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Abstract: The sample mean has long been used as an estimator of a location pa-

rameter in statistical data analysis and inference. Though attractive from many

viewpoints, it suffers from an extreme sensitivity to outliers. The median has been

adopted as a more robust location estimator in one dimension, it will not break

down even if up to half of the data points are “bad”. Another desirable property

of the median is that it does not depend on the underlying measurement scale

and coordinate system. Clearly, multivariate analogues of the univariate median

are practically desirable and theoretically interesting. Among proposed analogues,

only the spatial median (the L1-median) and the coordinate-wise median have a

breakdown point as high as that of the univariate median. These estimates, how-

ever, lack the affine equivariance property. Affine equivariant analogues exist, but

their breakdown points decrease as dimension increases. We propose a class of

projection-based affine equivariant multivariate location estimators. There are es-

timators in this class that possess a breakdown point (with respective to a definition

slightly weaker than the usual one) as high as that of the univariate median, free

of dimension. Compared with the existing best breakdown point affine equivariant

location estimators, these estimators can, in some cases, resist up to 10% more

contamination in a data set without break down. Computing issues are briefly

addressed.
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multivariate median, projection pursuit methodology, robustness.

1. Introduction

The sample mean is a well-known estimator of a location parameter or the
center of a data cloud. It possesses many attractive properties but can be fooled
by a single outlier, which may be due to the measurement or recording error,
instrument failure, etc. To overcome the extreme sensitivity to unusual obser-
vations, the median has been adopted as a robust estimator of location in one
dimension. The univariate median will not break down even if up to half the
data points are contaminated - the univariate median has the highest breakdown
point. The notion of breakdown point was introduced in Donoho and Huber
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(1983), and has become the most prevalent quantitative assessment of robust-
ness of estimators. Let Xn = {X1, . . . ,Xn} be a sample of size n in R

d (d ≥ 1).
The replacement breakdown point (RBP) of an estimator T at the given sample
Xn is defined as

RBP(T,Xn) = min{m

n
: sup

Xn
m

‖T (Xn
m) − T (Xn)‖ = ∞},

where Xn
m denotes a contaminated sample from Xn by replacing m points of Xn

with an arbitrary m points in R
d, ‖ · ‖ is the Euclidian norm. In other words, the

RBP of an estimator is the minimum replacement fraction which could drive the
the estimator beyond any bound. It is readily seen that the RBP of the sample
mean and the univariate median are 1/n and �(n + 1)/2�/n respectively. (�x� is
the largest integer no larger than x.)

In addition to robustness against extreme observations, it is desirable that
location estimators be independent of the underlying measurement scale and
coordinate system. Such estimator is said to be affine equivariant, for example
the univariate median. (Strictly speaking, T is affine equivariant if T (AXn+b) =
AT (Xn) + b for any d × d nonsingular matrix A and b ∈ R

d, where AXn + b =
{AX1 + b, . . . , AXn + b}.)

High-dimensional analogues of the univariate median are desirable. Indeed,
for years, constructing affine equivariant multivariate location estimators with
high breakdown point has been a primary robustness goal. The task, however,
turns out to be non-trivial. Among existing multivariate analogues, only the
spatial median and the coordinate-wise median have a breakdown point as high
as that of the univariate median, but they lack the affine equivariance prop-
erty. Affine equivariant location estimators with high breakdown points include
the Stahel-Donoho location estimator (Stahel (1981), Donoho (1982)), the MVE
estimators (Lopuhaä and Rousseeuw (1991)), the S-estimators (Davies (1987),
Lopuhaä and Rousseeuw (1991)), and the location estimators in Tyler (1994).
Many papers discuss both location and scatter estimators. Careful examina-
tion, however, reveals that none of location components of these estimators has
a breakdown point as high as that of the univariate median. Furthermore, the
breakdown points of these location estimators decrease as dimension d increase
(indeed the RBP of these estimators is ≤ �(n − d + 1)/2)�/n). What is the
best possible breakdown point of affine equivariant location estimators in high
dimension? Can one construct a multivariate analogue of the univariate median
that is affine equivariant with an RBP as high as its univariate counterpart,
free of the dimension? Attempts to answer these questions have been made (see
Donoho (1982, pages 10 and 16), Lopuhaä and Rousseeuw (1991, pp.232-235),
for example) but they have remained open.
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The objective here is to answer these questions. Following Maronna and
Yohai (1995) and Juan and Prieto (1995), we adopt the worst case contamination
model, that is, putting all m contaminating points at the same site or within a
bounded ball. Hence we have a slightly weaker version of the usual breakdown
point definition.

