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Abstract: In genetic studies of complex diseases the underlying genetic model is

usually unknown. Thus, a family of locally optimal statistics is obtained for testing

association or linkage. Utilizing two new measures based on Kullback-Leibler infor-

mation, we are able to define a family of admissible genetic models and obtain the

corresponding two optimality criteria to select robust models. The model selection

procedures described in this paper are valid regardless of sample size. The results

are applied to genetic linkage analysis using affected sibs and candidate-gene asso-

ciation tests using the case-parents design. Our results provide insight into some

commonly used statistics in the genetic linkage analysis of affected sib-pairs.
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1. Introduction

In many genetic testing problems, the alternative hypothesis is indexed by a
nuisance parameter which is not defined under the null hypothesis. For example,
in linkage analysis for affected sib-pairs, the probabilities that a sib-pair shares
i alleles identical-by-descent (IBD) pi, i = 0, 1, 2, are a mixture of two trinomial
distributions given by (e.g., Holmans (1993) and Whittemore and Tu (1998)):

(p0, p1, p2) = (1 − λ)(1/4, 1/2, 1/4) + λ(0, ψ, 1 − ψ), (1)

where ψ ∈ Ψ = [0, 1/2] and λ ∈ [0, 1]. Here one tests H0 : λ = 0 (no linkage)
against H1 : λ > 0 (linkage), where ψ ∈ Ψ is unknown and determined by the un-
derlying genetic model, e.g., under the alternative hypothesis, ψ = 0 corresponds
to a rare recessive disease and ψ = 1/2 corresponds to the disease that follows
an additive genetic model. The second example comes from candidate-gene as-
sociation tests using parents and their diseased offspring (Schaid and Sommer
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(1993)), in which

H0 : f(x;λ) = f(x; 0) = f0(x) versus H1 : f(x;λ) ∈ Ψ = {f1(x;λ), . . . , fk(x;λ)},
(2)

where fi(x;λ) = f0(x) if and only if λ = 0 for i = 1, . . . , k and k is known.
In this case, the alternative consists of a finite number of different distributions
(genetic models). In both examples, we test a null hypothesis against a family
of alternatives indexed by a one-dimensional parameter ψ which appears in the
model only under the alternative hypothesis.

Generally, let X = (X1, . . . ,Xn) be a random sample of size n with a density
(mass) function f(x;λ,ψ), where ψ is a vector of parameters. We test H0 : λ =
0 against H1 : λ > 0. Under the null hypothesis H0, f(x; 0, ψ) = f0(x) is
independent of ψ. Thus, ψ is not defined under H0. Davies (1977) considered
this problem when Ψ is a closed interval. This method was used by Shoukri
and Lathrop (1993) and Lemdani and Pons (1995) for testing linkage in genetics,
under the model f(x;λ,ψ) = (1 − λ)f(x; 1/2) + λf(x;ψ), where ψ = θ ∈ [0, 1/2]
is a recombination fraction. The asymptotic distributions of their test statistics
are either not available or intractable. Hence, Liang and Rathouz (1999) studied
another approach by estimating the recombination fraction ψ under an arbitrary
alternative model, i.e., λ = λ0 > 0. However, their approach cannot be directly
applied to the two problems described above. Since they require that the null
hypothesis can be specified by H0 : ψ = 1/2, while in our problems the null
model is uniquely defined by λ = 0, i.e., the alternative is true if λ > 0 for any ψ.

On the other hand, for problem (1), Whittemore and Tu (1998) studied the
score statistic Zψ for a fixed ψ, given by

Zψ = n−1/2
n∑
i=1

[
∂

∂λ
{log f(xi;λ,ψ)}/i(ψ)

]
λ=0

, (3)

where f(xi;λ,ψ) is the likelihood function for the i sib-pair and

{i(ψ)}2 = Var H0

[
∂

∂λ
{log f(xi;λ,ψ)}

]
.

They replaced ψ in Zψ with a fixed value ψ(0) ∈ Ψ that minimizes the maxi-
mum relative efficiency loss when an incorrect ψ is used under the alternative.
Gastwirth and Freidlin (2000) showed that the robust score test Zψ(0) of Whitte-
more and Tu (1998) can be easily obtained as the maximin efficiency robust test
(MERT) (Gastwirth (1985)), under which ψ is selected to maximize the min-
imum asymptotic relative efficiency of Zψ relative to Zψ∗ when ψ∗ is the true
value.
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The purpose of this paper is to define two new measures using Kullback-
Leibler information (Kullback (1959)) to obtain a family of admissible genetic
models. We also obtain two optimality criteria to select a robust genetic model
for testing H0 : λ = 0 against H1 : λ > 0, when the null hypotheses can be
uniquely determined by λ = 0. The methods are applied to the genetic testing
problems described above.

The rest of the paper is organized as follows. In Section 2, two measures
based on Kullback-Leibler information are introduced. Two robust criteria and
their properties are given in Section 3. In Section 4, the insight into commonly
used tests in the linkage analysis of affected sib-pairs provided by the measures
is presented. The results are also applied to model selection for linkage analy-
sis using affected sib triples and for the candidate-gene association tests using
parents and their diseased offspring.

2. Kullback-Leibler Information and Related Measures

2.1. Kullback-Leibler information

Let Hi, i = 1, 2 be two hypotheses with corresponding density (mass) func-
tions fi(x). The expected information contained in a single random variable X
in favor of H2 against H1 is given by

K(H2 : H1) =
∫

log
{
f2(x)
f1(x)

}
dF2(x) =

∫
f2(x) log

{
f2(x)
f1(x)

}
dµ(x)

with respect to some measure µ. Here K(H2 : H1) is called the Kullback-Leibler
information (KLI) for discriminating H2 from H1 when the hypothesis H2 is true;
it measures the divergence or distance between two hypotheses H1 and H2. Note
that K(H2 : H1) ≥ 0, where the equality holds if and only if H1 = H2. Korol,
Ronin and Kirzhner (1996) and Chernoff (1999) have applied KLI to problems
in genetics.

