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Abstract: Statisticians routinely plot ordered observations against expected values

to validate a model using a random sample. In fact, it is possible to construct a

probability plot for a random sample from any continuous distribution function,

and this is accommodated by the probability integral transform which facilitates

a uniform probability plot of the ordered transformed observations against their

expected values. Random variation in the plots is sometimes assessed using point-

wise concentration bands. There are two problems with these plots. First, under a

given distribution, certain points are much more variable than others. For exam-

ple, when the distribution is normal, the points nearest the middle of the plot have

the smallest variance. Second, the order statistics used in the construction of the

plots are correlated. Both problems make the interpretation of the plot difficult.

Pointwise concentration bands are, however, inadequate because there will be de-

partures from the expected 45◦ straight line not only from sampling variation but

also from the correlation introduced by ordering the observations. To account for

this correlation, we construct simultaneous concentration bands which have exact

coverage probability. A comparison is made with the pointwise and Bonferroni

concentration bands. An empirical study shows that it is beneficial to construct

our exact simultaneous concentration bands, and reasonable departures from the

underlying distribution assumption can be detected.

Key words and phrases: Bisection method, correlation, order statistics, probability

integral transform.

1. Introduction

It is standard statistical practice to plot ordered values against expected
values for random samples (i.e., independent and identically distributed ran-
dom variables) from continuous distributions to assess a hypothesized probability
model. Random variation in the plots is sometimes assessed using pointwise con-
centration bands. However, ordering of the observations introduces a correlation
that is ignored in the pointwise concentration bands. Our task is to construct
simultaneous concentration bands by incorporating the correlation. This is ac-
complished by constructing intervals (with desirable properties) that make up
the bands. Our research was motivated when we attempted to fit models to
body mass index and bone mineral density in the National Health and Nutrition
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Examination Survey, and to mortality for chronic obstructive pulmonary dis-
ease in the National Vital Statistics Program at the National Center for Health
Statistics.

Let X1, . . . ,Xn be a random sample of size n from any continuous distri-
bution function and let X(i) represent the ith ordered observation (i.e., X(1) ≤
X(2) ≤ · · ·X(i) ≤ · · · ≤ X(n)). Suppose E(X(i)) exists. Then we call a plot of the
ith ordered observation versus its expected value E(X(i)) a probability plot. If
the Xi are normally distributed, the plot is called a normal probability plot, and
if the Xi are uniformly distributed, the plot is called a uniform probability plot.
If the observations follow the prescribed distribution model, the plot is expected
to be a 45◦ straight line. Then the 100(1 − α)% pointwise concentration bands,
0 < α < 1 (e.g., α = 0.05 for 95%), are pointwise 100(1−α)% confidence intervals
at each observation with the lower and upper end points of the intervals joined
to form an upper and a lower band, respectively. Pointwise concentration bands
can explain fluctuations arising from random variations.

Let F (x) denote the cumulative distribution function (cdf) of a continuous
random variable X, and let X1, . . . ,Xn be a random sample from F (·). Letting
Ui = F (Xi), then Ui, i = 1, . . . , n, are a uniform random sample from [0, 1]. Let-
ting U(i) be the ith order statistic, a plot of E(U(i)) versus the ordered observed
values is a uniform probability plot. It is noteworthy that E(U(i)) always exists.
Thus, the probability integral transform permits construction of concentration
bands for any continuous random sample.

There are two problems with these plots. First, under the given distribution,
certain points are much more variable than others. For example, when F is
normal, the points nearest the middle of the plot have the smallest variance, and
when F is uniform, the points nearest the middle of the plot have the largest
variance. Second, the value of the order statistics used in the construction of the
plots are correlated. Both problems make the interpretation of the plot difficult.
Throughout, we make the standard assumption that the original observations
are independent and identically distributed. Using a stabilized probability plot
via the arc sine transformation of the U(i), Michael (1983) presented an elegant
solution to the first problem. The second problem is largely unresolved and we
address it in this paper.

Barnett (1975) discussed the choice of plotting positions for continuous ran-
dom samples, but he did not study pointwise concentration bands. Quesenberry
and Hales (1980) did study them for uniform probability plots. For the nor-
mal probability plot, Dempster and Ryan (1985) and Lange and Ryan (1989)
used weighted normal plots for random effects models with pointwise bands.
Others have considered tests for normality (e.g., Shapiro and Wilk (1965), Fil-
liben (1975)). More recently Brown and Hettmansperger (1996) discussed normal
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scores, normal plots and tests for normality, but they did not incorporate bands
in their probability plots. Others have discussed tests for uniformity (e.g., Que-
senberry and Miller (1977), Dudewicz and Meulen (1981)). But these works do
not address the issue of correlation introduced by the ordering of the observa-
tions. Because of this correlation, pointwise bands are too narrow and, therefore,
conservative.

