi(tij),
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where i = 1, . . . , n and j = 1, . . . , ni, which is a special case of the so called
varying-coefficient model in longitudinal analysis with time fixed covariate ma-
trix X. A recent review paper by Wu and Yu (2002) stressed the advantages
of a varying-coefficient model, the structural nonparametric regression model,
over traditional parametric models and completely nonparametric models. They
presented a class of nonparametric smoothing estimation and inference methods
for β(t) for the general varying-coefficient model with both time varying or time
fixed covariates. In contrast to the smoothing techniques they discussed, like
local polynomials, splines and basis function approximation, our pointwise least
square estimator β̂(t) = (XT X)−1XT Y (t) is a non-smoothed, unbiased estima-
tor of β(t). In order for this estimator to work well, it is desirable that data be
collected over a fixed grid points t1, . . . , tm for each subject i to ensure enough
data to estimate β(tj) with relatively small variance for each time point tj . This
type of data collection scheme is often called a regular design. If the data is
collected over a non-regular design, we may first get a smoothed representation
of yi(t), say ys

i (t). We then obtain an approximation of yi(t) over common grid
points tj, j = 1, . . . ,m, by ys(tj), which can be used to estimate β(tj). If the data
for each response curve yi(t) is already quite smooth and plentiful, the choice of
smoothing technique would have little impact on the approximation, ys

i (t). The
data for an ergonomics study that we present here is a good example of this type.

Wu and Yu (2002) also pointed out that, although pointwise or simultaneous
confidence bands for the coefficient curve β(t) have been constructed using either
asymptotic approximations or the “resampling-subject” bootstrap method, the
hypothesis testing problem of distinguishing a parametric submodel of β(t) re-
mains open in the presence of inter-subject covariance. In this article, we tackle
the simple, but important hypothesis testing problem of nested linear models for
varying-coefficient models with time fixed covariates.

When a regular design or a sufficiently large amount of data is available
to approximate the response curve adequately via smoothing, different finite
representations of the functional data are possible. One straightforward choice
would be to use an equally spaced grid of m points in τ . Another possibility is
to use a basis function representation

yi(t) ≈
m∑

j=1

yijBj(t),

where Bj(t), j = 1, . . . m, are the basis functions. Cubic B-splines are a common
choice although other choices are possible. Either way, we reduce the function
yi(t) to a vector of length m, yij, for each case i. We should prefer m to be large,
particularly when yi(t) is observed at high frequency with little noise.
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In this manner, we reduce the functional data analysis to multivariate data
analysis on the yij. We might hope that the well-established testing techniques
of multivariate regression could then be applied — see standard textbooks such
as Johnson and Wichern (2002) or Rencher (2002). Of course, a functional inter-
pretation of the results will be necessary, but we might wish to avoid developing
any new methodology.

Unfortunately, it is not so simple. For our now (finite) multivariate regression
model we have

y(n×m) = X(n×p)β(p×m) + ε(n×m),

where ε(n×m) = (εij) and Cov ((εi1, . . . εim)T ) = Σ. Suppose we compare a smaller
model ω which represents a linear subspace of a larger model Ω, where dim(Ω) = p

and dim(ω) = q.
The likelihood ratio test statistic is proportional to

log
|Σ̂Ω|
|Σ̂ω| =

m∑
j=1

log
λΩ

j

λω
j

,

where λΩ
j and λω

j are the decreasingly ordered eigenvalues of the empirical co-
variance matrices Σ̂Ω and Σ̂ω, respectively. We can see that terms log(λΩ

j /λω
j )

for large j can dominate this statistic. So this test statistic can easily become
overwhelmed by unimportant variations represented by the higher order eigen-
vectors. Ironically, if we are able to observe the data curve on a very fine grid
and no smoothing is involved, so that m may be larger than under the basis
expansion representation, the power of this test to detect important differences
in the models would tend to decrease.

The multivariate tests discussed by the standard textbooks (Johnson and
Wichern (2002) or Rencher (2002)) are Wilk’s Lambda (which is a function of the
likelihood ratio test statistic), the Lawley-Hotelling trace, the Bartlett-Nanda-
Pillai trace and Roy’s maximum root. Closer examination of these statistics
reveals that all suffer from the same defect.