The rest of the paper is organized as follows. Section 2 shows that there are
estimators in a class of affine equivariant projection-based location estimators
that can have an RBP as high as that of the univariate median. These estimators
are optimal in the sense that their breakdown points are the highest among all
existing affine equivariant multivariate location estimators (and, in some cases,
can resist 10% more contamination in a data set without breakdown) and the
best that one can obtain. Computing issues are addressed briefly in Section 3. It
turns out that these best breakdown point estimators can be computed by exact
algorithms. The proof of the main result is in the Appendix.

2. Projection-based Location Estimators

In this section, a class of projection-based affine equivariant multivariate
location estimators is proposed. There are estimators in this class that can have
a breakdown point as high as that of the univariate median.

2.1. Outlyingness of points

Given univariate location and scale estimators µ(·) and σ(·), the outlyingness
of a point x ∈ R

1 with respect to a data set Xn in R
1 can be measured by

|x − µ(Xn)|/σ(Xn), the deviation of x from the center µ(Xn) standardized by
scale σ(Xn); see p.205 of Mosteller and Tukey (1977), for example. Typical
choices of the pair (µ, σ) include (mean, standard deviation), (median, median
absolute deviation) and, more generally, (M -estimator of location, M -estimator
of scale); see Huber (1981). Throughout our discussion, we assume that µ(sXn +
b) = sµ(Xn) + b and σ(sXn + b) = |s|σ(Xn) for any data set Xn and scalars s

and b in R
1, where sXn + b = {sX1 + b, · · · , sXn + b}.

Stahel (1981) and Donoho (1982) extended the univariate outlyingness mea-
sure to high dimension and defined, independently, the outlyingness of a point
x ∈ R

d (d ≥ 1) with respect to a data set Xn in R
d as

O(x,Xn) = sup
u∈Sd−1

{ |u′x − µ(u′Xn)|
σ(u′Xn)

}
, (1)

where Sd−1 = {u : ‖u‖ = 1} and u′Xn = {u′X1, . . . , u
′Xn}. When |u′x −

µ(u′Xn)| = σ(u′Xn) = 0, we define |u′x − µ(u′Xn)|/σ(u′Xn) = 0 (see Remark
3.5 of Zuo (2003) for some explanations).
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In virtue of the affine equivariance of µ and σ, it is readily seen that O(x,Xn)
is affine invariant. That is, O(x,Xn) = O(Ax + b,AXn + b) for any nonsingular
d × d matrix A and vector b ∈ R

d. Based on the outlyingness of data points,
Stahel (1981) and Donoho (1982) introduced a multivariate location estimator

Tw(Xn) =
n∑

i=1

w (O(Xi,X
n)) Xi

/ n∑
i=1

w (O(Xi,X
n)),

where w(x) is a weight function which downweights outlying observations. It is
readily seen that Tw is affine equivariant since O(x,Xn) is affine invariant.

For Xn in general position (i.e., no more than d points of Xn lie in any (d−1)-
dimensional subspace), Donoho (1982) studied the breakdown point of Tw, where
µ and σ are the median (Med) and the median absolute deviation (MAD) with
Med(Y n) = (Y(�(n+1)/2�)+Y(�(n+2)/2�))/2 and MAD(Y n) = Med{|Yi−Med(Y n)|},
where Y n is in R

1 and Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) are ordered values of Y1, · · · , Yn.
His result implies that the RBP of Tw is �(n − 2d + 2)/2)�/n, see Davies (1987)
and Zuo (2001), which is less than �(n + 1)/2�/n, the RBP of the univariate
median. The Stahel-Donoho multivariate location estimator, however, is the
first one that can combine affine equivariance with high breakdown point. It has
stimulated a lot of follow-up work seeking affine equivariant location estimators
with higher breakdown points. Tyler (1994) modified the MAD in the definition
of Tw (and a corresponding scatter estimator) so that the RBP of the resulting
estimator is increased to �(n − d + 1)/2�/n for Xn in general position (Tyler’s
breakdown point result is stated for the location and scatter estimators jointly).
Gather and Hilker (1997) and Zuo (2000) also modified MAD in Tw and obtained
the same RBP �(n − d + 1)/2�/n for Xn in general position. This RBP, however,
is still less than �(n + 1)/2�/n and decreases with increasing d.

