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Abstract: This paper investigates the asymptotic properties of the likelihood ratio

statistic for testing homogeneity in normal mixture models in the presence of a

structural parameter. The asymptotic null distributions of the ordinary likelihood

ratio statistic and the modified likelihood ratio statistic are the same, having the

probability density function(pdf) (1/2)g1(x)+(1/2)g2(x) where g1(x) and g2(x) are

the probability density functions of χ2
(1) and χ2

(2), respectively. For the ordinary

likelihood ratio statistic, we employ the assumption that min{α1, α2} ≥ ε for some

1/2 > ε > 0, where α1 and α2 are the coefficients of the mixtures.
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1. Introduction

Tests for homogeneity in finite mixture models have been investigated by
many researchers. Titterington, Smith and Makov (1985), McLachlan and Bas-
ford (1988) and Lindsay (1995) provide extensive background discussions. For
further related work, refer to Lindsay (1989), Leroux (1992), Chernoff and Lan-
der (1995), Cheng and Traylor (1995), Chen and Chen (2001, 2003), Chen, Chen
and Kalbfleisch (2001) and Chen (1998).

An example of much current interest arises in genetics, in the case that a
major gene is thought to underly a phenotypic trait. Until the underlying gene
has been identified, the genotype is unobservable. Consider the case of a major
gene with two possible alleles (say A and a), and suppose that the genotype aa
occurs in a population with frequency α. Suppose that A is dominant over a,
that the genotype aa confers an average effect size θ1, and that one or more
copies of A confers an average effect size θ2. Assuming that the phenotypic
trait is normally distributed with mean θ1 or θ2 (depending on the genotype)
and variance σ2, the phenotypic distribution for a randomly sampled individual
follows a two component mixture distribution α1φ(x; θ1, σ

2) + α2φ(x; θ2, σ
2). A

test for the presence of a major gene is a test that the phenotypic distribution
is a single normal distribution. What is of primary interest are the mean effect
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sizes θ1, θ2, and so the hypothesis of primary interest is that the effect sizes are
equal, in which case the underlying gene contributes nothing to the phenotypic
trait.

The asymptotic null distribution of the likelihood ratio test is very complex
and difficult to use in practice. Chen et al. (2001) propose a modified likelihood
ratio test for homogeneity in the finite mixture models. They prove that the
modified likelihood ratio test enjoys the simple χ2-type null limiting distribution
and is asymptotically most powerful under the local alternative models when
there are no structural parameters. Chen and Chen (2003) investigate the large
sample behavior of the likelihood ratio test for testing homogeneity in the normal
mixture models with an unknown structural parameter. The asymptotic null
distribution of the likelihood ratio test is even more complex than that in the
case that no structural parameter is involved.

In this paper, we continue to study the likelihood ratio test for homogeneity
in normal mixtures in the presence of a structural parameter. At first, we show
that the ordinary likelihood ratio test has the simple χ2-type null limiting dis-
tribution under the assumption min{α1, α2} ≥ ε for some 1/2 > ε > 0, where α1

and α2 are the coefficients of the mixtures. Second, without the above assump-
tion, we show that the modified likelihood ratio test has the same null limiting
distribution. The interesting thing is that here the value of α1 or α2 contributes
to the degrees of freedom of the χ2-type null limiting distribution, while that in
Chen et al. (2001) does not when min{α1, α2} ≥ ε and α1, α2 are known . This
new fact also complicates the analysis in the present case.

Let X1, · · · ,Xn be a random sample of size n from a mixture population with
the probability density function (pdf)

f(x;α1, α2, θ1, θ2, σ
2) = α1φ(x; θ1, σ

2) + α2φ(x; θ2, σ
2), (1.1)

where α1, α2 ≥ 0, α1 + α2 = 1, and φ(x; θ, σ2) is the pdf of N(θ, σ2).
We wish to test

H0 : N(θ0, σ
2
0), (1.2)

versus the full model (1.1).
To avoid nonidentifiability, we take α1 ≥ α2. As noted by Hartigan (1985),

a bounded assumption on the mean parameters is also necessary − we take
|θi| ≤ M < ∞ for i = 1, 2.