One possible solution is to restrict m, but this choice will be difficult. We
prefer a statistic that is not sensitive to the choice of m and scales well as data
quality and frequency increases. Faraway (1997) proposed the difference in the
integrated residual sums of squares

rssω − rssΩ ≈ 1
m

n∑
i=1

m∑
j=1

(yi(tj) − ŷω
ij)

2 − 1
m

n∑
i=1

m∑
j=1

(yi(tj) − ŷΩ
ij)

2

=
n − p

m
trace(Σ̂ω − Σ̂Ω).
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Since the above test statistic is not scale free, it is more natural, by analogy to
the usual F tests employed in regression, to use

F =
(rssω − rssΩ)/(p − q)

rssΩ/(n − p)
≈ trace(Σ̂ω − Σ̂Ω)/(p − q)

trace(Σ̂Ω)/(n − p)
,

where rss =
∑n

i=1

∫
τ (yi(t) − ŷi(t))2dt.

We derive the null distribution of this functional F statistic and show how
it can be simply approximated. Our statistic is easily calculated and the p-value
is simple to compute. We compare it to alternative test statistics on both a real
example from Ergonomics and by simulation.

Our test statistic is more general than one proposed by Box (1954a, 1954b)
for one and two way (columnwisely correlated data) ANOVAs. Box’s statistic
can be used for multivariate data, but was discarded in favor of the well-known
tests mentioned above (see Rencher (2002) for a discussion). However, we show
that this forgotten statistic can be competitive in terms of balancing between
power and agreement with practical sense, i.e., not easily influenced by changes
of unimportant variation directions, for both functional and low dimensional
multivariate regression analysis.

Ramsay and Silverman (1997) provide a good introduction to functional data
analysis. They also propose computing the (pointwise) F statistic at each t but
do not investigate in detail how such a statistic can be used for testing. Fan
and Lin (1998) developed a basis function type approach for functional ANOVA
models, which limits the size of m to satisfy some asymptotic assumption. They
gave an adaptively optimal choice of m for realistic applications. Abramovich,
Antoniadis, Sapatinas and Vidakovic (2002) used a wavelet representation for
functional ANOVA models and used a test developed by Spokoiny (1996) that
avoids the dimensionality problem mentioned above, i.e., the problem of the test
statistic being dominated by the changes of unimportant variation directions.
They applied their test to EEG data which is far rougher than the data in the
ergonomics application that motivated the development of our test. The cu-
bic B-spline expansion method is perhaps more appropriate than most wavelet
expansions for smooth data applications. We also wish to compare general re-
gression models not just ANOVA models. Eubank (2000) considered tests for a
constant mean function using a cosine basis function approach.

Readers should be aware that the term “functional ANOVA” is also used in a
different context where a multivariate function is represented by a decomposition
in terms of functions of fewer variables. There is also substantial work where
functions of the predictors are estimated and tested. We restrict our interest to
a functional response in this article.
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We develop the theory behind our test statistic in Section 2 and follow it
with an application to real data from Ergonomics in Section 3 where we also try
out other test statistics. We also perform some simulation based comparisons.
Our conclusions are in Section 4.

2. Theory

We are interested in the following functional regression model:

y(n×1)(t) = X(n×p)β(p×1)(t) + ε(n×1)(t),

where ε(n×1)(t) = (ε1(t) . . . εn(t))T and each εi(t) is an independent realization
of a Gaussian stochastic process with mean zero and covariance function r(s, t),
for s, t ∈ τ , where τ is a real interval. If r(s, t) is strictly positive definite and∫
τ r(t, t)dt < ∞, the covariance function r(s, t) has an eigen-decomposition

r(s, t) =
∞∑
i=1

riφi(s)φi(t),

where r1 ≥ r2 ≥ · · · ≥ 0 are the eigenvalues and φi(t), i = 1, . . . ,∞, are eigen-
functions satisfying

∫
τ φi(t)2dt = 1 and

∫
τ φi(t)φj(t)dt = 0, i �= j (Pezzulli and

Silverman (1993)). The condition
∫
τ r(t, t)dt < ∞ implies that

∑∞
i=1 ri < ∞.