Other affine equivariant location estimators have been introduced, but none
of them has a RBP higher than �(n − d + 1)/2�/n. The first affine equivariant
location estimator that can break this RBP barrier is the “projection median”
defined via the outlyingness or “depth functions” studied in Zuo (2003), with a
RBP of �(n − d + 2)/2�/n. (For general discussions on depth functions, see Liu
(1990) and Zuo and Serfling (2000a, b).) The questions in Section 1, however,
are still not completely answered by this result.

For a translation equivariant location estimator T (i.e., T (Xn+b) = T (Xn)+
b for any b ∈ R

d), Lopuhaä and Rousseeuw (1991) proved that the upper bound
of RBP is �(n + 1)/2�/n. In the next subsection, we propose a class of affine
equivariant (hence necessarily translation equivariant) location estimators and
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show that there are estimators in the class that can attain this RBP upper
bound. Hence we provide answers to the open questions in Section 1.

2.2. A class of projection based location estimators

Closely related to the Stahel-Donoho estimator Tw is a location estimator
called the “projection median” (PM). Instead of considering the outlyingness-
weighted mean, the projection median is the average of sample points which
possess minimum outlyingness among all sample points. That is,

PM (Xn) = ave
{
Xi ∈ Xn : O(Xi,X

n) = min
Xj∈Xn

{O(Xj ,X
n)}

}
, (2)

where O(·,Xn) is defined at (1). Since O(x,Xn) is affine invariant, it is readily
seen that PM is affine equivariant. Clearly, PM and its characteristics depend
on the choices of µ and σ that define O(·,Xn). A class of µ and σ corresponds
to a class of PM. In one dimension PM is µ and hence is the median when µ

is. For general µ we still use the phrase “projection median” in one and more
dimensions for convenience.

The location estimator in (2) has not been proposed and studied in the
literature but is a variant of the projection medians introduced and discussed in
Tyler (1994) and in Zuo and Serfling (2000c) and Zuo (2003). Depth functions,
called “projection depths”, are associated with the medians in Zuo (2003). It
turns out that the medians in Zuo (2003), with RBP �(n − d + 2)/2�/n for Xn

in general position, are the first type of affine equivariant location estimators
that can break the RBP barrier �(n − d + 1)/2�/n that existed in the literature.

In practice the restriction “in general position” on Xn can be severe. In
our discussion, we drop this restriction and allow more than d sample points
to lie in a (d − 1)-dimensional hyperplane. Following Tyler (1994), let c(Xn)
be the maximum number of points of Xn contained in any (d − 1)-dimensional
hyperplane. Then c(Xn) ≥ d. We do assume that Xn is in non-special position in
the sense that the convex hull formed by any k ≥ �n+2�/2 points of Xn does not
contain all k points on its boundary. This of course is true almost surely for large
n if the population distribution is absolute continuous. We now propose a class
of affine equivariant projection medians (2) and show that there are projection
medians that can have RBP as high as (�(n + 1)/2�)/n for any sample Xn in
non-special position. In view of Lopuhaá and Rousseeuw (1991), this is the best
possible RBP for any affine equivariant multivariate location estimator.