The likelihood function is

�n(α1, α2, θ1, θ2, σ
2) =

n∑
i=1

log{α1φ(Xi; θ1, σ
2) + α2φ(Xi; θ2, σ

2)}. (1.3)

The paper is organized as follows. Section 2 presents the asymptotic theory
of the ordinary likelihood ratio test with the assumption that min{α1, α2} ≥ ε
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under the null hypothesis. In Section 3, we give the null limiting distribution of
the modified likelihood ratio test. Some simulation results are given in Section
4. The proofs of Lemmas used in Sections 2 and 3 are in Appendix.

2. Ordinary Likelihood Ratio Test

We derive the asymptotic distribution of the ordinary likelihood ratio test
when H0 : N(θ0, σ

2
0) is the true distribution. Let α̂1, α̂2, θ̂1, θ̂2 and σ̂2 maximize

�n(α1, α2, θ1, θ2, σ
2) over the parameter space 0 < ε ≤ α2 ≤ 1/2, |θj| ≤ M ,

j = 1, 2, 0 < σ2 < ∞, and let θ̂0 and σ̂2
0 maximize �n(1, 0, θ0, θ0, σ

2
0) over the

parameter space −∞ < θ0 < ∞, 0 < σ2
0 < ∞. Then the ordinary likelihood ratio

test is to reject the null hypothesis H0 if

Rn = 2{�n(α̂1, α̂2, θ̂1, θ̂2, σ̂
2) − �n(

1
2
,
1
2
, θ̂0, θ̂0, σ̂

2
0)} (2.1)

is suitably large. The asymptotic null distribution of Rn is used to determine a
critical value of the test or a P -value.

We assume that θ0 = 0, and σ2
0 = 1. This presents no loss of generality,

as if Zi = (Xi − θ0)/σ0, µ̂1 = (θ̂1 − θ0)/σ0, µ̂2 = (θ̂2 − θ0)/σ0, ρ̂ = σ̂/σ0, µ̂0 =
(θ̂0 − θ0)/σ0, ρ̂0 = σ̂0/σ0, then

Rn = 2{�n(α̂1, α̂2, θ̂1, θ̂2, σ̂
2) − �n(

1
2
,
1
2
, θ̂0, θ̂0, σ̂

2
0)}

=̂ 2{�n(X1, · · · ,Xn; α̂1, α̂2, θ̂1, θ̂2, σ̂
2) − �n(X1, · · · ,Xn;

1
2
,
1
2
, θ̂0, θ̂0, σ̂

2
0)}

= 2{�n(Z1, · · · , Zn; α̂1, α̂2, µ̂1, µ̂2, ρ̂
2) − �n(Z1, · · · , Zn;

1
2
,
1
2
, µ̂0, µ̂0, ρ̂

2
0)}.

The following result is given in Chen and Chen (2003).

Lemma 1. Under the null hypothesis N(0, 1), there exist constants 0 < ε < ∆ <
∞ such that limn→∞ P (ε ≤ σ̂2 ≤ ∆) = 1.

Referring to Lemma 1, we can restrict σ within a closed interval [ε1,M1] for
ε1 > 0 and M1 > 0. Using Lemma 1 and min{α1, α2} ≥ ε, the following result
can be proved in a similar fashion to Theorem 1 in Chen et al. (2000).

Lemma 2. Under the null hypothesis N(0, 1), θ̂1 = op(1), θ̂2 = op(1), σ̂2 − 1 =
op(1).

To find the asymptotic distribution of Rn defined in (2.1), it is convenient
to partition it into two parts:

Rn = 2{�n(α̂1, α̂2, θ̂1, θ̂2, σ̂
2) − �n(

1
2
,
1
2
, 0, 0, 1)}

+2{�n(
1
2
,
1
2
, 0, 0, 1) − �n(

1
2
,
1
2
, θ̂0, θ̂0, σ̂

2
0)}

=̂ R1n + R2n. (2.2)
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Note that −R2n is an ordinary likelihood ratio(no mixture involved) and
hence an approximation is immediate:

− R2n =
(
∑n

i=1 Xi)2∑n
i=1 X2

i

+
{∑n

i=1(−1 + X2
i )}2∑n

i=1(−1 + X2
i )2

+ op(1). (2.3)