The KLI assumes that the underlying model (F2) is known. In our applica-
tions, however, the true model is indexed by a nuisance parameter. We define
two new measures using KLI when the true model is unknown. Let H0, H1 and
H∗

1 be the null model, the selected alternative model, and the true model, re-
spectively. In the following, H1 ∈ Ψ means that the value of the parameter ψ
corresponding to H1 is contained in Ψ.

2.2. Kullback-Leibler information difference for three hypotheses

Given three hypotheses H0, H1 and H∗
1 , the difference of two KLI, denoted

by ∆(H1,H0|H∗
1 ), is defined as

∆(H1,H0|H∗
1 ) = K(H∗

1 : H0) −K(H∗
1 : H1) =

∫
log

{
f1(x)
f0(x)

}
dF ∗

1 (x), (4)
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where dF ∗
1 (x)/dµ(x) = f∗1 (x) = f(x;λ,ψ∗), λ > 0, is the corresponding density

(mass) function under the true model H∗
1 . Note that λ and ψ∗ specify the

true density function f∗1 . From (4), ∆(H1,H0|H∗
1 ) is the expected value of the

logarithm of the likelihood ratio with respect to the (unknown) true model. Note
that (4) reduces to the KLI when f∗1 = f1. If f∗1 �= f1, ∆(H1,H0|H∗

1 ) need not
have two properties of KLI, i.e., in some situations, ∆(H1,H0|H∗

1 ) < 0 when
f∗1 �= f1 and ∆(H1,H0|H∗

1 ) = 0 does not imply H1 = H0.

Example 2.1. Consider testing for a mixture of trinomial distributions:

H0 : p0 = (p0
1, p

0
2, p

0
3) against

H1 : p1 = (1 − λ)(p0
1, p

0
2, p

0
3) + λ (π1(ψ), π2(ψ), π3(ψ)) ,

where ψ ∈ Ψ and λ ∈ [0, 1], and πi(ψ) ≥ 0 with
∑
πi(ψ) = 1. Then we have

∆(H1 : H0|H∗
1 ) = n

3∑
i=1

{
(1 − λ)p0

i + λπi(ψ∗)
}

log
[
{(1 − λ)p0

i + λπi(ψ)}/p0
i

]
,

where n = n1+n2+n3 and ni is the count for the ith category. The testing prob-
lem (1) is a special case with (p0

1, p
0
2, p

0
3)=(1/4, 1/2, 1/4) and (π1(ψ), π2(ψ), π3(ψ))

= (0, ψ, 1 − ψ). In (1), let λ = 0.5 and ψ∗ = 0.5 and n = 1, say. If we select a
model with ψ = 0, then ∆(H1 : H0|H∗

1 ) = −0.08961 < 0. Thus, ∆(H1 : H0|H∗
1 )

can be negative in contrast to the usual KLI.

Example 2.2. For discriminating N(ψ, 1) from N(0, 1), when N(ψ∗, 1) is true,
∆(H1 : H0|H∗

1 ) = ψ(ψ∗ − ψ/2). If 0 /∈ Ψ, ∆(H1 : H0|H∗
1 ) = 0 if and only if

ψ = 2ψ∗. This shows that ∆(H1 : H0|H∗
1 ) = 0 does not necessarily imply that

H1 = H0.

Note that ∆(H1,H0|H∗
1 ) measures how much closer H1 (that we select) is

to the true model H∗
1 than H0 is. The upper bound of ∆(H1,H0|H∗

1 ) is reached
when H1 = H∗

1 . Given H∗
1 �= H0, the aim is to select a model H1 as close

to H∗
1 as possible. Thus, intuitively, if H1 is a good model, it should satisfy

∆(H1 : H0|H∗
1 ) > 0 for all possible H∗

1 ∈ Ψ. This leads to the following definition
of an admissible model.

Definition 2.1. For fixed λ > 0, a model H1 ∈ Ψ is called λ-admissible if
∆(H1 : H0|H∗

1 ) ≥ 0 is non-negative for any H∗
1 ∈ Ψ.

Denote the set of all λ-admissible models as Aλ, called the λ-admissible set.
Obviously, Aλ ⊂ Ψ. The λ-admissible set might be empty for a specific testing
problem. Moreover, for some λ > 0, the true model H∗

1 itself may not be in
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the λ-admissible set unless Aλ = Ψ for all λ > 0. An example illustrating this
phenomenon will be given in Section 4.

2.3. Kullback-Leibler information ratio for three hypotheses

In addition to the difference between two KLI, we consider the ratio of two
KLI, denoted by R(H1 : H0|H∗

1 ), which is defined as follows:

R(H1 : H0|H∗
1 ) =

K(H∗
1 : H1)

K(H∗
1 : H0)

, (5)

when H∗
1 �= H0. When H1 �= H0 = H∗

1 , R(H1 : H0|H∗
1 ) is defined to be ∞.

