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Abstract: We propose extensions of penalized spline generalized additive models
for analyzing space-time regression data and study them from a Bayesian per-

spective. Non-linear effects of continuous covariates and time trends are modelled
through Bayesian versions of penalized splines, while correlated spatial effects follow

a Markov random field prior. This allows to treat all functions and effects within a
unified general framework by assigning appropriate priors with different forms and
degrees of smoothness. Inference can be performed either with full (FB) or empiri-

cal Bayes (EB) posterior analysis. FB inference using MCMC techniques is a slight
extension of previous work. For EB inference, a computationally efficient solution

is developed on the basis of a generalized linear mixed model representation. The
second approach can be viewed as posterior mode estimation and is closely related

to penalized likelihood estimation in a frequentist setting. Variance components,
corresponding to inverse smoothing parameters, are then estimated by marginal
likelihood. We carefully compare both inferential procedures in simulation studies

and illustrate them through data applications. The methodology is available in the
open domain statistical package BayesX and as an S-plus/R function.

Key words and phrases: Generalized linear mixed models, P-splines, Markov ran-

dom fields, MCMC, restricted maximum likelihood.

1. Introduction

In longitudinal studies, data usually consist of repeated observations for a
population of individuals or units. Response variables may be continuous or
discrete as in generalized linear models, and covariates can be metrical or cate-
gorical, and possibly time-varying. In various applications, the location or site
on a spatial array is given for each unit as additional information, and analyzing
its impact on the response simultaneously with the effects of other covariates is
of substantive interest.

As a typical example, we analyze data from a forest health survey: each year
the damage state of a population of trees is measured as a binary response, and
the site of each tree is available on a lattice map. Covariates are age of the tree,
canopy density at the stand and calendar time.

If we consider only observations for one time period, then we obtain spatial
regression data as a special case. As an application, we consider the 2002 survey
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on rents for flats in Munich, where the location of a flat is given by an irregular
lattice map of subquarters of Munich together with a large number of covariates
characterizing the flat.

In this paper we propose spatio-temporal extensions of generalized additive
and varying coefficient models for analyzing such space-time regression data, and
we study inference from a Bayesian perspective. This means that usual fixed ef-
fects or nonlinear functional effects of covariates, considered as deterministic in a
frequentist approach, are interpreted as realizations of random variables or ran-
dom functions. Based on previous work (Fahrmeir and Lang (2001a), Fahrmeir
and Lang (2001b), Lang and Brezger (2004) and Brezger and Lang (2003)), non-
linear effects of continuous covariates as well as smooth time trends are modelled
through Bayesian versions of penalized splines (P-splines), introduced in a fre-
quentist setting by Eilers and Marx (1996) and Marx and Eilers (1998). Random
walks as special cases of P-splines and more general autoregressive priors for
time trends are also included in the model. As for Bayesian versions of smooth-
ing splines (Wahba (1978) and Hastie and Tibshirani (2000)), posterior mode
estimates and penalized likelihood estimates coincide for fixed smoothing pa-
rameters. Correlated spatial effects are assumed to follow a Gaussian Markov
random field prior or are modelled by two dimensional P-splines. Additional
uncorrelated random effects may be incorporated as a surrogate for unobserved
local small-area, group or individual specific heterogeneity. An advantage of our
Bayesian approach is that all unknown functions and parameters can be treated
within a unified general framework by assigning appropriate priors with the same
general structure but different forms and degrees of smoothness. This broad class
of structured additive regression (STAR) models contain several important sub-
classes as special cases e.g., state-space models for longitudinal data (Fahrmeir
and Tutz (2001, Chap. 8)) or geoadditive models, introduced by Kammann and
Wand (2003) within a mixed model setting.

Inference for STAR models can be performed either with a full Bayes (FB)
or an empirical Bayes (EB) approach. For FB inference, unknown variance or
smoothing parameters are considered as random variables with suitable hyper-
priors and can be estimated jointly with unknown functions and covariate effects,
using computationally efficient extensions of MCMC techniques developed in pre-
vious work. For EB inference, variance or smoothing parameters are considered
as unknown constants. They are estimated by using (approximate) restricted
maximum likelihood (REML). For given or estimated smoothing parameters, un-
known functions and covariate effects are obtained as posterior mode estimators
by maximizing the posterior density. Our EB approach is based on generalized
linear mixed model (GLMM) representations developed in Lin and Zhang (1999)
for longitudinal data analysis using smoothing splines, or in Kammann and Wand
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(2003) for geoadditive models using stationary Gaussian random fields. Using
computationally efficient REML algorithms, we can apply GLMM methodology
for EB inference in STAR models even for fairly large data sets. From a more
frequentist point of view, EB inference is closely related to penalized likelihood
estimation. For the special case of state space models, this close correspondence
is also pointed out in Fahrmeir and Knorr-Held (2000). We also suggest a hybrid
Bayesian (HB) method, which combines advantages of FB inference with REML
estimation of smoothing parameters.