It is of interest to consider simultaneous concentration bands for probability
plots. Then, the exact 100(1 − α)% concentration bands contain all the obser-
vations with probability 1 − α. By using the Bonferroni inequality, a simple
adjustment to the pointwise bands can produce simultaneous bands, but Bonfer-
roni bands can be too wide and hence not so useful. Thus, a method to construct
simultaneous concentration bands is desirable for model validation.

In an attempt to improve the half-normal probability plot, Zahn (1975 a,b)
constructed individual α-level critical values for each of the four largest contrasts
(absolute values) in a 24 factorial experiment under the null hypothesis that the
contrast means are all zero in his Problem G. These critical values are obtained
by controlling the probability of a non-zero family (simultaneous) error rate, and
they are smaller than the ones originally proposed by Daniel (1959). Then he
joined these critical values by a line to yield a guardrail. Our method can be
used to construct 95% simultaneous confidence bands for the absolute values
for all the contrasts under Problem G. The issue here is just to construct the
confidence bands for a random sample drawn from a half-normal probability
density function, and this falls under our framework, at least when the error
variance is known. (Our method can be extended to cover the case in which the
error variance is unknown.) Thus, our method goes beyond that of Zahn (1975
a,b).

In Section 2 we present the theory and method. In Section 3 we use a
simulation study to discuss departures from an assumed underlying distribution.
There are concluding remarks in Section 4.

2. Theory and Method for Concentration Bands

An important observation (see David (1981) for further details) helps to
reduce the computation in our method. Let U1, U2, . . . , Un, Un+1, . . . , U2n be a
random sample of size 2n from a uniform distribution on [0, 1], and let U(1) ≤
U(2) ≤ · · · ≤ U(n) ≤ U(n+1) ≤ · · · ≤ U(2n) be the corresponding order statistics.

(For an odd number sample size the results are similar). Then (U(1), . . . , U(n))
d=

(1−U(2n), . . . , 1−U(n+1)), where d= means equal in distribution. We call this the
reflection property for order statistics from a uniform sample and refer to U(n)

and U(n+1) as reflection points. It follows that Pr(a ≤ U(k) ≤ b) = Pr(1 − b ≤
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U(2n−k+1) ≤ 1 − a), 0 ≤ a < b ≤ 1. This is particularly useful because it states
that the 100(1−α) % point of U(k), which we denote by Cα, is the 100α% point,
which is 1 − Cα, of U(2n−k+1).

We introduce the 100(1−α)% pointwise and Bonferroni concentration bands
in Section 2.1 and, in Section 2.2, we show how to construct the exact 100(1−α)%
simultaneous concentration bands. In Section 2.3 we discuss three special cases.

2.1. Pointwise concentration bands

Let Fk(x) denote the cumulative distribution function (cdf) of the kth order
statistic in [0, 1] and fk(x) the corresponding probability density function (pdf).
Then the 100(1 − α)% highest probability density (HPD) interval (shortest for
its probability content) for U(k) is obtained by solving simultaneously the two
equations,

Fk(b) − Fk(a) = 1 − α and fk(b) = fk(a) (1)

(e.g., see Press (1989, pp.30-32)). We have a preference for equal ordinate inter-
vals over equal tail intervals because equal ordinate intervals are HPD intervals
for unimodal probability densities.

The equations (1) can be easily solved. For, letting F−1
k (x) be the inverse

cdf, we only need to solve

fk(a) − fk{F−1
k (Fk(a) + 1 − α)} = 0 such that 0 ≤ a ≤ F−1

k (α). (2)

The simple bisection method cannot fail in (2). Note that k = 1 and k = 2n are
not special cases of (2), because for k = 1 the HPD interval is (0, 1−α1/2n) and,
by the reflection property, for k = 2n the HPD interval is (α1/2n, 1).

The 100(1 − α)% pointwise concentration bands for a random sample is the
region

⋂2n
k=1 Ak where

Ak =

{
(0, b1), k = 1

(ak, bk), k = 2, . . . , n,

and, by the reflection property,

Ak =

{
(1 − b2n−k+1, 1 − a2n−k+1), k = n + 1, . . . , 2n − 1

(1 − b1, 1), k = 2n,

where Pr(U(k) ∈ Ak) = 1 − α, and each Ak, k = 2, . . . , n, is obtained by (2).
Thus, we only need to construct the intervals for the n smallest or largest random
variables. We call these pointwise concentration bands QH concentration bands.