Take µ to be any affine equivariant univariate location estimator with a
RBP �(n + 1)/2�/n. This includes some M -estimators of location; see Huber
(1981). Take σ to be any affine equivariant univariate scale estimator that has
very high implosion RBP (higher than that of MAD). Note that the implosion
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RBP of a scale estimator is the minimum replacement fraction that can force
the estimator to be zero. It is readily seen that the implosion RBP of MAD is
(�(n + 2)/2�−c(Xn))/n for an arbitrary data set Xn in R

1. Examples of σ’s that
have higher implosion RBP than that of MAD include the median of differences
MOD(Xn) = Medi<j{|Xi−Xj |}, the sum of differences SOD(Xn) =

∑
i<j{|Xi−

Xj|}, and the sum of absolute deviations SAD(Xn) =
∑

i |Xi − µ∗(Xn)| for
Xn in R

1, where µ∗ can be any affine equivariant location estimators such as
Mean and Med. It is not difficult to see that the implosion RBP’s of MOD,
SOD, and SAD are (�(3 +

√
2n2 − 2n + 1)/2� − c(Xn))/n, (n − c(Xn))/n, and

(n − c(Xn))/n, respectively. Other desirable σ’s include the standard deviation
(SD) and the partial sum of absolute deviations: PSAD(Xn) = Y(i0) + · · ·+ Y(i1)

with 1 ≤ i0 ≤ i1, �(n + 2)/2� < i1 ≤ n, where Yi = |Xi − µ∗(Xn)|. Note that all
these σ’s are affine equivariant.

With different µ’s and σ’s in (1), the resulting projection medians in (2)
are still denoted by PM for the sake of simplicity. Obviously, these projection
medians are affine equivariant. They can also possess the best possible breakdown
point.

Theorem 2.1. Let µ be any affine equivariant univariate location estimator with
the best possible RBP and σ be the largest absolute deviation from µ, hence with
the best possible implosion RBP. Then for any Xn in non-special position in R

d,
the corresponding projection median PM defined by (2) is affine equivariant with
RBP(PM,Xn) = �(n + 1)/2�/n.

Remark 2.1. Theorem 2.1 answers the questions of Section 1. It also has
some practical merit. The breakdown point, �(n − d + 1)/2�/n, of estimators
introduced earlier and the breakdown point, �(n + 1)/2�/n, of our estimators
both approach 1/2 as n → ∞ for fixed d, but they differ for a finite sample size
n. How big can the difference between the two breakdown points be? To answer
this question, consider the case that Xn is in general position for convenience. Let
n = 5d, then �(n + 1)/2�/n− �(n − d + 1)/2�/n > 10%. That is, in this case the
estimators discussed in the theorem can resist at least 10% more contamination
in the original data set than the other estimators in use do. This has practical
significance. (A justification for n = 5d is given on p.326 of Juan and Prieto
(1995).)

3. Computing the Projection Based Estimators

We now briefly address computing issues − a large concern for all high break-
down point affine equivariant estimators in high dimensions. Although many of
these estimators can be computed by polynomial-time algorithms in theory, in
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practice almost none of these estimators are computed in high dimensions in ex-
actly the way they are defined. Instead, they are ordinarily computed via faster
approximate algorithms.

For projection-based estimators, the practical difficulty lies in computing
O(Xi,X

n) defined by (1). In the light of this equation computing the outlying-
ness seems hopeless since we need to consider projection to all directions. This is
a long-standing problem. But approximate procedures for the outlyingness, such
as those based on “sub-sampling” and “pigeon hole” principles (Stahel (1981) and
Rousseeuw (1993)), have been proposed and used in practice. There are concerns
as to how accurate these procedures are, and whether or not the approximate
procedures have the same desirable properties of the exact procedures. The best
way to meet the concerns, of course, is exact computing.

It turns out that the projection-based estimators discussed in this paper can
actually be computed exactly in low and high dimensions for appropriate µ and
σ. A primary study indicates that one actually needs only consider projection
to a linear (in n) number of fixed directions to obtain the exact outlyingness of
the sample points. We outline an exact algorithm − a detailed discussion of the
algorithm is beyond the scope (and the focus) of this paper and will be pursued
elsewhere. For simplicity, we assume that n is odd and consider only bivariate
data, with µ =Med and σ=SAD, with µ∗ the Med (see Section 2.2).

1. For each data point, connect it with each of the other n − 1 data points, find
a direction (usually there are two) among the n − 1 directions that bisects
the data set in the sense that the closed half-planes with this direction as
their boundaries contain at least n/2 data points. Totally there are O(n) such
directions.

2. Project data points to the directions ui perpendicular to one of the O(n)
directions in Step 1 and, along ui, calculate the outlyingness of each of the
projected points. Define the outlyingness of each of the projected points along
ui as that of the corresponding point and update it when it becomes larger
along any other direction uj .