Usually, the decreasing sequence ri dies out quickly so that only the first few
terms are of any size.

The eigenfunctions φi(t), i = 1, . . . ,∞, form a complete sequence in L2

space, therefore for each error term we have εi(t) =
∑∞

j=1 eijφj(t), where eij =∫
τ εi(t)φj(t)dt.

Suppose εi(t), i = 1, . . . , n, are independent realizations of a Gaussian process
with mean zero and covariance function r(s, t). If r(s, t) is continuous on a
closed set τ , then it is a standard result in probability theory (Loeve (1977,
Corollary 2, p.151)) that the eigenexpansion coefficients eij , i = 1, . . . , n; j =
1, . . . ,∞, are independent normal random variables with mean 0 and variance rj

(the expansion of εi(t) is just the well-known Karhunen-Loeve expansion of the
Gaussian process).

Consider the comparison of two nested linear models, ω and Ω, where dim(Ω)
= p and dim(ω) = q. The model ω results from a linear restriction on the
parameters of Ω. Without loss of generality, we write the smaller model ω (null
hypothesis) as

H0 : Y (t) = X1α1(t) + ε(t) (1)

and the larger model Ω (alternative hypothesis) as

H1 : Y (t) = X1α1(t) + X2α2(t) + ε(t),
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where α1(t) = (β1(t), . . . , βq(t))T , α2(t) = (βq+1(t), . . . , βp(t))T and ω is obtained
from Ω by setting βi(t) = 0 for i = q + 1, . . . , p.

In this paper, we propose a new test statistic, similar to the ordinary F

statistic, as follows:

F =
(rssω − rssΩ)/(p − q)

rssΩ/(n − p)
,

where rss =
∑n

i=1

∫
τ (yi(t) − ŷi(t))2dt.

Theorem 1. Assume the error process εi(t) is Gaussian with continuous covari-
ance function r(s, t) on a closed interval τ , then under (1), the test statistic F is
distributed as ∑∞

i=1 riχ
2
(p−q)/(p − q)∑∞

i=1 riχ2
(n−p)/(n − p)

,

where ri is the ith ordered eigenvalue of r(s, t) and the χ2 random variables are
independent.

Proof. Following the discussion in the beginning of this section, for each re-
sponse curve yi(t), coefficient function βi(t) and error process εi(t), we have
yi(t) =

∑∞
j=1 yijφj(t), βi(t) =

∑∞
j=1 bijφj(t) and εi(t) =

∑∞
j=1 eijφj(t), where

yij =
∫
τ yi(t)φj(t)dt, bij =

∫
τ βi(t)φj(t)dt and eij =

∫
τ εi(t)φj(t)dt.

Now we may re-express the model Y (t) = Xβ(t) + ε(t) as:


y11 y12 . . .
...

...
...

yn1 yn2 . . .







φ1(t)
φ2(t)

...




=




x11 . . . x1p
...

...
...

xn1 . . . xnp







b11 b12 . . .
...

...
...

bp1 bp2 . . .







φ1(t)
φ2(t)

...


 +




e11 e12 . . .
...

...
...

en1 en2 . . .







φ1(t)
φ2(t)

...


 .

Let Y.k, β.k and e.k denote the vectors (y1k, . . . , ynk)T , (b1k, . . . , bpk)T and (e1k, . . .,
enk)T , respectively. Then the model can be written as Y.k = Xβ.k + e.k, for
k = 1, . . . ,∞. We also get the predicted value ŷi(t) =

∑∞
j=1 ŷijφj(t) and

the estimated coefficient β̂i(t) =
∑∞

j=1 b̂ijφj(t), where ŷij =
∫
τ ŷi(t)φj(t)dt and

b̂ij =
∫
τ β̂i(t)φj(t)dt. Let Ŷ.k and β̂.k denote the vector (ŷ1k, . . . , ŷnk)T and