The Bonferroni bands, denoted by BO, are simply obtained by setting
Pr(U(k) ∈ Ak) = 1−α/2n, k = 2, . . . , n. In this case Pr(

⋂2n
k=1 U(k) ∈ Ak) ≥ 1−α
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but, for the pointwise QH bands, Pr(
⋂2n

k=1 U(k) ∈ Ak) < 1 − α. Thus while the
QH bands are too narrow, the BO bands can be too wide. There is evidence that
inference based on the Bonferroni Inequality can be very accurate. For example,
see Miller (1981, p.254) and Cook and Prescott (1981).

2.2. Exact simultaneous concentration bands

Motivated by the BO concentration bands, we find (ak, bk), k = 1, . . . , n such
that

Fk−1(bk−1) − Fk−1(ak−1) = Fk(bk) − Fk(ak), (3)

fk(ak) = fk(bk), (4)

k = 2, . . . , n, and

Pr
{ n⋂

k=1

ak < U(k) < bk,
2n⋂

k=n+1

1 − b2n−k+1 < U(k) < 1 − a2n−k+1

}
= 1 − α. (5)

Note that the concentration bands consist of pointwise intervals (a) with highest
probability density by (4) and (b) the 2n intervals have the same probability
content by (3). The second term in the probability at (5) follows from the
reflection property. Finally note that for the HPD intervals a1 = 0, and that (3)
and (4) together imply that ak and bk are strictly increasing in k.

It follows from (3) that bk = F−1
k {F1(b1) + Fk(ak)} and 0 ≤ Fk(ak) ≤ 1 −

F1(b1), k = 2, . . . , n. Also, by construction, F1(b1) ≥ 1 − α. Thus, one has

F−1
1 (1 − α) ≤ b1 ≤ F−1

1

{
1 − max

k=2,...,n
Fk(ak)

}
, (6)

0 ≤ ak ≤ F−1
k (α). (7)

Note that maxk=2,...,n Fk(ak) is not necessarily Fn(an) (but for equal tail intervals
Fk(ak) = α/2, k = 2, . . . , n).

Then the problem is to solve the equations

Pr{0 < U(1) < b1,
n⋂

k=2

ak < U(k) < F−1
k {F1(b1) + Fk(ak)},

2n−1⋂
k=n+1

1 − F−1
2n−k+1{F1(b1) + F2n−k+1(a2n−k+1)} ≤ U(k) ≤ 1 − a2n−k−1,

1 − b1 ≤ U2n ≤ 1} = 1 − α, (8)

fk(ak) = fk{F−1
k (F1(b1) + Fk(ak))}, (9)

subject to (6) and (7).
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We show that there is a unique solution {b1, . . . , an} that solves (8) and (9)
subject to (6) and (7). First note that if b1 = F−1

1 (1 − α), then the probability
content of the simultaneous concentration bands is less than 1 − α since all the
intervals have the same probability content. Also, for every fixed {a2, . . . , an},
the probability content increases to 1 as b1 increases to 1. Thus, for every fixed
{a2, . . . , ak}, there is a unique solution for b1 in (8). Then, since the probability
density functions of the U(k) are all unimodal, there is a unique solution for
{a2, . . . , an} for each b1 in (9).

Henceforth, we denote the exact simultaneous concentration bands by NC.
By construction, because all intervals are HPD with equal probability content, the
widths of the concentration bands in increasing order are QH, NC and BO, with
QH bands within NC bands, and NC bands within BO bands. (See Figure 1.)

Note that there are n unknown quantities in (8) and (9). In practice to solve
for them, we start with b1 obtained from the BO bands and, using the bisection
method, we solve the n − 1 equations in (9) for ak as in (2). Then, again using
the bisection method, we solve (8) for b1 after substituting the values obtained
for {a2, . . . , an}.

It is easy to obtain the probability in (8) at each step of the bisection method.
We obtain a sample of M values of the vector U(1) ≤ U(k) ≤ · · · ≤ U(n) ≤ · · · ≤
U(2n). Each of these is simply the order statistics from a random sample of 2n

values from a uniform distribution in (0, 1). We simply drew V1, . . . , V2n+1
iid∼

exp (1) and took U(i) =
∑i

j=1 Vj/
∑2n+1

j=1 Vj , i = 1, . . . , 2n.