We carefully compare the relative merits of the inferential procedures in sim-
ulation studies. A general conclusion is that EB inference performs remarkably
well compared to FB inference as long as no problems occur with convergence
of REML estimates. Advantages of FB inference are that characteristics and
functionals of posteriors can be computed without relying on any large sample
normality approximations, and the approach is computationally feasible even
for massive data sets with hundreds or even thousands of parameters, because
MCMC techniques require only local computations. On the other side, EB esti-
mates are obtained by maximizing an objective function, so that usual questions
about convergence of MCMC samples or sensitivity on hyperparameters do not
arise. Also, compared to previous implementations, our numerically efficient
REML algorithm allows to analyze now even fairly large data sets with the EB
approach.

The rest of the paper is organized as follows: models and statistical inference
are described in Sections 2 and 3. Performance is investigated through simulation
studies in Section 4, and Section 5 contains applications. The concluding Section
6 comments on directions of future research.

The methodology of this paper is available as public domain software. Both
the empirical as well as the full Bayesian approach are included in BayesX, a soft-
ware package for Bayesian inference. The program is available at http://www.stat
.uni-muenchen.de/∼lang/bayesx/bayesx.html. The EB approach is additionally
implemented as an S-plus/R function and is available at http://www.stat.uni-
muenchen.de/∼kneib/software.html.

2. Bayesian Structured Additive Regression

In this section we introduce Bayesian STAR models. They comprise usual
generalized additive models, mixed models, varying coefficient models, and ex-
tensions to spatial and spatio-temporal models as special cases.

2.1. Observation model

Bayesian generalized linear models (e.g., Fahrmeir and Tutz (2001)) assume
that, given covariates u and unknown parameters γ, the distribution of the re-
sponse variable y belongs to an exponential family, with mean µ = E(y|u, γ)
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linked to a linear predictor η by

µ = h(η) η = u′γ. (1)

Here h is a known response function, and γ is an unknown regression parameter.
In most practical regression situations, however, we are facing at least one

of the following problems.

• For the continuous covariates in the data set, the assumption of a strictly
linear effect on the predictor may be not appropriate.

• Observations may be spatially correlated.
• Observations may be temporally correlated.
• Heterogeneity among individuals or units may be not sufficiently described by

covariates. Hence, unobserved unit or cluster specific heterogeneity must be
considered appropriately.

To overcome the difficulties, we replace the strictly linear predictor in (1) by
a structured additive predictor

ηr = f1(ψr1) + · · · + fp(ψrp) + u′rγ, (2)

where r is a generic observation index, the ψj are generic covariates of differ-
ent types and dimension, and the fj are (not necessarily smooth) functions of
the covariates. The functions fj comprise usual nonlinear effects of continuous
covariates, time trends and seasonal effects, two dimensional surfaces, varying
coefficient models, i.i.d. random intercepts and slopes, and temporally or spa-
tially correlated random effects. In order to demonstrate the generality of our
approach we point out some special cases of (2) well known from the literature.

• Generalized additive model (GAM) for cross-sectional data
The predictor of a GAM for observation i, i = 1, . . . , n, is given by

ηi = f1(xi1) + · · · + fk(xik) + u′iγ. (3)

Here, the fj are smooth functions of continuous covariates xj and, in this
paper, they are modelled by (Bayesian) P-splines, see Section 2.2.1. As men-
tioned in the introduction, these functions are considered as deterministic
from a frequentist point of view, while they are interpreted as realizations
of random functions within the Bayesian paradigm. We obtain a GAM as a
special case of (2) with r = i, i = 1, . . . , n, and ψij = xij , j = 1, . . . , k.

• Generalized additive mixed model (GAMM) for longitudinal data
Consider longitudinal data for individuals i = 1, . . . , n, observed at time points
t ∈ {t1, t2, . . .}. For notational simplicity we assume the same time points
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for every individual, but generalizations to individual-specific time points are
obvious. A GAMM extends (3) by introducing individual specific random
effects, i.e.,

ηit = f1(xit1) + · · · + fk(xitk) + b1iwit1 + · · · + bqiwitq + u′itγ,

where ηit, xit1, . . . , xitk, wit1, . . . , witq, uit are predictor and covariate values for
individual i at time t, and bi = (b1i, . . . , bqi) is a vector of q i.i.d. random in-
tercepts (if witj = 1) or random slopes. The random effects components
are modelled by i.i.d. Gaussian priors, see Section 2.2.3. The functions fj

are nonlinear population “deterministic” effects. Individual specific depar-
tures from these population effects and correlations of repeated observations
can be modelled through the random effects part of the predictor. As an
example, assume that a function represents the population time trend f(t)
approximated by a linear combination f(t) =

∑
βjBj(t) of B-spline basis

functions Bj(t). Individual specific departures can then be modelled through
fi(t) =

∑
bjiBj(t), where the bji are i.i.d. random effects, and the design vari-

ables witj are equal to Bj(t). This is in analogy to standard parametric mixed
models with, e.g., a linear time trend β0 + β1t and individual specific random
departures b0i + b1it from this trend. GAMM’s can be subsumed into (2) by
defining r = (i, t), ψrj = xitj , j = 1, . . . , k, ψr,k+h = with, h = 1, . . . , q, and
fk+h(ψr,k+h) = bhiwith. Similarly, GAMM’s for cluster data can be written in
the general form (2).