(b̂1k, . . . , b̂pk)T . Since in the L2 space the expansion coefficients of the basis are
unique, it is easy to show that β̂.k = (XT X)−1XT Y.k and Ŷ.k = PXY.k, where
PX is the projection matrix X(XT X)−1XT . The residual sum of squares is

rss=
n∑

i=1

∫
(yi(t)−ŷi(t))2dt=

n∑
i=1

∞∑
k=1

(yik−ŷik)2 =
∞∑

k=1

n∑
i=1

(yik−ŷik)2 =
∞∑

k=1

Y T
.k P⊥

X Y.k,
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where P⊥
X = I − PX .

Note that, under (1), Y.k = X1β.k + e.k; thus we have

rssω =
∞∑

k=1

Y T
.k P⊥

X1
Y.k =

∞∑
k=1

(X1β.k + e.k)T P⊥
X1

(X1β.k + e.k) =
∞∑

k=1

eT
.kP

⊥
X1

e.k,

rssΩ =
∞∑

k=1

Y T
.k P⊥

(X1,X2)
Y.k =

∞∑
k=1

(X1β.k + e.k)T P⊥
(X1,X2)

(X1β.k + e.k)

=
∞∑

k=1

eT
.kP

⊥
(X1,X2)

e.k.

Therefore,

F =
(rssω − rssΩ)/(p − q)

rssΩ/(n − p)
=

∑∞
k=1 eT

.k(P
⊥
X1

− P⊥
(X1,X2)

)e.k/(p − q)∑∞
k=1 eT

.kP
⊥
(X1,X2)

e.k/(n − p)

=

∑∞
k=1 eT

.kPP⊥
X1

X2
e.k/(p − q)∑∞

k=1 eT
.kP

⊥
(X1,X2)

e.k/(n − p)

is distributed as (
∑∞

k=1 rkχ
2
(p−q)/(p − q))/(

∑∞
k=1 rkχ

2
(n−p)/(n − p)) since the eij

are independent normal random variables with mean 0 and variance rj.

Definition 1. (Functional F distribution) The null distribution of the F test
statistic is called the functional F distribution with coefficients {ri, i = 1, . . . ,∞}
and degrees of freedom (p − q, n − p).

Remark 1. In practice, the response y(t) is often approximated by a vector,
the function evaluated on a grid of m points tj , j = 1, . . . ,m. The regression
model restricted to these m grid points becomes a standard multivariate multiple
regression linear model:

y(n×m) = X(n×p)β(p×m) + ε(n×m),

where y = (yij = yi(tj)), β = (βij = βi(tj)), ε = (εij = εi(tj)), E(εi.) = 0(m×1)

and Cov (εi.) = Σ = (r(ti, tj))m×m. Let rssm =
∑n

i=1

∑m
j=1(1/m)(yi(tj) −

ŷi(tj))2. We obtain the approximation of the functional F test statistic as
Fm = ((rssm

ω − rssm
Ω )/(p − q))/(rssm

Ω /(n − p)). Using the technique in the proof
of Theorem 1 (replacing the covariance function by the covariance matrix, the
eigenfunctions by eigenvectors and the infinite sum by a finite sum), it is easy to
show that Fm is distributed as (

∑m
k=1r

m
k χ2

(p−q)/(p−q))/(
∑m

k=1r
m
k χ2

(n−p)/(n−p)),
where rm

k , k = 1, . . . ,m, is the kth ordered eigenvalue of the covariance matrix
Σ = (r(ti, tj)) and all the χ2 random variables are independent of each other.
Theorem 1 provides us the exact distribution of the functional F test statistic
F , which is the almost sure limit of Fm as m → ∞.
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Theorem 1 and the above remark ensure our functional F test applies to
(i) the domain of t is continuous when each response is a function, and (ii) the
domain of t is discrete when each response is a vector. Usually, the eigenvalues
ri, i = 1, . . . ,∞ (or rm

i , i = 1, . . . ,m), used in the functional F distribution are
unknown, which forms an obstacle to the application of our functional F test
procedure.