Then, we count the proportion p̂ of the M iterates with 0≤U(1)≤b1,
⋂n

k=1 ak

≤ U(k) ≤ F−1
k {F1(b1) + Fk(ak)}, ⋂2n−1

k=n+1 1 − F−1
2n−k+1{F1(b1) + Fk(ak)} ≤ U(k) ≤

1− a2n−k+1, 1 − b1 ≤ U2n ≤ 1. We take M = 10, 000 for good accuracy since, by
the Central Limit Theorem with this Monte Carlo sample size, p̂ is within 0.0065
of p = 0.95 with probability approximately 0.997.

For the 95% concentration bands we constructed, the entire procedure con-
verges very rapidly.

2.3. Three special cases

We describe three special cases, two with closed form answers and the third
without; these correspond to n = 1, 2, 3. For n ≥ 3, closed form answers are
difficult to obtain.

For the case of one observation we take the 100(1 − α)% QH, NC, and BO
intervals to be the same (α/2, 1−α/2). Note that any interval of length 1−α is
a HPD interval.
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Figure 1. Examples of mild departures from uniformity using beta sam-
ples: BO bands (dotted); NC bands and 45◦ straight line (solid); QH bands
(dashed).
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For the case of two observations we need b1 such that 1 −√
α ≤ b1 ≤ 1 and

Pr{0 ≤ U(1) ≤ b1, 1 − b1 ≤ U(2) ≤ 1} = 1 − α. Now,

Pr{0 ≤ U(1) ≤ b1, 1 − b1 ≤ U(2) ≤ 1} = 2
∫ 1

1−b1

{ ∫ min(b1,u(2))

0
du(1)

}
du(2)

= −2b2
1 + 4b1 − 1.

It follows that, setting −2b2
1 +4b1−1 = 1−α, the NC bands are formed from the

pointwise intervals (0, 1−√
α/2) and (

√
α/2, 1). For the QH bands the intervals

are (0, 1 −√
α) and (

√
α, 1). The BO bands coincide with the NC bands for two

observations.
For the case of three observations, analytic solutions are not available, but

there is some simplification. We need b1 and a2 such that F−1
1 (1 − α) ≤ b1 ≤

1, 0 ≤ a2 ≤ F−1
2 (α), Pr{0 ≤ U(1) ≤ b1, a2 ≤ U2 ≤ 1 − a2, 1 − b1 ≤ U(3) ≤ 1} =

1−α and F1(b1) = F2(1− a2)−F2(a2). From the last, a3
2 − (3/2)a2

2 + (1/4)(1 −
b1)3 = 0 and, letting cos φ = 1− (1− b1)3, the solution, denoted by Q(b1), is the
one of (1/2) + cos(φ/2), (1/2) + cos{(φ + 2π)/3} or (1/2) + cos{(φ + 4π)/3} that
lies in (0, F−1

2 (α)). (See CRC tables (1964) for solutions of a cubic equation.)
After extensive algebraic manipulation,

Pr{0 ≤ U(1) ≤ b1, a2 ≤ U(2) ≤ 1 − a2, 1 − b1 ≤ U(3) ≤ 1}

= 6
∫ 1

1−b1

{ ∫ min(u(3),1−a2)

a2

{ ∫ min(b1,u(2))

0
du(1)

}
du(2)

}
du(3)

= 3[(b1 − a2){2b1(1 − b1) − a2(b1 + a2)} + a2{2b1 − (b1 + a2)2}].
Thus, we need b1 such that (1 − Q(b1)){2b1(1 − b1) − Q(b1)(b1 + Q(b1))} +
Q(b1){2b1 − (b1 + Q(b1))2} = (1 − α)/3. The BH bands have intervals (0, 1 −
3
√

α), (ap, 1 − ap), ( 3
√

α, 1) and BO bands have intervals (0, 3
√

α/3), (aB , 1 −
aB), ( 3

√
α/3, 1) where, setting

cos φ =

{
(1 − α)/2, QH bands
(1 − α/3)/2, BO bands,

ap and aB are the values in (0, F−1
2 (α)) and (0, F−1

2 (α/3)), respectively, which
are one of (1/2) + cos(φ/3), (1/2) + cos{(φ + 2π)/3} or (1/2) + cos{(φ + 4π)/3}.

For more than four observations analytical results are difficult to obtain for
all three methods, but the QH and BO methods are simpler to compute than the
NC method. Still the computational time is small.