The main task is thus to analyze R1n. Write

R1n = 2
n∑

i=1

log(1 + δi), (2.4)

δi = α̂1
φ(Xi; θ̂1, σ̂

2) − φ(Xi; 0, 1)
φ(Xi; 0, 1)

+ α̂2
φ(Xi; θ̂2, σ̂

2) − φ(Xi; 0, 1)
φ(Xi; 0, 1)

. (2.5)

Put m̂k = α̂1θ̂
k
1 + α̂2θ̂

k
2 , k ≥ 1,

Yi(θ, σ2) =




φ(Xi; θ, σ2) − φ(Xi; 0, σ2)
θφ(Xi; 0, 1)

, θ �= 0

σ−3Xi exp{−1
2X2

i (σ−2 − 1)}, θ = 0,

Ui(σ2) =




φ(Xi; 0, σ2) − φ(Xi; 0, 1)
(σ2 − 1)φ(Xi; 0, 1)

, σ2 �= 1

1
2(−1 + X2

i ), σ2 = 1.

Then δi = α̂1θ̂1Yi(θ̂1, σ̂
2) + α̂2θ̂2Yi(θ̂2, σ̂

2) + (σ̂2 − 1)Ui(σ̂2). The method used in
Chen and Chen (2003) is used to deal with δi in the following . Using the Taylor
expansion of Yi(θ̂j , σ̂

2), j = 1, 2, and Ui(σ̂2), it follows that

δi = m̂1Yi(0, 1) + (σ̂2 − 1 + m̂2)Y ′
i (0, 1) +

1
2
m̂3Y

′′
i (0, 1)

+
1
6
{3(σ̂2 − 1)2 + m̂4 + 6(σ̂2 − 1)m̂2}Y ′′′

i (0, 1) + ε̂in, (2.6)

where Y ′
i (0, 1) is the first partial derivative of Yi(θ, σ2) with respect to θ at θ = 0

and σ2 = 1, while Y ′′
i (0, 1) and Y ′′′

i (0, 1) are the associated second and third par-
tial derivatives with respect to θ. It can be shown that Yi(0, 1) = Xi, Y ′

i (0, 1) =
Ui(1) = (X2

i − 1)/2, Y ′′
i (0, 1) = (X3

i − 3Xi)/3, and Y ′′′
i (0, 1) = 2U ′

i(1) = (X4
i −

6X2
i + 3)/4. Put Yi = Yi(0, 1), Y ′

i = Y ′
i (0, 1), Y ′′

i = Y ′′
i (0, 1), Y ′′′

i = Y ′′′
i (0, 1).

As the processes resulting from Yi(θ, σ2), Ui(σ2) and their derivatives are tight,
it can be shown, as in Chen and Chen (2003), that the sum of the remainders
ε̂n =

∑n
i=1 ε̂in satisfies

ε̂n = n1/2(σ̂2 − 1)3Op(1) + n(m̂2
1 + m̂2

3)op(1)

+n1/2(|m̂5| + m̂6)Op(1) + op(1). (2.7)
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Also,

δi =̂S1 ·Xi+S2 · 12(−1+X2
i )+S3 · 16(−3Xi+X3

i )+S5 · 1
24

(3−6X2
i +X4

i )+ε̂in

=̂S1 ·Xi+S2 · 12(−1+X2
i )+S3 · 1

6
(−3Xi+X3

i )+S4 · 1
24

(3−6X2
i +X4

i )+εin,(2.8)

where S1 = m̂1, S2 = σ̂2−1+ m̂2, S3 = m̂3, S5 = 3(σ̂2 −1)2 + m̂4 +6(σ̂2 −1)m̂2,

S4 = m̂4 − 3m̂2
2, εin = ε̂in + 3{m̂2 + (σ̂2 − 1)}2 × (1/24)(3− 6X2

i + X4
i ). Here we

use the fact that S5 = S4 + 3{m̂2 + (σ̂2 − 1)}2.
Let |S| =

∑4
i=1 |Si|. We have the following result concerning the convergence

rates of the MLE’s.

Lemma 3. If α̂2 ≥ ε, then under H0, N(0, 1), θ̂1 = Op(|S|1/4), θ̂2 = Op(|S|1/4),
σ̂2 − 1 = Op(|S|1/2).