• Space-time main effect model − geoadditive models
Suppose we observe longitudinal data with additional geographic information
for every observation. A reasonable predictor for such spatio-temporal data
(see e.g., Fahrmeir and Lang (2001b)) is given by

ηit = f1(xit1) + · · · + fk(xitk) + ftime(t) + fspat(sit) + u′itγ, (4)

where ftime is a possibly nonlinear time trend and fspat is a spatially correlated
(random) effect of the location sit an observation pertains to. Models with
a predictor that contains a spatial effect are also called geoadditive models,
see Kammann and Wand (2003). The time trend can be modelled by random
walk priors, autoregressive process priors, or P-splines (see Section 2.2.1), and
the spatial effect by Markov random fields or two dimensional P-splines, see
Sections 2.2.2 and 2.2.4. Note that observations are marginally correlated after
integrating out the temporally or spatially correlated (random) effects ftime

and fspat. Individual specific effects can be incorporated as for GAMM’s,
if appropriate. In the notation of (2) we obtain r = (i, t), ψrj = xitj for
j = 1, . . . , k, ψr,k+1 = t and ψr,k+2 = sit.
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• Varying coefficient model (VCM) − Geographically weighted regression
A VCM, as proposed by Hastie and Tibshirani (1993), is

ηi = g1(xi1)zi1 + · · · + gk(xik)zik,

where the effect modifiers xij are continuous covariates or time scales and
the interacting variables zij are either continuous or categorical. A VCM
can be cast into (2) with r = i and ψij = (xij , zij), by defining the special
function fj(ψij) = fj(xij , zij) = gj(xij)zij . Note that in this paper the effect
modifiers are not necessarily restricted to be continuous variables as in Hastie
and Tibshirani (1993). For example the geographical location may be used
as effect modifiers as well, see Fahrmeir, Lang, Wolff and Bender (2003) for
an example. VCM’s with spatially varying regression coefficients are well
known in the geography literature as geographically weighted regression, see
e.g., Fotheringham, Brunsdon and Charlton (2002).

• ANOVA type interaction model
Suppose xi1 and xi2 are two continuous covariates. Then, the effect of xi1 and
xi2 may be modelled by a predictor of the form

ηi = f1(xi1) + f2(xi2) + f1|2(xi1, xi2) + · · · ,
see e.g., Chen (1993). The functions f1 and f2 are the main effects of the
two covariates and f1|2 is a two dimensional interaction surface which might
be modelled by two dimensional P-splines, see Section 2.2.4. The interaction
can be cast into the form (2) by defining r = i, ψr1 = xi1, ψr2 = xi2 and
ψr3 = (xi1, xi2). Similarly (4) may be extended to a model incorporating a
space-time interaction effect.

At first sight it may look strange to use one general notation for nonlinear
functions of continuous covariates, i.i.d. random intercepts and slopes, and spa-
tially correlated random effects as in (2). However, the unified treatment of the
different components in our model has several advantages.
• Since we adopt a Bayesian perspective, both “fixed effects” and “random

effects” are random variables. They are distinguished by different priors, e.g.,
diffuse priors for fixed effects and Gaussian priors for i.i.d. random effects, see
also the discussion in Hobert and Casella (1996).

• As we will see in Section 2.2, the priors for smooth functions, two dimensional
surfaces, i.i.d., serially and spatially correlated random effects can be cast into
a general form.

• The general form of the priors allows rather general and unified estimation
procedures, see Section 3. As a side effect the implementation and description
of these procedures is considerably facilitated.
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2.2. Prior assumptions

For Bayesian inference, the unknown functions f1, . . . , fp in (2), more exactly
corresponding vectors of function evaluations, and the fixed effects parameter γ
are considered as random variables and must be supplemented by appropriate
prior assumptions.

Throughout the paper we assume diffuse a prior p(γ) ∝ const for the fixed
effects parameter γ.

Priors for the unknown functions f1, . . . , fp depend on the type of the covari-
ate and on the prior beliefs about smoothness. In the following we express the
vector of function evaluations fj = (fj(ψ1j), . . . , fj(ψnj))′ of an unknown func-
tion fj as the matrix product of a design matrix Ψj and a vector of unknown
parameters βj , i.e.,

fj = Ψjβj . (5)

Then, we obtain the predictor (2) in matrix notation as

η = Ψ1β1 + · · · + Ψpβp + Uγ, (6)

where U corresponds to the usual design matrix for fixed effects.
A prior for a function fj is now defined by specifying a suitable design matrix

Ψj and a prior distribution for the vector βj of unknown parameters. The general
form of the prior for βj is

p(βj |τ2
j ) ∝ exp

(
− 1

2τ2
j

β′jKjβj

)
, (7)

where Kj is a penalty matrix that shrinks parameters towards zero, or penalizes
too abrupt jumps between neighboring parameters. In most cases Kj will be
rank deficient and therefore the prior for βj is partially improper.