Similarly, R(H1 : H0|H∗
1 ) = 0 if H1 = H0 = H∗

1 .
Given H∗

1 �= H0, we want to select H1 with R(H1 : H0|H∗
1 ) < 1. The two

measures ∆(H1 : H0|H∗
1 ) and R(H1 : H0|H∗

1 ) are related by

R(H1 : H0|H∗
1 ) =

∆(H∗
1 : H0|H∗

1 ) − ∆(H1 : H0|H∗
1 )

∆(H∗
1 : H0|H∗

1 )
. (6)

Thus, R(H1 : H0|H∗
1 ) = 0 if the true model is selected. Hence R(H1 : H0|H∗

1 )
can be thought as a relative loss due to selecting a wrong model H1 �= H∗

1 . It
is easy to see R(H1 : H0|H∗

1 ) ≥ 0 with equality holding if and only if H1 = H∗
1 .

For H1 ∈ Aλ, 0 ≤ R(H1 : H0|H∗
1 ) ≤ 1, where R(H1 : H0|H∗

1 ) = 1 if and only if
K(H∗

1 : H0) = K(H∗
1 : H1) �= 0. Using (5), a model is λ-admissible if and only if

R(H1 : H0|H∗
1 ) ≤ 1.

3. Two Robustness Criteria Based on Kullback-Leibler Information

3.1. The maximin criterion

From (4), the KLI K(H∗
1 : H0) is an upper bound for ∆(H1 : H0|H∗

1 ), i.e.,
∆(H1 : H0|H∗

1 ) ≤ K(H∗
1 : H0) for any H1 and H∗

1 . Given the true model H∗
1 , a

larger value of ∆(H1 : H0|H∗
1 ) indicates that H1 is closer to the true model (H∗

1 )
than H0. However, the true model is unknown. Thus, we may consider selecting
a value of ψ (or an alternative model) such that it maximizes the minimum
∆(H1 : H0|H∗

1 ).

Definition 3.1.(Maximin criterion). For fixed λ > 0 and any H1 ∈ Ψ, a λ-
maximin model, denoted by HMAXMIN

1 ∈ Ψ (or ψMAXMIN ∈ Ψ), satisfies

inf
H∗

1∈Ψ
∆(HMAXMIN

1 : H0|H∗
1 ) ≥ inf

H∗
1∈Ψ

∆(H1 : H0|H∗
1 ). (7)

Recall that ∆(H1 : H0|H∗
1 ) is a function of both λ and ψ∗ so when λ is fixed, one

is concerned with choice of ψ. If there exists ε > 0 and (7) holds for any H1 ∈ Ψ
and for 0 < λ < ε, then the model is called a local maximin model, also denoted
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by HMAXMIN
1 . Note that the local maximin model is a λ-maximin model with

0 < λ < ε for some small ε > 0.
In practice, λ is not known, so we are only interested in selecting a local

maximin model. The local maximin model can be found numerically as shown
later. Denote the complement of Aλ by ACλ . The following result, proved in
Appendix A, gives the properties of the admissible set of models and the maximin
model.

Theorem 3.1. Assume Aλ is not empty for a fixed λ > 0. Then any model
H1 ∈ Aλ has greater minimum ∆(H1 : H0|H∗

1 ) than models in ACλ . Thus, a
maximin model is admissible. Further

sup
H1∈Ψ

inf
H∗

1∈Ψ
∆(H1 : H0|H∗

1 ) ≥ 0. (8)

Equality holds if and only if there is a sequence of alternatives H∗
1,k ∈ Ψ, k =

1, 2, . . ., such that K(H∗
1,k : H0) → 0 as k → ∞.

Theorem 3.1 shows that the λ-maximin model in Ψ is only contained in the
subset Aλ. Further, for any model contained in Acλ, there exists a true model such
that ∆(H1 : H0|H∗

1 ) is negative, i.e., models in Acλ are not robust. Moreover, the
conclusions of Theorem 3.1 hold for a local maximin model. We are not interested
in selecting a model where equality in (8) holds, as this would imply that the
optimal robust model selected is as close to the true model as the null model is.
An example for which equality in (8) holds is H0 ∈ Ψ̄, the compact closure of Ψ.
In this case, infH∗

1∈Ψ ∆(H1 : H0|H∗
1 ) ≤ ∆(H1 : H0|H0) = −∆(H0 : H1|H0) ≤ 0.

Thus HMAXMIN
1 = H0 by Definition 3.1 when equality in (8) holds, which shows

the λ-maximin model can be used only if H0 /∈ Ψ̄. Hence the equality in (8) does
not hold for the two testing problems described in Section 1.

3.2. The minimax criterion

Minimax models based on the ratio of two KLI in (5) are defined as follows:

Definition 3.2.(Minimax criterion). When the true model H∗
1 is not known

and H∗
1 �= H0, for any H1 ∈ Ψ and fixed λ > 0, a model, HMINMAX

1 ∈ Ψ (or
ψMINMAX ∈ Ψ), is called a λ-minimax model if it satisfies

sup
H∗

1∈Ψ
R(HMINMAX

1 : H0|H∗
1 ) ≤ sup

H∗
1∈Ψ

R(H1 : H0|H∗
1 ).

A local minimax model, also denoted by HMINMAX
1 , can be defined analogously

to the local maximin model.

In practice, we only interested in a local minimax model. If H0 ∈ Ψ̄, we show
that HMINMAX

1 = H0 in Appendix B. As in the case of the maximin models, the



USING KULLBACK-LEIBLER INFORMATION FOR MODEL SELECTION 1027

minimax models can be used only if there is a neighborhood of H0 contained
in the complement of Ψ. For the relative loss (6), the analog of Theorem 3.1 is
proved similarly.

Theorem 3.2. If Aλ is not empty for a fixed λ > 0, then any model H1 ∈ Aλ
has smaller maximum relative loss than the models in ACλ . This implies that a
minimax model is admissible.