The proof of Lemma 3 is given in Appendix.
By (2.7), Lemma 2, Lemma 3 and n1/2|S| ≤ 1 + nS2,

n∑
i=1

εin = op(1) + nS2 · op(1). (2.9)

Since nS2 ≤ 4n
∑4

j=1 S2
j , using similar reasoning as in Chen and Chen (2003),

nS2 · op(1) can be absorbed into the quadratic sum
∑n

i=1{S2
1Y 2

i + S2
2(Y ′

i )2 +
(1/4)S2

3(Y ′′
i )2 + (1/36)S2

4(Y ′′′
i )2}. That is nS2 · op(1) = op(1) ·

∑n
i=1{S2

1Y 2
i +

S2
2(Y ′

i )2 + (1/4)S2
3(Y ′′

i )2 + (1/36)S2
4(Y ′′′

i )2}. Similarly, it can be shown that

R1n ≤ 2
n∑

i=1

δi −
n∑

i=1

δ2
i +

2
3

n∑
i=1

δ3
i

= 2
n∑

i=1

(S1Yi + S2Y
′
i +

1
2
S3Y

′′
i +

1
6
S4Y

′′′
i ) −

n∑
i=1

{S2
1Y 2

i + S2
2(Y ′

i )2

+
1
4
S2

3(Y ′′
i )2 +

1
36

S2
4(Y ′′′

i )2}{1 + op(1)} + op(1). (2.10)

In above expression, the cubic and mixed terms are absorbed into the quadratic
terms, again reasoning as in Chen and Chen (2003). Let x+ = xI[x≥0] where I is
the indicator function. At the end of Appendix, we prove that −S4 ≥ 0, a.s. It
follows that, when

S1 =

n∑
i=1

Yi

n∑
i=1

Y 2
i

, S2 =

n∑
i=1

Y ′
i

n∑
i=1

(Y ′
i )

2

, S3 = 2

n∑
i=1

Y ′′
i

n∑
i=1

(Y ′′
i )2

, S4 = −6

(−
n∑

i=1

Y ′′′
i )+

n∑
i=1

(Y ′′′
i )2

, (2.11)
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R1n ≤
(

n∑
i=1

Yi)2

n∑
i=1

Y 2
i

+

(
n∑

i=1

Y ′
i )

2

n∑
i=1

(Y ′
i )2

+

(
n∑

i=1

Y ′′
i )2

n∑
i=1

(Y ′′
i )2

+

{(−
n∑

i=1

Y ′′′
i )+}2

n∑
i=1

(Y ′′′
i )2

+ op(1). (2.12)

From (2.3) and (2.12),

Rn ≤
(

n∑
i=1

Y ′′
i )2

n∑
i=1

(Y ′′
i )2

+

{(−
n∑

i=1

Y ′′′
i )+}2

n∑
i=1

(Y ′′′
i )2

+ op(1). (2.13)

We are going to get a lower bound for Rn. Let S1, S2, S3 and S4 be defined
by (2.11).

Lemma 4. There exist α̃1, α̃2, θ̃1, θ̃2 and σ̃2 such that α̃1 − α̃2 = o(1), a.s., and
that

α̃1θ̃1 + α̃2θ̃2 = S1, (2.14)
α̃1θ̃

2
1 + α̃2θ̃

2
2 + (σ̃2 − 1) = S2, (2.15)

α̃1θ̃
3
1 + α̃2θ̃

3
2 = S3, (2.16)

α̃1θ̃
4
1 + α̃2θ̃

4
2 − 3(α̃1θ̃

2
1 + α̃2θ̃

2
2)

2 = S4. (2.17)

The proof of Lemma 4 is given in Appendix.
From Lemma 3, under H0, θ̃1 = Op(|S|1/4), θ̃2 = Op(|S|1/4), σ̃2 − 1 =

Op(|S|1/2). Consider the Taylor expansion

R̃1n =̂ 2{�n(α̃1, α̃2, θ̃1, θ̃2, σ̃
2) − �n(

1
2
,
1
2
, 0, 0, 1)}

= 2
n∑

i=1

δ̃i −
n∑

i=1

δ̃2
i (1 + η̃i)−2,

where |η̃i| < |δ̃i|, and

δ̃i = α̃1
φ(Xi; θ̃1, σ̃

2) − φ(Xi; 0, 1)
φ(Xi; 0, 1)

+ α̃2
φ(Xi; θ̃2, σ̃

2) − φ(Xi; 0, 1)
φ(Xi; 0, 1)

.