The variance parameter τ2
j is equivalent to the inverse smoothing parame-

ter in a frequentist approach and controls the trade off between flexibility and
smoothness. For FB inference, weakly informative inverse Gamma hyperpriors
τ2
j ∼ IG(aj , bj) are assigned to τ2

j , with aj = bj = 0.001 as a standard option.
For EB inference, τ2

j is considered an unknown constant which is determined as
a REML estimate.

In the following we describe specific priors for different types of covariates
and functions fj.

2.2.1. Priors for continuous covariates and time scales

Several alternatives have been recently proposed for specifying smoothness
priors for continuous covariates or time trends. These are random walk pri-
ors or more generally autoregressive priors (see Fahrmeir and Lang (2001a) and
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Fahrmeir and Lang (2001b)), Bayesian P-splines (Lang and Brezger (2004)) and
Bayesian smoothing splines (Hastie and Tibshirani (2000)). In the following we
focus on P-splines. The approach assumes that an unknown smooth function fj

of a covariate xj can be approximated by a polynomial spline of degree l defined
on a set of equally spaced knots xmin

j = ζ0 < ζ1 < · · · < ζd−1 < ζd = xmax
j within

the domain of xj. Such a spline can be written in terms of a linear combination
of Mj = d+ l B-spline basis functions Bm, i.e.,

fj(xj) =
Mj∑

m=1

βjmBm(xj).

Here βj = (βj1, . . . , βjMj )
′ corresponds to the vector of unknown regression coef-

ficients. The n×Mj design matrix Ψj consists of the basis functions evaluated at
the observations xij, i.e., Ψj(i,m) = Bm(xij). The crucial choice is the number
of knots: for a small number of knots, the resulting spline may not be flexi-
ble enough to capture the variability of the data; for a large number of knots,
estimated curves tend to overfit the data and, as a result, too rough functions
are obtained. As a remedy, Eilers and Marx (1996) suggest a moderately large
number of equally spaced knots (usually between 20 and 40) to ensure enough
flexibility, and to define a roughness penalty based on first or second order differ-
ences of adjacent B-Spline coefficients to guarantee sufficient smoothness of the
fitted curves. This leads to penalized likelihood estimation with penalty terms

P (λj) =
1
2
λj

Mj∑
m=k+1

(∆kβjm)2, k = 1, 2, (8)

where λj is the smoothing parameter and ∆k is the difference operator of order
k. First order differences penalize abrupt jumps βjm−βj,m−1 between successive
parameters and second order differences penalize deviations from the linear trend
2βj,m−1 − βj,m−2. In a Bayesian approach we use the stochastic analogue of
difference penalties, i.e., first or second order random walks, as a prior for the
regression coefficients. First and second order random walks are defined by

βjm = βj,m−1 + ujm or βjm = 2βj,m−1 − βj,m−2 + ujm (9)

with Gaussian errors ujm ∼ N(0, τ2
j ) and diffuse priors p(βj1) ∝ const, or p(βj1)

and p(βj2) ∝ const, for initial values, respectively. Note that simple first or
second order random walks, as proposed in Fahrmeir and Lang (2001a), can be
regarded as P-splines of degree l = 0 and are therefore a special case. The joint
distribution of the regression parameters βj is easily computed as a product of
conditional densities defined by (9) and can be brought into the general form (7).
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The penalty matrix is of the form Kj = D′D where D is a first or second order
difference matrix. More details about Bayesian P-splines can be found in Lang
and Brezger (2004). For time scales, more general autoregressive process priors
than the random walk models (9) may be useful, for example to model flexible
seasonal patterns, see Fahrmeir and Lang (2001a). Again they can be written in
the general form (7).

As an alternative to roughness penalties, approaches based on adaptive knot
selection for splines have become very popular, see Friedman (1991) and Stone,
Hansen, Kooperberg and Truong (1997) for frequentist versions. Bayesian vari-
ants can be found in Denison, Mallick and Smith (1998), Biller (2000), Di Matteo,
Genovese and Kass (2001), Biller and Fahrmeir (2001) and Hansen and Kooper-
berg (2002).

2.2.2. Priors for spatial effects

Suppose that the index s ∈ {1, . . . , S} represents the location or site in
connected geographical regions. For simplicity we assume that the regions are
labelled consecutively. A common way to introduce a spatially correlated effect
is to assume that neighboring sites are more alike than two arbitrary sites. Thus
for a valid prior definition a set of neighbors for each site s must be defined. For
geographical data one usually assumes that two sites s and s′ are neighbors if
they share a common boundary.