Like Theorem 3.1, Theorem 3.2 shows that the λ-minimax model is only
contained in Aλ. Generally, for statistical estimation, explicit minimax estimates
are not easy to obtain and each problem must be treated on its own merits
(Lehmann (1987)). The same is true for finding the maximin and minimax
model for testing. Numerical computation is required to find the local maximin
and minimax models for each problem. Note that ψMAXMIN and ψMINMAX only
depend on the set of models and do not depend on test statistics, data or sample
size. The test statistics ZψMAXMIN and ZψMINMAX follow an asymptotic standard
normal distribution under the null hypothesis.

4. Applications to Genetic Testing Problems

In this section, we consider applications of robust model selection for testing
association (Section 4.1), testing genetic linkage using affected sib pairs (Section
4.2) and using affected sib triples (Section 4.3). These results provide insight
into commonly used test statistics.

4.1. Candidate-gene association study using parents and their diseased
offspring

Association studies using parents and their diseased offspring offer a powerful
approach for studying the association of a disease with a candidate gene when
there is linkage (Spielman, McGinnis and Ewens (1993), Schaid and Sommer
(1993), Curnow, Morris and Whittaker (1998) and Ewens (1999)). In these
studies the family is ascertained by first obtaining an affected child.

Among the six parental mating types, only (a) MM ×MN , (b) MN ×MN ,
and (c) MN ×NN , where M is the disease allele and N is the normal allele, are
informative, i.e., the offspring genotype conditional probabilities differ for these
mating types. Denote the probabilities of disease, conditional on genotypes at
the candidate-gene locus, as f0 = Pr(disease|NN), f1 = Pr(disease|MN), and
f2 = Pr(disease|MM). Define relative risks r1 = f1/f0 and r2 = f2/f0. Using
relative risks, four basic genetic models are (i) recessive (r1 = 1, r2 = r), (ii)
multiplicative (r1 = r1/2, r2 = r), (iii) additive (r1 = (1 + r)/2, r2 = r), and
(iv) dominant (r1 = r2 = r). Let λ = r − 1. From (2), the null hypothesis
becomes H0 : r = 1 against H1 : r > 1. Under H0, r1 = r2 = 1 for each of
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the four models, which implies that f0 = f1 = f2. Under the alternative, the
four genetic models are different. We use symbols MT for mating type, D for
disease and O for offspring. From Schaid and Sommer (1993), for mating type
(a), the genotype of diseased offspring is either MM or MN and, conditional
on the mating type, Pr(O = MM |MT = (a),O = D) = r2/(r1 + r2). Similarly,
for mating type (c), the genotype of diseased offspring (MN or NN) conditional
on the mating type has Pr(O = MN |MT = (c),O = D) = r1/(1 + r1). For
mating type (b), the conditional distribution of NN,MN , or MM is trinomial
with p0 = Pr(O = NN |MT = (b),O = D) = 1/(r2 + 2r1 + 1), p1 = Pr(O =
MN |MT = (b),O = D) = 2r1/(r2 + 2r1 + 1), and p2 = 1 − p0 − p1. For either
mating type (a) or (c), the efficient score tests for r = 1 against r > 1 are identical
for the four models (Zheng, Freidlin and Gastwirth (2002)), so there is no need
for model selection for these two mating types. However, the score tests are
different under different models for mating type (b) (see below). Conditional on
the mating type, data from mating types (a), (b) and (c) are independent. Thus
each mating type can be regarded as a stratum. The remainder of the section
focuses on model selection for mating type (b). Once an optimal test statistic is
obtained for mating type (b), it is combined with the optimal test statistics for
the other two mating types. Note that in Zheng, Freidlin and Gastwirth (2002),
MERT is a linear combination of Zrec and Zdom, which is identical to Zadd for
mating type (b).

Under the null r = 1, (p0, p1, p2) = (1/4, 1/2, 1/4) for all four models as
the disease is not related to the gene. Let n = n0 + n1 + n2, where ni is the
count of cases with i M alleles, i = 0, 1, 2. The likelihood function under the null
is L0 ∝ (1/4)n2(1/2)n1(1/4)n0 , and under the alternative it is L1 ∝ pn2

2 pn1
1 pn0

0 ,
where p0, p1, and p2 are functions of r > 1. Thus, from (3), the efficient score
tests under four models are given by Zadd = Zmul = n1/2(p̂0 − p̂2)/(1/2)1/2,
Zrec = n1/2(3p̂2 − p̂1 − p̂0)/31/2, and Zdom = n1/2(p̂1 + p̂2 − 3p̂0)/31/2, where
p̂i = ni/n for i = 0, 1, 2, and where “add” stands for additive, etc. Hence the
optimal test depends on the underlying genetic model, which usually is unknown
for complex diseases. Thus, the results of Section 3 can be applied to the testing
problem.

Under the alternative, we calculate ∆(H1 : H0|H∗
1 ). For example, if we select

the dominant model but the true model is recessive, then using (4) one obtains
∆(H1 = dom : H0|H∗

1 = rec) = n[log{4/(3r + 1)} + {(r + 2)/(r + 3)} log r] and
∆(H1 = rec : H0|H∗

1 = rec) = n[log{4/(r + 3)} + {r/(r + 3)} log r]. Thus, the
relative loss, denoted by R(dom|rec) = R(H1 = dom : H0|H∗

1 = rec), is

R(dom|rec) =
log{(3r + 1)/(r + 3)} − {2/(r + 3)} log r

log{4/(r + 3)} + {r/(r + 3)} log r
,
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where the numerator is the absolute loss. For the four different models, we have
a total of twelve expressions for the relative (absolute) loss in terms of KLI.

To find a local minimax model for each selected model H1, we first want to
choose the true model H∗

1 with the maximum relative loss R(H1|H∗
1 ) as r → 1.