Similar to Chen et al. (2000), it can be shown that δ̃i = op(1). So R̃1n =
2

∑n
i=1 δ̃i − ∑n

i=1 δ̃2
i {1 + op(1)}. Thus, with the similar derivation as (2.10),

R̃1n =

(
n∑

i=1

Yi)2

n∑
i=1

Y 2
i

+

(
n∑

i=1

Y ′
i )

2

n∑
i=1

(Y ′
i )2

+

(
n∑

i=1

Y ′′
i )2

n∑
i=1

(Y ′′
i )2

+

{(−
n∑

i=1

Y ′′′
i )+}2

n∑
i=1

(Y ′′′
i )2

+ op(1), (2.18)
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Rn ≥
(

n∑
i=1

Y ′′
i )2

n∑
i=1

(Y ′′
i )2

+

{(−
n∑

i=1

Y ′′′
i )+}2

n∑
i=1

(Y ′′′
i )2

+ op(1). (2.19)

From (2.13) and (2.19), it follows that

(
n∑

i=1

Y ′′
i )2

n∑
i=1

(Y ′′
i )2

+

{(−
n∑

i=1

Y ′′′
i )+}2

n∑
i=1

(Y ′′′
i )2

+op(1) ≤ Rn ≤
(

n∑
i=1

Y ′′
i )2

n∑
i=1

(Y ′′
i )2

+

{(−
n∑

i=1

Y ′′′
i )+}2

n∑
i=1

(Y ′′′
i )2

+op(1).

By the Central Limit Theorem, n−1/2∑n
i=1(Yi, Y

′
i , Y ′′

i , Y ′′′
i )T d−→N(0,Σ), where

Σ =




1 0 0 0
0 1

2 0 0
0 0 2

3 0
0 0 0 3

2


 ,

and E(Y 2
i , (Y ′

i )2, (Y ′′
i )2, (Y ′′′

i )2) = (1, 1/2, 2/3, 3/2).

Theorem 1. Assume that min{α1, α2} ≥ ε for some 0 < ε < 1/2. Then under
the null hypothesis H0, Rn

d−→R as n → ∞, where R has the probability density
function g(x) = (1/2)g1(x)+(1/2)g2(x), where g1(x) and g2(x) are the probability
density functions of χ2

(1) and χ2
(2), respectively.

Remark 1. If α1 and α2 are known and α1 �= α2, then under null hypothesis,
Rn

d−→χ2
(1) as n → ∞. If α1 and α2 are known and α1 = α2, then under null

hypothesis, Rn
d−→(1/2)χ2

(0) + (1/2)χ2
(1) as n → ∞.

Remark 1 can be verified, with a similar derivations as the proof of Theorem
1, by letting S1 ·Xi+S2 ·(1/2)(−1+X2

i )+S3 ·(1/6)(−3Xi+X3
i ) as the main order

term of δi if α1 �= α2, and S1 ·Xi +S2 ·(1/2)(−1+X2
i )+S4 ·(1/24)(3−6X2

i +X4
i )

as the main order term of δi if α1 = α2, respectively.

3. The Modified Likelihood Ratio Test

To avoid nonidentifiability of this model, we adopt a restriction α1 ≥ α2.
As noted by Hartigan(1985), a bounded assumption on the mean parameters is
necessary. We therefore assume that |θi| ≤ M < ∞ for i = 1, 2.

Similar to Chen et al. (2001), define the modified likelihood function

p�n(α1, α2, θ1, θ2, σ
2) =

n∑
i=1

log{α1φ(Xi; θ1, σ
2) + α2φ(Xi; θ2, σ

2)} + C log(2α2),

(3.1)
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where C > 0 is a constant used to control the level of modification. The modified
likelihood function is often called a penalized likelihood function, referring to the
penalty when α2 is close to 0.