The simplest (but most often used) spatial smoothness prior for the function
evaluations fspat(s) = βs is

βs|βs′ , s
′ �= s, τ2

j ∼ N
( 1
Ns

∑
s′∈∂s

βs′ ,
τ2
j

Ns

)
, (10)

where Ns is the number of adjacent sites and s′ ∈ ∂s denotes that site s′ is a
neighbor of site s. Thus the (conditional) mean of βs is an unweighted average of
function evaluations of neighboring sites. The prior is a direct generalization of
a first order random walk to two dimensions and is called a Markov random field
(MRF). More general priors based on weighted averages can be found e.g., in
Besag York and Mollié (1991). The n×S design matrix Ψ is now a 0/1 incidence
matrix. Its value in the ith row and the sth column is 1 if the ith observation is
located in site or region s, and zero otherwise. The S × S penalty matrix K has
the form of an adjacency matrix.

As an alternative to MRF’s, we could use two dimensional surface estimators
to model spatial effects, see Section 2.2.4 where we propose a two-dimensional
version of P-splines. As another alternative, Kammann and Wand (2003) use
stationary Gaussian random fields (GRF) which are popular in geostatistics and
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can be seen as two-dimensional surface smoothers based on certain basis func-
tions, e.g., radial basis functions, see Ruppert, Wand and Carroll (2003). GRF’s
may be approximated by MRF’s, see Rue and Tjelmeland (2002). From a com-
putational point of view, MRF’s and P-splines are preferable to GRF’s because
their posterior precision matrices are band matrices or can be transformed into
a band matrix-like structure. The special structure of the matrices considerably
speeds up computations, at least for FB inference, see Section 3.2. In general, it
is not clear which of the different approaches leads to the “best” fits. For data
observed on a discrete lattice, MRF’s seem to be most appropriate. If the ex-
act locations are available, surface estimators may be more natural, particularly
because predictions for unobserved locations are available. However, in some
situations surface estimators lead to an improved fit compared to MRF’s even
for discrete lattices and vice versa. A general approach that can handle both
situations is given by Müller, Stadtmüller and Tabnak (1997).

2.2.3. Unordered group indicators and unstructured spatial effects

In many situations we observe the problem of heterogeneity among clusters
of observations caused by unobserved covariates. Suppose c ∈ {1, . . . , C} is a
cluster variable indicating the cluster a particular observation belongs to. A
common approach to overcome the difficulties of unobserved heterogeneity is to
introduce additional Gaussian i.i.d. effects f(c) = βc with

βc ∼ N(0, τ2), c = 1, . . . , C. (11)

The design matrix Ψ is again a n×C 0/1 incidence matrix and the penalty matrix
is the identity matrix, i.e., K = I. From a classical perspective, (11) defines
i.i.d. random effects. However, from a Bayesian point of view, all unknown
parameters are assumed to be random and hence the notation “random effects”
in this context is misleading. We think of (11) more as an approach for modelling
an unsmooth function.

Note that we consider cluster specific random effects. In GAMM’s for lon-
gitudinal data, repeated observations for an individual form a cluster with an
individual specific random effect. Observation specific random effects are a spe-
cial case, where each observation is its own cluster. In this case, random effects
are not identifiable for Gaussian and binary responses.

The prior (11) may also be used for a more sophisticated modelling of spatial
effects. In some situation it may be useful to split up a spatial effect fspat into a
spatially correlated (smooth) part fstr and a spatially uncorrelated (unsmooth)
part funstr, i.e., fspat = fstr +funstr. A rationale is that a spatial effect is usually
a surrogate of many unobserved influential factors, some of them may obey a
strong spatial structure and others may be present only locally. By estimating
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a structured and an unstructured component we aim at distinguishing between
the two kinds of influential factors, see Besag York and Mollié (1991). For the
smooth spatial part we assume Markov random field priors or two dimensional
surface smoothers as described in the next section. For the uncorrelated part we
may assume the prior (11).

2.2.4. Modelling interactions

The models considered so far are not appropriate for modelling interactions
between covariates. A common approach is based on varying coefficient models
introduced by Hastie and Tibshirani (1993) in the context of smoothing splines.
Here, the effect of covariate zij is assumed to vary smoothly over the range of
the second covariate xij, i.e.,

fj(xij , zij) = gj(xij)zij . (12)

In most cases the interacting covariate zij is categorical whereas the effect mod-
ifier may be either metrical, spatial or an unordered group indicator. For the
nonlinear function gj we may assume the priors already defined in Sections 2.2.1
for metrical effect modifiers, 2.2.2 for spatial effect modifiers and 2.2.3 for un-
ordered group indicators as effect modifiers. In Hastie and Tibshirani (1993)
only metrical effect modifiers have been considered. Models with spatial effect
modifiers are used in Fahrmeir, Lang, Wolff and Bender (2003) and Gamerman,
Moreira and Rue (2003) to model space-time interactions. From a classical point
of view, models with unordered group indicators as effect modifiers are called
models with random slopes. In matrix notation we obtain for the vector of
function evaluations fj = diag(z1j , . . . , znj)Ψ∗

jβj , where Ψ∗
j is the design matrix

corresponding to the prior for gj . Hence the overall design matrix is given by
Ψj = diag(z1j , . . . , znj)Ψ∗

j .
Suppose now that both interacting covariates are metrical. In this case, a

flexible approach for modelling interactions can be based on (nonparametric) two
dimensional surface fitting. Here, we briefly describe an approach based on two
dimensional P-splines described in more detail in Lang and Brezger (2004). The
assumption is that the unknown surface fj(xij , zij) can be approximated by the
tensor product of two one dimensional B-splines, i.e.,

fj(xij , zij) =
Mj∑

m1=1

Mj∑
m2=1

βj,m1m2Bj,m1(xij)Bj,m2(zij).