When
∑∞

i=1 ri < ∞, applying the idea of Satterthwaite’s (1941) approxima-
tion, we can use cχ2

f to approximate
∑∞

i=1 riχ
2
m, where c and f are determined

by matching the first two centered moments, as in the two equations

cf =
∞∑
i=1

rim, 2c2f = 2
∞∑
i=1

r2
i m.

Therefore,

c =
∑∞

i=1 r2
i∑∞

i=1 ri
, f =

[
(
∑k

i=1 ri)2∑k
i=1 r2

i

m

]
,

where [x] denotes the closest integer to x. Now we can approximate (
∑∞

i=1riχ
2
(p−q))

/(
∑∞

i=1 riχ
2
(n−p)) by (c1χ

2
f1

)/(c2χ
2
f2

), where

c1 = c2 =
∑∞

i=1 r2
i∑∞

i=1 ri
, f1 =

[
(
∑∞

i=1 ri)2∑∞
i=1 r2

i

(p − q)

]
, f2 =

[
(
∑∞

i=1 ri)2∑∞
i=1 r2

i

(n − p)

]
.

Hence, the functional F distribution (
∑∞

i=1 riχ
2
(p−q)/(p − q))/(

∑∞
i=1 riχ

2
(n−p)/(n

−p)) is approximated by (χ2
f1

/f1)/(χ2
f2

/f2), which is an ordinary F distribution
with degrees of freedom f1 and f2.

Definition 2. (Degrees-of-freedom-adjustment-factor) The value (
∑∞

i=1 ri)2/∑∞
i=1 r2

i is called the degrees-of-freedom-adjustment-factor, where ri is the ith
eigenvalue of the covariance function r(s, t).

In practice, when we only observe yi(t) over the grid points tj, j = 1, . . . ,m,

the adjustment factor (
∑∞

i=1 ri)2/
∑∞

i=1 r2
i can be estimated by trace(E)2/ trace

(E2), where E = Σ̂Ω is the empirical covariance matrix computed from the full
model Ω. The proof of consistency of this estimator can be found in Dauxois,
Pousse and Romain (1982). One may worry that a very large grid size m is
needed to make this estimator work. Actually, from Remark 1 of Theorem 1 we
see that for each fixed grid size m, the test statistic F approximated on these grid
points becomes Fm, which is exactly distributed as a functional F distribution
with coefficients (rm

i , i = 1, . . . m) where rm
i is the ith ordered eigenvalue of

the covariance matrix Σ = (r(ti, tj)). So as long as we can approximate rm
i

well using the ith ordered eigenvalue of the empirical covariance matrix E, it is



AN F TEST FOR LINEAR MODELS WITH FUNCTIONAL RESPONSES 1247

fine to use this approximate test with true degrees-of-freedom-adjustment-factor
(
∑m

i=1 rm
i )2/

∑m
i=1 (rm

i )2. To get a good estimation of rm
i , it is better that the

degree of freedom n − p used in the estimation be sufficiently large, say no less
than 30.

The idea of the functional F distribution and its Satterthwaite’s approxima-
tion are not completely new in the literature. Box (1954b) derived the null distri-
bution of the F statistic in the two-way ANOVA (colomnwisely correlated data)
as a special case of our functional F distribution and Satterthwaite’s approxi-
mation of the null distribution is also recommended. (Actually, the distribution
of the between columns test criteria in Box (1954b) can be easily derived from
Remark 1 with p = 1 and q = 0.) Interested readers may refer to Table I and
II in Box (1954a) for a simulation study of the accuracy of Satterthwaite’s ap-
proximation of linear combinations of independent chi-squared random variables
and their ratio. Box (1954a) showed that the Satterthwaite’s approximation is
fairly accurate over a wide range of linear combination coefficients and degrees
of freedom of the chi-squared random variables, and may be usefully employed
to supplement the accurate (but less suggestive) exact methods. In the next
section we also use simulation to show that the approximation of the functional
F distribution produces a fairly accurate size for the test.