We derive the asymptotic distribution of the modified likelihood ratio test
when H0 : N(θ0, σ

2
0) is the true distribution. Let α̂1, α̂2, θ̂1, θ̂2 and σ̂2 maxi-

mize p�n(α1, α2, θ1, θ2, σ
2) over the parameter space Ω: |θj | ≤ M, j = 1, 2, 0 <

σ2 < ∞, and let θ̂0 and σ̂2
0 maximize �n(1, 0, θ0, θ0, σ

2
0) over the parameter space

Ω0: 0 < σ2
0 < ∞. Then the modified likelihood ratio test is to reject the null

hypothesis H0 if

Mn = 2{p�n(α̂1, α̂2, θ̂1, θ̂2, σ̂
2) − p�n(

1
2
,
1
2
, θ̂0, θ̂0, σ̂

2
0)} (3.2)

is large. The asymptotic null distribution of Mn is used to determine a critical
value of the test or a P -value.

Using the fact that the ordinary likelihood ratio test over the parameter
spaces Ω and Ω0 is bounded in probability (refer to Theorem 2 in Chen and
Chen (2003)), the following result can be shown (refer to the proof of Lemma 1
in Chen et al. (2000)).

Lemma 5. Under the null hypothesis, log(2α̂2) = Op(1).

From this result, we can restrict α̂2 to the closed interval [δ1, 1/2] for a
positive constant δ1. Thus, similar to the proof of Theorem 1, We have the
following result.

Theorem 2. Under the null hypothesis H0, Mn
d−→R as n → ∞, where R has

the probability density function g(x) = g1(x)/2 + g2(x)/2, where g1(x) and g2(x)
are the probability density functions of χ2

(1) and χ2
(2), respectively.

Choice of C. According to Chen et al. (2001), an appropriate choice of C is
C = log(M) where M is the value such that |θi| ≤ M for i = 1, 2.

4. Simulation Results

A simulation experiment was conducted with the null distribution N(0, 1).
For each simulation, eleven significance levels(denoted as SL, and indicated in
the tables), and two sample sizes, n = 100 and n = 160, were considered. We
took ε = 0.01, M = 100 and C = log(M) in the simulations.

For the specified SL, the theoretical critical values (denoted as TCV) are for
the random varible with pdf g1(x)/2 + g2(x)/2, where g1(x) and g2(x) are the
probability density functions of χ2

(1) and χ2
(2), respectively. The inverse cumula-

tive distribution was approximated using the Splus procedure “uniroot”.
Simulated critical values (denoted as SCV) were simulated using 5, 000 Monte

Carlo trials for the ordinary likelihood ratio test Rn. A second set of simulated
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critical values (denoted as MSCV) were simulated using 5, 000 Monte Carlo trials
for the modified likelihood ratio test Mn. These are reported in Table 1. We can
see that, even at these relatively small sample sizes, the simulated critical values
are quite close to the theoretical values.

Table 1. Comparsion of theoretical and simulated critical values.

SL 90% 80% 70% 60% 50%

TCV 0.0492855 0.1689514 0.345352 0.5729519 0.8670388

SCV(n = 100) 0.04666001 0.1737475 0.380945 0.6809468 1.128781

SCV (n = 160) 0.04470917 0.1686727 0.3692717 0.6697447 1.071691

MSCV (n = 100) 0.03417222 0.1133761 0.2375973 0.4028322 0.6151661

MSCV(n = 160) 0.02714179 0.1113902 0.244251 0.4241742 0.6580295

SL 40% 30% 20% 10% 5% 1%

TCV 1.2474160 1.7582148 2.5016278 3.8078255 5.1383808 8.2732342

SCV (n = 100) 1.651546 2.342976 3.256938 5.106185 6.63853 10.73876

SCV (n = 160) 1.594131 2.260242 3.170333 4.963923 6.434895 9.917313

MSCV (n = 100) 0.9063974 1.343508 2.046623 3.348158 4.981956 8.885286

MSCV (n = 160) 0.9826923 1.426866 2.056794 3.274991 4.775348 8.484485

Table 2 reports simulated rejection rates (denoted as RR when using Rn,
and MRR when using Mn) under H0, using 5, 000 Monte Carlo trials for Rn and
Mn. The results suggest that in general, the level of the ordinary likelihood ratio
test is somewhat elevated over the nominal level, while for the modified LRT,
the level is slightly reduced at nominal levels of 0.05 and 0.1.