Similar to one-dimensional P-splines, the n×M2
j design matrix Ψj is composed of

products of basis functions. Priors for βj = (βj,11, . . . , βj,MjMj )
′ are now based on

smoothness priors common in spatial statistics, e.g., two-dimensional first-order
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random walks, (see Besag and Kooperberg (1995)) which can easily be brought
into the general form (7). Details can be found in Lang and Brezger (2004).

2.3. Mixed model representation

In this section, we show how STAR models can be represented by generalized
linear mixed models (GLMM) after appropriate reparameterization, see also Lin
and Zhang (1999) and Green (1987) in the context of smoothing splines. In fact,
model (1) with the structured additive predictor (6) can always be expressed as
a GLMM. This provides the key for simultaneous estimation of the functions fj,
j = 1, . . . , p, and the variance (or inverse smoothing) parameters τ2

j in an EB
approach in Section 3.1 To rewrite the model as a GLMM, the general model
formulation is useful again. We proceed as follows.

The vectors of regression coefficients βj , j = 1, . . . , p, are decomposed into
an unpenalized and a penalized part. Suppose that the jth coefficient vector has
dimension dj × 1 and the corresponding penalty matrix Kj has rank rkj. Then
we define the decomposition

βj = Ψunp
j βunp

j + Ψpen
j βpen

j , (13)

where the columns of the dj × (dj − rkj) matrix Ψunp
j contain a basis of the

nullspace of Kj . The dj × rkj matrix Ψpen
j is given by Ψpen

j = Lj(L′
jLj)−1 where

the full column rank dj × rkj matrix Lj is determined by the decomposition of
the penalty matrix Kj into Kj = LjL

′
j. A requirement for the decomposition

is that L′
jΨ

unp
j = 0 and Ψunp

j L′
j = 0 hold. Hence the parameter vector βunp

j

represents the part of βj which is not penalized by Kj whereas the vector βpen
j

represents the deviations of the parameters βj from the nullspace of Kj.
In general, the decomposition Kj = LjL

′
j of Kj can be obtained from the

spectral decomposition Kj = ΓjΩjΓ′
j. The (rkj × rkj) diagonal matrix Ωj con-

tains the positive eigenvalues ωjm, m = 1, . . . , rkj , of Kj in descending order, i.e.,
Ωj = diag(ωj1, . . . , ωj,rkj

). Γj is a (dj×rkj) orthogonal matrix of the correspond-

ing eigenvectors. From the spectral decomposition we can choose Lj = ΓjΩ
1/2
j .

In some cases a more favorable decomposition can be found. For instance, for
P-splines defined in Section 2.2.1, a more favorable choice for Lj is given by
Lj = D′ where D is the first or second order difference matrix. Of course, for
(the “random effects”) prior (11) of Section 2.2.3 a decomposition of Kj = I is
not necessary. Also, the unpenalized part vanishes completely.

The matrix Ψunp
j is the identity vector 1 for P-splines with first-order random

walk penalty and Markov random fields. For P-splines with second-order random
walk penalty, Ψunp

j is a two column matrix whose first column is again the identity
vector and the second column is composed of the (equidistant) knots of the spline.



PENALIZED STRUCTURED ADDITIVE REGRESSION 743

From (13) we get
1
τ2
j

β′jKjβj =
1
τ2
j

(βpen
j )′βpen

j .

From the general prior (7) for βj , it follows that p(βunp
jm ) ∝ const, m = 1, . . . , dj −

rkj, and
βpen

j ∼ N(0, τ2
j I). (14)

Finally, by defining the matrices Ũj = ΨjΨ
unp
j and Ψ̃j = ΨjΨ

pen
j , we can rewrite

the predictor (6) as

η =
p∑

j=1

Ψjβj + Uγ =
p∑

j=1

(ΨjΨ
unp
j βunp

j + ΨjΨ
pen
j βpen

j ) + Uγ = Ũβunp + Ψ̃βpen.