Then we select the alternative H1 that minimizes this relative loss. For example,
when 1 < r < 2 and H1 is additive, the model H∗

1 maximizing the relative
loss is the recessive model. In fact, the (H1,H

∗
1 ) pairs yielding the maximum

relative loss are (dom, mul), (rec, dom), (add, rec) and (mul, dom). Then,
from these pairs, we find H1 with the smallest relative loss R(H1|H∗

1 ) as r → 1.
This is the minimax model. For 1 < r < 2, R(add|rec) is the smallest among
the four pairs. Thus, the additive model is the minimax one. However, as
r → 1, limR(add|rec) = limR(mul|dom). It can also be shown that the relative
loss converges to zero as r → 1 if we select the multiplicative model when the
additive model is actually true, and vice verse. This is not surprising since Zadd =
Zmul. Similarly, one can show that the maximin model for this problem is also
additive. Thus the minimax and maximin models yield the same locally optimal
test statistic Zadd, which is also Zmul. It can be verified that the additive and
multiplicative models are admissible as r → 1, but ∆(H1 = dom : H0|H∗

1 = rec)
and ∆(H1 = rec : H0|H∗

1 = dom) are negative as r → 1. Thus the dominant and
recessive models are not locally admissible.

4.2. Linkage analysis using affected sib-pairs

Nonparametric linkage analysis based on IBD sharing of affected sib-pairs
is known to be robust to the inherent uncertainty about the precise underlying
genetic model for diseases. For the mixture model (1), let ni be the observed
numbers of pairs sharing i = 0, 1, 2 alleles IBD, and n = n0 +n1 +n2. One family
of nonparametric test statistics consists of the weighted averages of the observed
frequencies (ni/n, i = 0, 1, 2) of sib-pairs sharing alleles IBD. The likelihood
function is proportional to pn0

0 pn1
1 pn2

2 . From (3), the efficient score test for H0 :
λ = 0 is Zψ = {n2(3 − 4ψ) − n1(1 − 2ψ) − n0}/{n(6ψ2 − 8ψ + 3)}1/2, where
ψ ∈ [0, 1/2] is unknown. Several tests have been proposed for testing H0. The
means test Z.5 = n1/2(2p̂2 + p̂1 − 1)/(1/2)1/2 , obtained by setting ψ = 0.5,
where p̂i = ni/n, compares the observed (2n2 + n1)/n of alleles shared IBD
by sib-pairs with its null expectation, 2(1/4) + 1/2 = 1. The proportions test
Z0 = n1/2(4p̂2 − 1)/31/2 compares the proportion p̂2 of sib-pairs sharing two
alleles IBD to 1/4. Both the means test and proportions tests were studied by
Suarez, Rice and Reich (1978), Blackwelder and Elston (1985) and Schaid and
Nick (1990). Recent research is summarized in Shih and Whittemore (2001).
The robust minimax or MERT (Whittemore and Tu (1998) and Gastwirth and
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Freidlin (2000)) corresponds to ψ = (3 − 61/2)/(4 − 61/2) ≈ 0.355. Feingold and
Siegmund (1997) suggested another robust test by setting ψ = 0.25.

First, we numerically find the local admissible models. We compute the
values of ∆(H1 : H0|H∗

1 ) for λ = 0.00001, 0.0001, and from 0.001 to 0.999
with a step size of 0.001 and both ψ∗ and ψ from 0.01 to 0.50 with a step
size of .01, and find Aλ for these values. It seems that the admissible set is
an interval Aλ = [L, 0.50], where L is a decreasing function of λ > 0. When
λ = 0.00001, 0.0001, 0.001, Aλ = [0.22, 0.50]. It follows that any selected model
H1 with ψ ≥ 0.22 will be admissible for λ ≥ 0.00001. Therefore, as λ→ 0, Aλ =
[0.22, 0.50] defines a family of locally optimal robust tests for genetic linkage using
affected sib-pairs. Note tests specified by ψ = 0.25, ψ = 0.355, and ψ = 0.50, are
admissible. The proportions test, corresponding to ψ = 0 ∈ ACλ , is not. This is
because ∆(H1 : H0|H∗

1 ) < 0 when the recessive model is selected (H1) and the
true model (H∗

1 ) is additive. This is consistent with the results in Whittemore
and Tu (1998) and Gastwirth and Freidlin (2000) indicating that the proportions
test has low power when the additive model holds.

The results of Section 3 can now be applied to select a value of ψ for the
robust Zψ. To find ψMAXMIN, it is easy to show that, under the alternative
hypothesis, (1 + λ)p1 < 2p2 for λ > 0. For any fixed alternative model, ∆(H1 :
H0|H∗

1 ) only depends on ψ∗. It can be shown that ∂∆(H1 : H0|H∗
1 )/∂ψ∗ =

nλ log{p1/(2p2)} < 0. Thus infψ∗ ∆(H1 : H0|H∗
1 ) = ∆(H1 : H0|H∗

1 )|ψ∗=0.5.
Then for ψ ∈ [0, 1/2], we have ∂{∆(H1 : H0|H∗

1 )|ψ∗=0.5}/∂ψ = nλ{2/p1 − (1 +
λ)/p2}/4 > 0. Thus ψMAXMIN = 0.5 for any λ ∈ (0, 1]. Hence the means test,
Z0.5, is the optimal test under the maximin criterion. This result may underlie
those of Blackwelder and Elston (1985), Schaid and Nick (1990) and Knapp,
Seuchter and Baur (1994), who found that the means test is quite powerful for a
wide variety of genetic models.