Table 2. Rejection rates under H0.

SL 90% 80% 70% 60% 50%

RR(%,n = 100) 89.64 80.28 71.62 63.5 55.64

RR(%, n = 160) 89.5 79.98 71.26 63.22 55.06

MRR(%,n = 100) 87.8 75.14 63.46 51.8 41.08

MRR(%, n = 160) 87.08 75.3 64.2 53.18 43.34

SL 40% 30% 20% 10% 5% 1%

RR(%, n = 100) 47.56 38.24 28 16.18 9.86 2.48

RR(%, n = 160) 46.34 37.3 27.14 15.48 9.26 2.2

MRR(%, n = 100) 31.74 23.66 15.52 8.36 4.72 1.36

MRR(%, n = 160) 33.52 23.96 15.52 7.62 4.34 1.08
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Additional simulations were carried out to investigate the conclusions of
Remark 1. For each of α2 = 0.5, 0.25 and 0.1, 5,000 simulation batches of size
1,000 were generated, and the associated values of Rn calculated. Quantile-
quantile plots were created for each of the target distributions χ2

(1) and 0.5χ2
(0) +

0.5χ2
(1), and are displayed in Figure 1. Observed quantiles are on the ordinate,

and theoretical quantiles are on the abscissa. The plots are supportive of Remark
1 in that when α1 = α2 = 0.5, the fit to the 0.5χ2

(0)+0.5χ2
(1) mixture is quite good,

apart from a slightly long right tail, while when α2 �= 0.5, the χ2
(1) distribution

is appropriate.
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Figure 1. χ2
(1) (left panels) and 0.5χ2

(0) + 0.5χ2
(1) (right panels) QQ plots for

the distribution of Rn when α2 = 0.5 (top row), α2 = 0.25 (middle row),
and α2 = 0.15 (bottom row).
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Appendix. Proof of Lemmas

Proof of Lemma 3. By definition,

α̂1θ̂1 + α̂2θ̂2 = S1, (A.1)

α̂1θ̂
2
1 + α̂2θ̂

2
2 + (σ̂2 − 1) = S2, (A.2)

α̂1θ̂
3
1 + α̂2θ̂

3
2 = S3, (A.3)

α̂1θ̂
4
1 + α̂2θ̂

4
2 − 3(α̂1θ̂

2
1 + α̂2θ̂

2
2)

2 = S4. (A.4)

From (A.1) and (A.2), α̂1α̂2(θ̂1 − θ̂2)2 = S2 − S2
1 − (σ̂2 − 1). It follows that

|θ̂1 − θ̂2| =
1√

α̂1α̂2

√
S2 − S2

1 − (σ̂2 − 1).

Without loss of generality, assume that

θ̂1 − θ̂2 =
1√

α̂1α̂2

√
S2 − S2

1 − (σ̂2 − 1). (A.5)

By (A.1) and (A.5),


θ̂1 = S1 +
√

α̂2

α̂1

√
S2 − S2

1 − (σ̂2 − 1),

θ̂2 = S1 −
√

α̂1

α̂2

√
S2 − S2

1 − (σ̂2 − 1).
(A.6)

From (A.3) and (A.6),

−α̂2

√
α̂2

α̂1
(σ̂2−1)

√
S2−S2

1−(σ̂2−1)+α̂1

√
α̂1

α̂2
(σ̂2−1)

√
S2 − S2

1−(σ̂2 − 1)=Op(|S|),

i.e.,
(α̂1 − α̂2)(σ̂2 − 1)

√
S2 − S2

1 − (σ̂2 − 1) = Op(|S|).
Therefore if α̂1 − α̂2 > ε0 for some small ε0, then by Lemma 2, (σ̂2 − 1){S2 −
S2

1 − (σ̂2 − 1)} = op(|S|). It follows that

(σ̂2 − 1)2 = op(|S|). (A.7)

From (A.2) and (A.7),

θ̂2
1 = op(|S|1/2), θ̂2

2 = op(|S|1/2). (A.8)

By (A.7) and (A.8), we have Lemma 3. Similarly, if α̂1 − α̂2 < ε0 for some
small ε0, by (A.1),(A.2) and (A.4) (or refer to the (A.16) in the proof of Lemma
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4), we can show that (σ̂2 − 1){S2 − S2
1 − (σ̂2 − 1)} = Op(|S|). It follows that

(σ̂2−1)2 = Op(|S|). Thus, it can be shown that θ̂2
1 = Op(|S|1/2), θ̂2

2 = Op(|S|1/2).
Then Lemma 3 follows.