After fitting the full model

H1 : Y (t) = Xβ(t) + ε(t), (2)

we may wonder how significant each covariate is in predicting Y (t), i.e., we want
to test

H0i : βi(t) = 0, i = 1, . . . , p, (3)

against the full model. For each i, first we can fit the null model, which is the
full model dropping the ith covariate. Then we may use the functional F test
statistic

Fi =
rss0i − rss1

rss1/(n − p)
to make a decision whether or not to accept the null model. It can be very tedious
to do this for all i = 1, . . . , p, since we need to fit a different null model each time.
Fortunately the following theorem provides us an easy way of computing the test
statistics Fi.

Theorem 2. For i = 1, . . . , p, Fi =
(n−p)

∫
β̂2

i (t)dt

rss1 (XT X)−1
ii

.

Proof. Let X0i and X denote the model matrices for H0i and H1, respectively.
Following the notation in the proof of Theorem 1, we have

rss0i − rss1

rss1
=

∑∞
k=1 Y T

.k P⊥
X0i

Y.k − ∑∞
k=1 Y T

.k P⊥
X Y.k

rss1
.
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It is known in scalar type regression theory (Weisberg (1985)) that

Y T
.k P⊥

X0i
Y.k − Y T

.k P⊥
X Y.k =

b̂2
ik

(XT X)−1
ii

.

Therefore,

Fi =
rss0i − rss1

rss1/(n − p)
=

(n − p)
∑∞

k=1 b̂2
ik

rss1(XT X)−1
ii

=
(n − p)

∫
β̂2

i (t)dt

rss1(XT X)−1
ii

.

According to Theorem 2, the functional F test statistic Fi only involves
quantities that can be calculated directly from fitting the full model (2). Thus
we reduce the complexity of computation from fitting p + 1 models to fitting
one model only. We reject (3) if Fi > F (1−α)

(r;(1,n−p)), where F (1−α)
(r;(1,n−p)) denotes

the 1 − α percentile of the functional F distribution with degrees of freedom
1 and n − p. Or, using the approximation of the null distribution, we re-
ject (3) if Fi > F (1−α)(f1, f2), where f1 = [trace(E)2/trace(E2)], f2 = [(n −
p) trace(E)2/trace(E2)], and E is the empirical covariance matrix of the error
process obtained from (2).

3. Example

3.1. The ergonomics data

As part of a project to predict the motion of drivers of automobiles, re-
searchers at the Center for Ergonomics at the University of Michigan collected
data on the motion of a single subject to 20 locations within a test car. Amongst
other measures, the angle formed at the right elbow between the upper and lower
arm was measured using motion capture equipment. For each reach, there were
three replicates. The locations were spread around the glove compartment, the
gear shift, the central instrument panel and an overhead panel.

The data recorded for each motion vary in time length. However, since the
objective of this study is only to model the shape of the motion, not the speed
at which it occurred, for each response curve y(t) we rescaled t to vary over [0,1].
For a given motion, y(t) is observed on an equally spaced grid of points, but the
number of such points varies from observation to observation. For each motion,
the data was smoothly interpolated and expressed on a grid of 20 points. The
right elbow angle curves for one individual are shown in Figure 1. One of the
motions to the left rear shifter location is clearly wrong since the subject changed
his mind about the target location in mid-reach, so we discard this observation
in the rest of the analysis. More details may be found in Faraway (1997). The
data is available from the website of the second author.
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Figure 1. Smoothed right elbow angle curves.

3.2. Comparison of four testing procedures

The main purpose of this experiment is to find a model for predicting the
motion given the coordinates (cx, cy , cz) of the target, where x represents the left
to right direction, y represents the close to far direction, and z represents the
down to up direction. A linear model

y(t) = β0(t) + cxβx(t) + cyβy(t) + czβz(t) + ε(t)

and a quadratic model

y(t) = β0(t) + cxβx(t) + cyβy(t) + czβz(t) + cxcyβxy(t) + cyczβyz(t) + cxczβxz(t)