Next we find ψMINMAX for the relative loss criterion. In most cases, the
explicit ψMINMAX is not available (see discussion in Section 3.2). However, for
the trinomial distribution, one can show (Appendix C) that the local ψMINMAX

satisfies 10ψ2 − 12ψ + 3 = 0, which has only one root in [0, 1/2]. The valid root
is ψMINMAX = (3 − 61/2)/(4 − 61/2). Thus, ZψMINMAX coincides with the MERT.

Using KLI and two robust criteria, we show that the means test is optimal
under the maximin criterion and that the MERT is optimal under the minimax
criterion while the proportions test is not admissible based on the KLI criteria.

4.3. Linkage analysis using affected sib-triples

For n affected sib-triples, there are four possible IBD configurations for three
affected sibs. Following Whittemore and Tu (1998), let pi be true IBD probability
for affected sib-triples, i = 0, 1, 2, 3, where

∑3
i=0 pi = 1. Note that three possible



USING KULLBACK-LEIBLER INFORMATION FOR MODEL SELECTION 1031

sib-pairs can be obtained from one sib-triple. Let p0 be the probability that one
sib-pair shares two alleles IBD and that the remaining two sib-pairs share one
allele each, p1 the probability that all three sib-pairs share two alleles IBD, p2 the
probability that two sib-pairs share one allele IBD and that the remaining one sib-
pair shares zero allele IBD, and p3 the probability that one sib-pair shares two
alleles IBD and that the remaining two sib-pairs share zero allele IBD. Under
the null hypothesis of no linkage, p = (p0, p1, p2, p3) = (3/8, 1/16, 3/8, 3/16).
Whittemore and Tu (1998) considered the following family of distributions for
possible linkage,

Fa,b =
{
p : p = (1 − λ)(

3
8
,

1
16
,
3
8
,

3
16

) + λ(a, b, 0, 1 − a− b);λ ∈ [0, 1]
}
, (9)

where a and b are nuisance parameters determined by the underlying genetic
model and satisfy the constraints (i) 0 ≤ a ≤ 3/4, (ii) 7/40 ≤ b ≤ 1, (iii) a+b ≤ 1,
and (iv) 6a+ 8b ≥ 5. These constraints form the nuisance parameter space Ψ, a
closed convex set in R2 with five vertices: (a1, b1) = (0, 1), (a2, b2) = (0, 0.625),
(a3, b3) = (0.6, 0.175), (a4, b4) = (0.75, 0.175) and (a5, b5) = (0.75, 0.25).

Under (9), we test H0 : λ = 0 against H1 : λ > 0 (with linkage), where the
alternative is indexed by two nuisance parameters a and b, undefined under the
null. The locally optimal test statistic for H0 : λ = 0 for the family Fa,b, when a
and b are fixed, can be written (Whittemore and Tu (1998))

Za,b =
n1/2[w0(p̂0 − 3/8) + (p̂1 − 1/16) + w2(p̂2 − 3/8)]

[15(w2
0 + w2

2)/64 − 9w0w2/32 − 6(w0 + w2)/128 + 15/256]1/2
, (10)

where p̂i = ni/n, i = 0, 1, 2, 3, are observed frequencies, w0 = (3a/2 + b −
1)/(a + 4b − 1) and w2 = (a + b − 1)/(a + 4b − 1), (a, b) ∈ Ψ. Several com-
mon test statistics can be obtained from (10). If (a, b) = (a5, b5), Za5,b5 =
n1/2(p̂0/2+ p̂1−1/4)/(3/32)1/2 is the means test, and if (a, b) = (a1, b1), Za1,b1 =
n1/2(p̂1 − 1/16)/(15/256)1/2 is the proportions test. Whittemore and Tu (1998)
obtained the robust test with (aWT , bWT ) = (0.532, 0.307), which is also the
MERT (Gastwirth and Freidlin (2000)). Under the null, Za,b has an asymptotic
standard normal distribution for fixed a and b.

Let v1(a) = λa + (3/8)(1 − λ), v2(b) = λb + (1/16)(1 − λ) and v3(a, b) =
λ(1 − a− b) + (3/16)(1 − λ). Then

∆(H1 : H0|H∗
1 ) = EH∗

1

{
log(

Lλ
L0

)
}

= nv1(a∗) log[
8
3
v1(a)] + nv2(b∗) log[16v2(b)]

+n[
3
8
(1 − λ)] log(1 − λ) + nv3(a∗, b∗) log[

16
3
v3(a, b)]. (11)

Hence the KLI can be obtained as

K(H1 : H0) = ∆(H1 : H0|H∗
1 )|(a∗=a,b∗=b). (12)
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From (11) and (12) with H1 replaced by H∗
1 in (12), and the identity K(H∗

1 :
H1) = K(H∗

1 : H0) − ∆(H1 : H0|H∗
1 ), we have

K(H∗
1 : H1) = nv1(a∗) log[v1(a∗)/v1(a)] + nv2(b∗) log[v2(b∗)/v2(b)]

+nv3(a∗, b∗) log[v3(a∗, b∗)/v3(a, b)]. (13)

Hence, we can also obtain the relative loss R(H1 : H0|H∗
1 ) from (11), (12) and

(13).
Numerical results show that the local maximin and minimax models corre-

spond to (a, b) = (a3, b3) = (0.6, 0.175) and (a, b) = (0.508, 0.323), respectively
(based on λ = 0.001, 0.0001, 0.00001). Note that the minimax model is close
to that of Whittemore and Tu (1998) with (a, b) = (0.532, 0.307). Further, for
λ = 0.00001 and an increment of 0.005 for both a∗ and b∗ for (a∗, b∗) ∈ Ψ,
numerical results show that (a, b) corresponds to the MERT and means test is
admissible but not admissible for the proportions test. As in Whittemore and Tu
(1998), we calculate the sample size required by the proportions test (PROP),
means test (MEAN), MERT, minimax test and maximin test to achieve the
same asymptotic power as that achieved by the locally optimal test based on
100 sib-triples for each vertex of Ψ and two inner points of Ψ. The columns for
proportions test, means test and MERT are the same as those of Whittemore
and Tu (1998). The results are reported in Table 1.