The design matrix Ψ̃ and the vector βpen are composed of the matrices Ψ̃j and the
vectors βpen

j , respectively. More specifically, we obtain Ψ̃ = (Ψ̃1 Ψ̃2 · · · Ψ̃p) and
the stacked vector βpen =((βpen

1 )′, . . . , (βpen
p )′)′. Similarly the matrix Ũ and the

vector βunp are given by Ũ=(Ũ1 Ũ2 · · · ŨpU) and βunp =((βunp
1 )′, . . . , (βunp

p )′, γ′)′.
Finally, we obtain a GLMM with fixed effects βunp and random effects βpen ∼

N(0,Λ) where Λ = diag(τ2
1 , . . . , τ

2
1 , . . . , τ

2
p , . . . , τ

2
p ). Hence, we can utilize GLMM

methodology for simultaneous estimation of the functions fj and the variance
parameters τ2

j , see the next section.
The mixed model representation also enables us to examine the identification

problem inherent to nonparametric regression from a different angle. Except for
i.i.d. Gaussian effects (11), the design matrices Ũj for the unpenalized parts
contain the identity vector. Provided that there is at least one nonlinear effect
and that γ contains an intercept, the matrix Ũ has no full column rank. Hence,
all identity vectors in Ũ except for the intercept must be deleted to guarantee
identifiability.

3. Inference

Bayesian inference is based on the posterior of the model. The analytic form
of the posterior depends on the specific parameterization of the model. If we
choose the original parameterization, the posterior for FB inference is given by

p(β1, . . . , βp, τ
2
1 , . . . , τ

2
p , γ|y) ∝ L(y, β1, . . . , βp, γ)

p∏
j=1

(
p(βj |τ2

j )p(τ2
j )
)
, (15)

where L(·) denotes the likelihood which is the product of individual likelihood
contributions. For EB inference, where variances τ2

j are considered as constants,
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the variances τ2
j and the priors p(τ2

j ) have to be deleted. In terms of the GLMM
representation of the model we obtain

p(βunp, βpen|y) ∝ L(y, βunp, βpen)
p∏

j=1

(
p(βpen

j |τ2
j )
)
, (16)

where p(βpen|τ2
j ) is defined in (14).

3.1. EB inference based on GLMM methodology

Based on the GLMM representation outlined in Section 2.3, regression and
variance parameters can be estimated using iteratively weighted least squares
(IWLS) and (approximate) restricted maximum likelihood (REML) developed
for GLMM’s. Estimation is carried out iteratively in two steps.
1. Obtain updated estimates β̂unp and β̂pen given the current variance parameters

as the solutions of the linear equation system(
Ũ ′WŨ Ũ ′W Ψ̃
Ψ̃′WŨ Ψ̃′W Ψ̃ + Λ−1

)(
βunp

βpen

)
=

(
Ũ ′Wỹ

Ψ̃′Wỹ

)
. (17)

The (n×1) vector ỹ and the n×n diagonal matrix W = diag(w1, . . . , wn) are
the usual working observations and weights in generalized linear models, see
Fahrmeir and Tutz (2001, Chap. 2.2.1).

2. Updated estimates for the variance parameters τ̂2
j are obtained by maximizing

the (approximate) restricted log likelihood

l∗(τ2
1 , . . . , τ

2
p ) = −1

2 log(|Σ|) − 1
2 log(|ŨΣ−1Ũ |)

−1
2(ỹ − Ũ β̂unp)′Σ−1(ỹ − Ũ β̂unp)

(18)

with respect to the variance parameters τ2 = (τ2
1 , . . . , τ

2
p )′. Here, Σ = W−1 +

Ψ̃ΛΨ̃′ is an approximation to the marginal covariance matrix of ỹ|βpen.

The two estimation steps are iterated until convergence. We maximize (18)
through a computationally efficient alternative to the usual Fisher scoring itera-
tions as described e.g., in Harville (1977), see the second remark below.

Remarks
1. Credible intervals. Formula (17) forms the basis for constructing credible

intervals of the function estimates f̂j (Lin and Zhang (1999)). If we denote
the coefficient matrix on the left hand side of (17) by H, the approximate
covariance matrix of the regression coefficients β̂unp and β̂pen is given by H−1.
Since f̂j = Ũjβ̂

unp
j + Ψ̃jβ̂

pen
j , we obtain

Cov(f̂j) = (Ũj Ψ̃j)Cov
(
(β̂unp

j )′ (β̂pen
j )′

)
(Ũj Ψ̃j)′ (19)
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for the covariance matrix of f̂j, where Cov
(
(β̂unp

j )′ (β̂pen
j )′

)
can be obtained

from the corresponding blocks in H−1.
2. Numerically efficient implementation of REML estimates. The restricted log

likelihood (18) is usually maximized by Fisher scoring, i.e.,

τ̂2 = τ̃2 + F ∗(τ̃2)−1s∗(τ̃2), (20)

where τ̃2 are the variance parameters from the last iteration. The score vector
s∗(τ2) consists of the elements (compare Harville (1977) or Mc Culloch and
Searle (2001))

s∗j(τ
2) = −1

2
tr
(
P Ψ̃jΨ̃′

j

)
+

1
2
(ỹ − Ũ β̂unp)′Σ−1Ψ̃jΨ̃′

jΣ
−1(ỹ − Ũ β̂unp) (21)

j = 1, . . . , p with

P = Σ−1 − Σ−1Ũ(Ũ ′Σ−1Ũ)−1Ũ ′Σ−1. (22)

The elements of the expected Fisher information F ∗(τ2) are given by

F ∗
jk(τ

2) =
1
2
tr
(
P Ψ̃jΨ̃′

jP Ψ̃kΨ̃′
k

)
, (23)

j, k = 1, . . . , p. The crucial point is that direct use of (21) and (23) is not
feasible for more than about n = 3, 000 observations, since they involve the
computation and manipulation of several n × n matrices including P and Σ.
In particular, the determination of Σ−1, which requires O(n3) computations,
makes the direct usage of (21) and (23) impractical.