+c2
xβx2(t) + c2

yβy2(t) + c2
zβz2(t) + ε(t)

were fit to the data and compared with the one-way ANOVA model

y(t) = βk(t) + ε(t),

where k = 1, . . . , 20 indicates the target. Comparing the linear or quadratic
models to the ANOVA model represents a lack of fit test. Figure 2 presents the
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fitted curves of the ANOVA model, the linear model and the quadratic model. It
is clear that the quadratic fit is much better than the linear fit, which becomes
worse approaching the end of each reach. To make formal inferential comparisons,
we use four different testing procedures: the bootstrap methods as described in
Faraway (1997), our functional F test, the traditional multivariate log likelihood
ratio test on raw data and a test based on a B-spline basis function representation.
In the B-spline method, we represent each curve as a linear combination of eight
B-splines and then perform the usual multivariate test on the coefficients of this
representation. The p-values for these tests are shown in Table 1.
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Figure 2. Predicted right elbow angle curves from the ANOVA model (solid
line), the quadratic model (dotted line) and the linear model (dashed line).

Table 1. Comparison of testing procedures. P-values shown.

Bootstrap Functional F LRT B-Spline
Linear vs. ANOVA 0.00 0.00 0.00 0.00

Quadratic vs. ANOVA 0.26 0.53 0.008 0.018
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We see that the linear model is clearly rejected as an acceptable fit to the
data by all four procedures but there is a difference of opinion regarding the
quadratic model. Should we accept the quadratic model or not? In Figure 3, we
show the first four eigenvectors and eigenvalues of the residuals of the ANOVA,
quadratic and linear models. We find that the shape of the four eigenvectors
are very similar for the ANOVA and quadratic models while the linear model
has a distinguished first eigenvector and eigenvalue from the other two models.
It is easy to explain why the linear model has been rejected by all tests. The
quadratic model has been rejected by the traditional multivariate log likelihood
ratio test, since the second, third, fourth and and even some smaller eigenvalues
of the quadratic model are all about two times those of the ANOVA model. But,
since the dominating first eigenvalue of the quadratic model is only 10 percent
higher than that of the ANOVA model, the functional F test statistic, which
is equivalent to the ratio of the sum of the eigenvalues from the quadratic and
ANOVA models, would not be large enough to reject the quadratic model. Here
we would prefer to accept the quadratic model because it captures the size of the
dominating variation. After all, a model should capture the main features of the
data and not be rejected for unimportant reasons.
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Ramsay and Silverman (1997) suggested a plot of the pointwise F statistics
over the grid points. This is shown in Figure 4 together with the critical values
at 0.05 level (Bonferroni corrected or not). We see that for the comparison of
the linear v.s. the ANOVA model, almost half of the F test statistics are greater
than the critical values, which naturally leads to the rejection of the linear model.
However, for the comparison of the quadratic v.s. the ANOVA model, most of
the test statistics are below the uncorrected critical value and all of them are
below the Bonferroni corrected critical value, which also suggests there is not
enough evidence to reject the quadratic model.
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Figure 4. Pointwise F statistics with critical values at 0.05 level (Bonferroni
corrected or not).

3.3. Simulation study of size and power

To study the size and power of the functional F test together with the mul-
tivariate log likelihood ratio test and the B-spline based test, we ran simulation
studies under similar conditions to our ergonomics data. Response curves were
simulated using the weighted average of the predicted curves from the quadratic
model and the ANOVA model plus the simulated error process with two types
of covariance structure. The weight runs from 0 (which produces the quadratic
fit) to 1 (which produces the ANOVA fit) in increments of 0.05. At each weight
we simulated 1000 sets of response curves and applied the functional F test, the
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multivariate likelihood ratio test and the B-spline test, respectively, at signifi-
cance level 0.05, to compare the quadratic model and the ANOVA model. The
resulting probability of rejecting the quadratic model is plotted in Figure 5. The
top plot shows the result of using the error process with the covariance matrix
set to be the empirical covariance matrix from the ANOVA model of the ob-
served data, and the bottom plot shows the result with a covariance matrix of
the form (10×0.8|i−j|). When the weight is zero, the quadratic model is the true
model so the probability of rejection is the size of the test. For all three tests
the nominal significance level is 0.05 but, because of various approximations, we
expect some error. For the first error structure, the estimated size for the func-
tional F test, the multivariate log likelihood ratio test and the B-spline test are
0.056, 0.087, 0.071, respectively. For the second error structure, the estimated
size for the three tests are 0.064, 0.087, 0.066, respectively. We see that under
both conditions the functional F test has the most accurate size.
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covariance structure II = (10 × 0.8|i−j|).
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When the weight is greater than 0, the true model is no longer the quadratic
model, so the probability of rejecting the quadratic model becomes the power of
the test. For the first error structure, the multivariate log likelihood ratio test is
always the most powerful one, the B-spline test is the second and the functional
F test is the least powerful. So the test result of non-rejection of the quadratic
model based on the functional F test may be caused by lack of power. For the
second error structure, when weight is less than 0.35, all three tests have similar
power; when the weight is greater than 0.35, the functional F test is the most
powerful, the B-spline test is the second and the multivariate log likelihood ratio
test is the least powerful.