Table 1. Sample size required for the same asymptotic power as is shown by
the optimal 1df test, based on 100 affected sib-triples.

Sample size required for
PROP MEAN MERT Minimax Maximin
a = 0 a = 0.75 a = 0.532 a = 0.508 a = 0.6

True value (a∗, b∗) b = 1 b = 0.25 b = 0.307 b = 0.323 b = 0.175
(a1, b1) = (0, 1) 100 250 137 130 333
(a2, b2) = (0, 0.625) 111 400 147 137 243
(a3, b3) = (0.6, 0.175) 333 133 123 128 100
(a4, b4) = (0.75, 0.175) 472 106 146 158 121
(a5, b5) = (0.75, 0.25) 250 100 126 132 133
Inner point: (0.3, 0.6) 102 190 117 113 222
Inner point: (0.375, 0.375) 118 188 109 106 156

From Table 1, we see that the sample sizes required by the minimax test are
similar to those of the MERT. The MERT requires smaller sample sizes in the
part of parameter space near the three vertices (a3, b3), (a4, b4) and (a5, b5), while
the minimax test requires smaller sample sizes in the other part of the parameter
space. The sample sizes for the maximin test are smaller than the MERT and the
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minimax test when the underlying genetic models are specified by (a3, b3) and
(a4, b4). If we compare the largest sample size required by these tests, the MERT
has the smallest (147) followed by the minimax (158), maximin (333), means
test (400) and proportions test (472). Thus, when there is no knowledge of the
underlying mode of inheritance, the MERT can be used to design the study.

5. Conclusion

We applied the Kullback-Leibler information to the selection of a robust
model for testing problems when the true model is unknown, and examined the
robustness properties of statistical tests. The approach can handle non-standard
testing problems where the null model can be uniquely expressed but the family
of alternative models is indexed by a nuisance parameter (continuous or discrete).
For either criteria, given a family of models, we obtain a corresponding family of
robust procedures (those based on the admissible set in the nuisance parameter
space). The results provide insight into the commonly used tests in genetic
linkage analysis for affected sib-pairs or sib-triples, and robust candidate-gene
association tests. For linkage analysis using affected sib-pairs, both the means
test and MERT, are admissible. For candidate-gene association studies, the
additive and multiplicative models, which are locally equivalent, are admissible.
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Appendix. Proofs

A. Proof of Theorem 3.1

Since ACλ = {H1 : ∆(H1 : H0|H̃∗
1 ) < 0, for some true model H̃∗

1 ∈ Ψ}, for
any H(1)

1 ∈ Aλ and any H(2)
1 ∈ ACλ , ∆(H(1)

1 : H0|H∗
1 ) ≥ 0 > ∆(H(2)

1 : H0|H̃∗
1 ) for

any H∗
1 ∈ Ψ and some H̃∗

1 ∈ Ψ. This implies

inf
H∗

1∈Ψ
∆(H(1)

1 : H0|H∗
1 ) ≥ 0 > inf

H∗
1∈Ψ

∆(H(2)
1 : H0|H∗

1 ). (14)

Thus HMAXMIN
1 ∈ Aλ and (8) follows from (14). If the equality in (8) holds, then

infH∗
1∈Ψ ∆(H1 : H0|H∗

1 ) ≤ 0 for any H1 ∈ Ψ. Thus for any ε > 0, there exists
H∗

1 (ε) ∈ Ψ such that ∆(H1 : H0|H∗
1 (ε)) < ε for any H1 ∈ Ψ, which implies that

∆(H∗
1 (ε) : H0|H∗

1 (ε)) → 0 as ε→ 0. On the other hand, let H∗
1,k ∈ Ψ be such that

K(H∗
1,k : H0) → 0 as k → ∞. Then infH∗

1
∆(H1 : H0|H∗

1 ) ≤ ∆(H1 : H0|H∗
1,k) ≤
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K(H∗
1,k : H0), for any H1 ∈ Ψ. This implies that infH∗

1∈Ψ ∆(H1 : H0|H∗
1 ) ≤ 0 for

any H1 ∈ Ψ. Thus the equality in (8) holds.

B. Proof that HMINMAX
1 = H0 when H0 ∈ Ψ̄

Suppose there is at least one H1 ∈ Ψ such that H1 �= H0. If we select
H1 �= H0, then supH∗

1∈ΨR(H1 : H0|H∗
1 ) ≥ R(H1 : H0|H0) = ∞ by definition.

Thus supH∗
1∈ΨR(H1 : H0|H∗

1 ) = ∞ if H1 �= H0. If we select H1 = H0, then,
by definition, R(H1 : H0|H∗

1 ) = 1 if H1 = H0 �= H∗
1 and 0 if H1 = H0 =

H∗
1 . Thus supH∗

1∈ΨR(H1 : H0|H∗
1 ) = 1 for H1 = H0 and the lower bound of

supH∗
1∈ΨR(H1 : H0|H∗

1 ) is reached when H1 = H0. Thus HMINMAX
1 = H0.