3. Empirical Analysis

In this section we characterize departures from an assumed underlying model
for a random sample from uniform, beta and Student’s t distributions using
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several simulation runs. In our examples we present the comparisons graphically
(in Figure 1, the bands are ordered QH, NC, and BO from the 45◦ straight line).
Note that the bands curve in towards the ends corresponding to the smallest
and largest uniform order statistics. In contrast, for a normal probability plot
these bands curve away from each other towards the ends corresponding to the
smallest and largest normal order statistics in a manner similar to prediction
bands. For example, see Dempster and Ryan (1985) and Lange and Ryan (1989)
for pointwise bands in weighted normal plots for random effects models.

We assess departures from uniformity by selecting a random sample from
the uniform distribution function and then drawing the uniform probability plot.
Our six figures (not presented here) show different departures from uniformity
at different sample sizes. In the first figure (n = 10) the points are all near the
lower QH band indicating a departure from uniformity for this sample, but the
points are all within the NC bands. In the second figure (n = 10) all the points
are near and above the upper QH band but again within the NC band. In third
figure (n = 25) the points tend to cluster about a straight line with slope smaller
than 45◦. In the fourth figure (n = 50) most of the points fall on the lower QH
band, but still within the NC band. In the fifth figure (n = 100), except in the
tails, the points fall approximately on a straight line parallel to the expected 45◦

straight line and still within the NC bands. Finally, in the sixth figure (n = 100)
there are at least two runs across the 45◦ straight line with some points falling
outside the QH band but on the NC band. For larger sample size, more points
fall near the 45o straight line.

Next we consider mild and severe departures from uniformity using random
samples from beta cdf’s. We also assess a random sample from the Student’s t
cdf using the uniform probability plot.

For mild departures from uniformity we generate samples of sizes 5, 10, 25,
50, 100, 200, 300 from beta(1, 2), beta(1.5, 1.5) and beta(2, 1). For severe
departures from uniformity we draw samples from beta(5, 15), beta(10, 10) and
beta(15, 5). Then we use the corresponding beta cdf to transform the sample to
uniformity.

In Figure 1 we present the mild departures for samples of size 25. The
symmetric beta(1.5, 1.5) is the closest to uniformity. Except for a slightly better
fit for the transformed case (Figure 1d) over the untransformed case (Figure 1c),
there is very little difference between them. However, beta(1, 2) and beta(2, 1)
show symmetric departures from uniformity (Figure 1a somewhat symmetric to
Figure 1e), the points being plotted near and above the upper bands for beta(1,
2). These problems are resolved (Figures 1b and 1f) by the beta transform.

We consider severe departures for samples of size 50; there are very marked
departures even in the symmetric case. The strong unimodality and thin tails
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in the symmetric case create severe departures from uniformity. The strong
unimodality with right skewness and thin left tail in beta(5, 15) and left skewness
with thin right tail in beta(15, 5) create severe departures from uniformity. All
the departures are resolved by the beta transform, and note that the patterns in
Figures 1 persist for all the sample sizes we studied.

We also investigated probability plots for the Student’s t family of distribu-
tions hoping to discriminate between the Student’s t probability density function
and the normal. Because it is difficult to discriminate between the normal and
the Student’s t for small sample sizes, we chose sample sizes of 100, 200 and 300
and, in each case, we ran 5, 10 and 20 degrees of freedom. We generated random
samples from the Student’s t distribution, and transformed the data using the
probability integral transform based on both the Student’s t distribution and the
standard normal distribution. For 300 observations and 5 degrees of freedom,
when the normal transform is used there is poor performance especially in the
tails and for ordered values smaller than 0.5, but these are corrected with the
appropriate t transform. In general, there are more differences between these
plots for small degrees of freedom. For moderate degrees of freedom (e.g., 10)
there are very minor differences and for larger degrees of freedom (e.g., 20 and
beyond) there are virtually no differences between these plots.

4. Concluding Remarks

We have developed a graphical method to assess the distribution assumption
of a continuous random sample. Simultaneous inference is used to address the
main issue of correlation among the ordered observations.

The computation consists of two parts. One part requires several root finders
and is facilitated by the bisection method. The other part requires a probability
calculation facilitated by a Monte Carlo method. A reflection property of the or-
der statistics reduces the number of equations to be solved by half. Computation
time is not significant.

While pointwise concentration bands are too narrow and Bonferroni concen-
tration bands can be too wide, our method provides exact 100(1−α)% concentra-
tion bands falling between these two. In addition, each confidence interval used
in the concentration bands has the highest probability density (shortest interval
for its coverage probability) for any continuous distribution.
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