We see that the covariance structure of the error process has a big influence of
the power of the tests. For the first error structure, the ordered eigenvalues of the
covariance matrix are (182.6, 44.1, 11.3, 6.3, . . .). For the second error structure
the ordered eigenvalues of the covariance matrix are (72.3, 43.2, 24.5, 14.7, . . .),
which decrease at a much slower rate than the eigenvalues of the first error struc-
ture. Actually, the size of the degrees-of-freedom-adjustment-factor (

∑∞
i=1 ri)2/∑∞

i=1 r2
i , where ri is the ith ordered eigenvalue of the error covariance matrix, is

determined not by the actual size of the eigenvalues but by the decreasing rate
of the eigenvalue sequence. The faster the eigenvalues decrease the smaller the
degrees-of-freedom-adjustment-factor would be. A conjecture we have based on
this fact is that the faster the eigenvalues decrease the smaller the power of the
functional F test tends to be. Our simulation studies have shown that, when
error covariance structure is proportional to (q|i−j|) where q ≤ 0.9 and the grid
size is 20, the functional F test would be the most powerful test among the three
tests we have considered. When the grid size is larger than 20, q can be even
larger and still the functional F will be the most powerful among the three tests.

In Figure 6, we plot one set of the response curves under the second type of
error covariance structure when the weight is 0. We see that the curves are much
rougher than our observed data. For such within-curve covariance structure, we
would clearly recommend the functional F test since our simulation studies have
shown that the functional F test has the highest power among all the four tests
considered. In contrast, if the error covariance structure is like the first type,
where the eigenvalues of the covariance matrix decrease quickly, the likelihood
ratio test is more powerful than the function F test. But, as discussed in the
introduction, the likelihood ratio test statistic may be influenced by the unim-
portant directions of variation (smaller eigenvalues) and so produce statistically
significant, but practically less meaningful, test results.
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Figure 6. Simulated right elbow angle curves from the quadratic model with
covariance structure II=(10 × 0.8|i−j|).
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The B-spline test is an improvement over the traditional multivariate tests.
However it may not be possible to avoid the influence of unimportant directions,
depending on how many basis functions are chosen to represent the raw data. In
Figure 7, we plot the raw data v.s. the 8-basis B-spline expansion curve under
both error covariance structures. We see that for the first error structure, the
8-basis B-spline expansion curve represents the raw data perfectly, while for the
second error structure it is too smooth to capture all the features of the raw
data. In fact, we have to employ a very large number of bases to fit the raw
data closely in the second situation, which would make the B-spline method not
much different from the traditional multivariate tests. Of course, we could use
fewer basis functions solely for the purpose of making the test, but it is difficult
to know how many. Our functional F test avoids this dilemma.

4. Conclusion

The advantages of the functional F test are that it is simply computed and
does not require the user to be careful about the grid size or the number of
basis functions required. The null distribution of the test statistics is easily
approximated and approximate p-values are simple to compute. Depending on
the data, it may or may not be the most powerful test for comparing two nested
functional linear models, but we claim that it examines important rather than
trivial differences between models. Furthermore, we see that our test can compare
favorably with other well known tests such as Wilk’s Lambda, even for non-
functional multivariate data.
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