Proof of Lemma 4. Consider the following four equations of α1(α2 = 1 −
α1), θ1, θ2 and σ2 − 1 :

α1θ1 + α2θ2 = S1, (A.9)

α1θ
2
1 + α2θ

2
2 + (σ2 − 1) = S2, (A.10)

α1θ
3
1 + α2θ

3
2 = S3, (A.11)

α1θ
4
1 + α2θ

4
2 − 3(α1θ

2
1 + α2θ

2
2)

2 = S4. (A.12)

Define y = S2 − S2
1 − (σ2 − 1). Then (A.9) and (A.10) imply one of

θ1 = S1 +
√

α2/α1
√

y, θ2 = S1 −
√

α1/α2
√

y, (A.13)

θ1 = S1 −
√

α2/α1
√

y, θ2 = S1 +
√

α1/α2
√

y, (A.14)

where y = α1α2(θ1 − θ2)2. (A.11) and (A.13) imply

S3
1 + 3S1y − α1 − α2√

α1α2
y3/2 = S3. (A.15)

(A.12) and (A.13) imply

(
1

α1α2
− 6)y2 − 4S1

α1 − α2√
α1α2

y3/2 − 2S4
1 = S4. (A.16)

From (A.15) and (A.16), using the fact that (α1α2)−1 = ((α1 − α2)/
√

α1α2)2 +4
and letting (α1 − α2)/

√
α1α2 = γy1/2 by introducing a new parameter γ, it can

be shown that

2y3 + 3S2
1y2 + (2S1S3 + S4)y − (S3 − S3

1)2 = 0. (A.17)

Notice that
√

nSj = Op(1) for j = 1, 2, 3, 4. We can find a positive root ỹ which
satisfies (A.17). It is also easy to see that ỹ = op(1). Using ỹ to replace y in
(A.15), we can get a solution for (α1 − α2)/

√
α1α2, and thus a solution for α1

or α2. Here we assume that 3S1ỹ − (S3 − S3
1) ≥ 0 to ensure α1 ≥ α2. If this is

not true, then we need to use (A.14) instead of (A.13) to get a similar expression
as (A.15). Let β = (α1 − α2)/

√
α1α2. Then combining with (A.13) and (A.14),

we can show that there are solutions α̃1, α̃2, θ̃1, θ̃2 and σ̃2 for equations (A.9)
through (A.12). We are going to prove that β̃ = (α̃1 − α̃2)/

√
α̃1α̃2 = βn = o(1),

a.s. If βn = o(1) is not true, there exists a constant δ > 0 and a subsequence
nk of n such that βnk

> δ. Without loss of generality, we assume that βn > δ
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for all n. Then from (A.15), ỹ = Op(n−1/3). Together with (A.17), one has
n5/6S4ỹ = op(1). Let z = |n1/2S4|n1/3ỹ. Then z = op(1), ỹ = n−1/3|n1/2S4|−1z

From (A.15) one has |n1/2S4|3/2S3 = op(n−1/2), which is a contradiction. So the
probability of the event that β̃ = o(1) is not true is 0. Therefore, β̃ = o(1), a.s.,
which is equivalent to α̃1 − α̃2 = o(1), a.s. Thus we have Lemma 4.

With the same reasoning, we can see that α̂1 − α̂2 = o(1), a.s. Therefore,
α̂2 ≥ 1/3 when n is large enough. Since α̂1θ̂

4
1 + α̂2θ̂

4
2 − 3(α̂1θ̂

2
1 + α̂2θ̂

2
2)

2 =
α̂1α̂2(θ̂2

1 − θ̂2
2)

2 −2(α̂1θ̂
2
1 + α̂2θ̂

2
2)

2, it is less than or equal to 0 as α̂2 ≥ 1/3. Hence
S4 ≤ 0, a.s.
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