C. Find minimax model

Theorem. Let trinomial probabilities πi(ψ), i = 1, 2, 3, be parameterized as lin-
ear functions of ψ. Under the null hypothesis, (π1(ψ), π2(ψ), π3(ψ)) = (p0

1, p
0
2, p

0
3)

is independent of ψ. Assume that Aλ is not empty for a fixed λ > 0. Let
ψ∗ ∈ [L,U ] be the true value, ψ ∈ [L,U ] be the value selected under the alter-
native, and ψMINMAX ∈ [L,U ] be the local minimax model. Then, for the fixed
λ ∈ (0, 1], we have the following
(a) ∂R(ψ|ψ∗)/∂ψ∗ ≤ (=,≥)0 when ψ∗ < (=, >)ψ for ψ ∈ Aλ. Moreover,

R(ψ|ψ∗) is a strictly convex function of ψ for ψ∗ ∈ [L,U ] and the minimum
relative loss is reached when ψ = ψ∗.

(b) There exist L1 and U1: L ≤ L1 ≤ U1 ≤ U such that Aλ = [L1, U1].
(c) The minimax model ψ uniquely exists and is the unique root of

R(H1 : H0|H∗
1 )|ψ∗=U = R(H1 : H0|H∗

1 )|ψ∗=L. (15)

(d) As λ→ 0, the local ψMINMAX ∈ [L,U ] satisfies the quadratic equation∑
i{πi(ψ) − p0

i }{2πi(U) − p0
i − πi(ψ)}/p0

i∑
i{πi(U) − p0

i }2/p0
i

=
∑
i{πi(ψ) − p0

i }{2πi(L) − p0
i − πi(ψ)}/p0

i∑
i{πi(L) − p0

i }2/p0
i

. (16)

Proof.
(a) Denote R(ψ|ψ∗) = R(H1 : H0|H∗

1 ). First we prove R(ψ|ψ∗) is convex
about ψ∗. Denote ai(ψ) = {(1 − λ)p0

i + λπi(ψ)}/p0
i , where λ ∈ (0, 1].

Then ∆(H1 : H0|H∗
1 ) = n

∑
i p

0
i ai(ψ

∗) log ai(ψ) and K(H∗
1 : H0) = ∆(H1 :

H0|H∗
1 )|ψ=ψ∗ . For a fixed ψ ∈ [L,U ], we have ∂∆(H1 : H0|H∗

1 )/∂ψ∗ =
n

∑
i p

0
i a

′
i(ψ

∗) log ai(ψ) and ∂K(H∗
1 : H0)/∂ψ∗ = ∂∆(H1 : H0|H∗

1 )/∂ψ∗|ψ=ψ∗ .
Then ∂R(ψ|ψ∗)/∂ψ∗ = −R2(ψ|ψ∗)/K2(H∗

1 : H0), where

R2(ψ|ψ∗)=K(H∗
1 : H0)

∂

∂ψ∗∆(H1 : H0|H∗
1 )−∆(H1 : H0|H∗

1 )
∂

∂ψ∗K(H∗
1 : H0).
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Note that R2(ψ|ψ∗)|ψ∗=ψ = 0 and

∂R2(ψ|ψ∗)/∂ψ∗ = −n∆(H1 : H0|H∗
1 )

∑
i

p0
i

{a′i(ψ∗)}2

ai(ψ∗)
≤ 0,

for ψ ∈ Aλ. Thus we obtain ∂R(ψ|ψ∗)/∂ψ∗ ≤ (=,≥)0 when ψ∗ < (=, >)ψ
for ψ ∈ Aλ.
Next we show R(ψ|ψ∗) is strictly convex about ψ. For fixed ψ∗ ∈ [L,U ],
∂∆(H1 : H0|H∗

1 )/∂ψ = nλ
∑
i{ai(ψ∗)/ai(ψ)}π′i(ψ), which implies {∂∆(H1 :

H0|H∗
1 )/∂ψ}|ψ=ψ∗ = 0 and

∂2∆(H1 : H0|H∗
1 )/∂ψ2 = −nλ

∑
i

ai(ψ∗)
{π′i(ψ)}2

p0
i a

2
i (ψ)

< 0.

Hence ∆(H1 : H0|H∗
1 ) is strictly concave and is maximized at ψ = ψ∗. This

implies that R(ψ|ψ∗) is strictly convex about ψ and is minimized at ψ = ψ∗.
(b) The justification of Aλ = [L1, U1] is based on the fact that ∆(H1,H0|H∗

1 ) is
strictly concave about ψ ∈ [L,U ] and has a positive maximum value when
ψ = ψ∗ ∈ [L,U ]. Thus for each ψ∗ ∈ [L,U ], we can find an admissible set,
which is a closed interval, Iψ∗ ⊂ [L,U ]. Then Aλ =

⋂
ψ∗ Iψ∗ must be [L1, U1]

since it is not empty.
(c) Since R(ψ|ψ∗) is strictly convex about ψ and has a minimum value when

ψ=ψ∗, R(ψ|ψ∗)|ψ∗=U is strictly decreasing for ψ ∈ [L,U ] and R(ψ|ψ∗)|ψ∗=L

is strictly increasing for ψ ∈ [L,U ]. Consider function F (ψ)=R(ψ|ψ∗)|ψ∗=U−
R(ψ|ψ∗)|ψ∗=L. We have F (L) > 0, F (U) < 0 and F ′(ψ) < 0. So F (ψ) =
0 must have a unique root, call it ψ1. For ψ ∈ Aλ, from (a), we have
supψ∗∈[L,U ]R(ψ|ψ∗)=max{R(ψ|ψ∗)|ψ∗=U , R(ψ|ψ∗)|ψ∗=L}. ObviouslyR(ψ|ψ∗

)|ψ∗=U and R(ψ|ψ∗)|ψ∗=L cross only at ψ = ψ1, which is the unique minimax
model and ψ1 ∈ Aλ.

(d) follows from taking limit on both sides of (15) as λ→ 0.
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