3. Find the data point with minimum outlyingness among the n sample points.
Take an average if there is more than one minimum outlyingness point.

The worst case time complexity is O(n2), O(n2) and O(n) for Steps 1, 2 and
3, respectively and consequently is O(n2) for the exact algorithm, in theory.

With exact algorithms, one can develop faster and practical approximate
algorithms for the outlyingness of high dimensional data points and the corre-
sponding projection median. Any concern that the estimator from an approxi-
mate procedure might lack the desirable high breakdown point property of the
theoretical counterpart becomes unnecessary when the approximate estimator
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is within some bounded neighborhood of the exact estimator. For projection
medians in this paper, the breakdown point property holds true for estimators
obtained from an exact algorithm, or from any approximate algorithm that iden-
tifies an uncontaminated data point as the minimum outlyingness point.
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Appendix. Proof of Theorem 2.1

The projection depth median PM is affine equivariant, hence necessarily
translation equivariant. In the light of the upper bound of RBP of translation
equivariant location estimators given in Lopuhaä and Rousseeuw (1991), one
can break down PM if the number m of contaminating points is as large as
�(n + 1)/2�. To prove the theorem we need only show that one cannot break
down PM when m, the number of contaminating points, is ≤ �(n + 1)/2� − 1.
This is trivially true when d = 1 since in this case PM is just the univariate
median. In the following d ≥ 2.

Assume that the number of contaminating points m ≤ �(n + 1)/2� − 1. We
also assume, without loss of generality, that µ =Med and focus on the worst case
contamination scenario: putting all contaminating points in the same site; see
Maronna and Yohai (1995) and Juan and Prieto (1995) for related discussions
about this model. (The proof can be slightly modified to cover the case that all
contaminating points are placed within a bounded ball.) Since Xn is in non-
special position, then m + c(Xn) < n. With such m, µ and σ it is readily seen
that

0 < inf
Xn

m

inf
u∈Sd−1

σ(u′Xn
m) and σ(u′Xn

m) < ∞
for any fixed u ∈ Sd−1 and any given Xn

m, (3)

sup
Xn

m

sup
u∈Sd−1

µ(u′Xn
m) < ∞, (4)

where Xn
m is any contaminated data set resulting from replacing m of the original

points in Xn by an arbitrary m points (they are at the same site) in R
d. Write

Z = {Z1, · · · , Zn} for the contaminated data set Xn
m for simplicity.

Assume that PM (Xn
m) can become unbounded even if the number m of

contaminating points is ≤ �(n + 1)/2� − 1. Hence, there exists a sequence
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of contaminated data sets (with m original points of Xn being contaminated)
{Zt} = {Zt1, · · · , Ztn} such that

‖PM (Zt)‖ → ∞, as t → ∞. (5)

Write yt for PM (Zt) for convenience. Then the outlyingness of yt is no greater
than the minimum outlyingness of points from Zt. Hence there are at least
n − m uncontaminated points from Xn ∩ Zt for any fixed t whose outlyingness
is no less than O(yt, Zt). Note that there are m points of Zt at yt. We now seek
a contradiction to (5).

Since n is fixed and finite, assume that X1, . . . ,Xn−m are the uncontaminated
points from Xn for all t (by taking subsequences of subsequences if necessary, this
is without loss of generality). Note that O(Xi, Zt) ≥ O(yt, Zt) for 1 ≤ i ≤ n−m.

Since ‖yt‖ → ∞, σ(u′Zt) = ‖yt‖ − µ(u′Zt) for sufficiently large t and u =
yt/‖yt‖ by (4). Hence O(yt, Zt) ≥ 1. On the other hand, since n−m ≥ �n+2�/2
and Xn is in non-special position, there is at least one point Xi from the n − m

uncontaminated points {X1, · · · ,Xn−m} that is an interior point of the convex
hull formed by the n − m points. Hence, |u′Xi − µ(u′Zt)| < σ(u′Zt) for any
u ∈ Sd−1 and any t. That is, O(Xi, Zt) < 1. This, however, is a contradiction
to the assumption that yt is the point with the minimum outlyingness among all
the points of Zt, which completes the proof.
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