Inversion may be avoided by changing from the marginal to the condi-
tional view of the GLMM yielding the expressions in Lin and Zhang (1999,
p.391)

s∗j(τ
2) = −1

2
tr
(
P Ψ̃jΨ̃′

j

)
+

1
2
||Ψ̃′

jW (ỹ − Ũ β̂unp − Ψ̃β̂pen)||2, (24)

P =W −W (Ũ Ψ̃)H−1(Ũ Ψ̃)′W. (25)

Using (24) to compute the score vector and (25) in combination with (23) to
compute F ∗(τ2) avoids the inversion of Σ, but there are still n × n matrices
that have to be computed and multiplied in each iteration. To get around
this, we first replace P by (25) and use an elementary property of the trace
to obtain for the first part of (24):

− 1
2
tr
(
P Ψ̃jΨ̃′

j

)
= −1

2
tr
(
Ψ̃′

jW Ψ̃j

)
+

1
2
tr
(
Ψ̃′

jW (Ũ Ψ̃)H−1(Ũ Ψ̃)′W Ψ̃j

)
.

(26)
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Note that most matrices used in (26) do not have to be evaluated explicitly,
since they are submatrices of the weighted sums of squares and crossproducts
(SSCP) matrix (

Ũ ′WŨ Ũ ′W Ψ̃
Ψ̃′WŨ Ψ̃′W Ψ̃

)
, (27)

which may be derived at low computational cost from H by substracting Λ−1

from the lower right block. E.g., the matrix Ψ̃′
jW Ψ̃j in (26) is the jth diagonal

block in Ψ̃′W Ψ̃.
Formula (23) may also be reexpressed using the definition of P in (25).

Some matrix algebra yields the formula

F ∗
jk(τ

2) =
1
2
tr
(
Ψ̃′

kW Ψ̃jΨ̃′
jW Ψ̃k

)
− tr

(
Ψ̃′

kW (Ũ Ψ̃)H−1(Ũ Ψ̃)′W Ψ̃jΨ̃′
jW Ψ̃k

)
+

1
2
tr
(
Ψ̃′

kW (Ũ Ψ̃)H−1(Ũ Ψ̃)′W Ψ̃jΨ̃′
jW (Ũ Ψ̃)H−1(Ũ Ψ̃)′W Ψ̃k

)
.

Again most of the matrices involved are submatrices of (27) and may therefore
be readily obtained since the SSCP-matrix is available from H.

Now the largest matrix involved in the computation of s∗(τ2) and F ∗
jk(τ

2)
is H−1, which reduces the main computational burden from handling n × n

matrices to the inversion of a matrix whose dimension is given by the number
of regression coefficients in the model. Compared to the usual version based
on (21) and (23), the current implementation of EB inference significantly
speeds up computing time and reduces memory allocation.

3.2. FB inference based on Markov chain Monte Carlo

In the full Bayesian approach, parameter estimates are obtained by draw-
ing random samples from the posterior (15) via MCMC simulation techniques.
Variance parameters τ2

j can be estimated simultaneously with the regression co-
efficients βj by assigning additional hyperpriors to them. The most common
assumption is, that the τ2

j are independently inverse gamma distributed, i.e.,
τ2
j ∼ IG(aj , bj), with hyperparameters aj and bj specified a priori. We use
aj = bj = 0.001 as a standard option. In some data situations (e.g., for small
sample sizes), the estimated nonlinear functions fj may depend considerably on
the particular choice of hyperparameters. It is therefore good practice to esti-
mate all models under consideration using a (small) number of different choices
for aj and bj to assess the dependence of results on minor changes in the model
assumptions.

For updating the parameters in an MCMC sampler, we use an MH-algorithm
based on iteratively weighted least squares (IWLS) proposals introduced by
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Gamerman (1997) and adapted to the present situation in Brezger and Lang
(2003).

Parameters are updated in the order β1, . . . , βp, τ
2
1 , . . . , τ

2
p , γ. Suppose we

want to update the regression coefficients βj of the jth function fj with current
value βc

j of the chain. Then, according to IWLS, a new value βp
j is proposed by

drawing a random number from the multivariate Gaussian proposal distribution
q(βc

j , β
p
j ) with precision matrix and mean

Pj = Ψ′
jW (βc

j )Ψj +
1
τ2
j

Kj , mj = P−1
j Ψ′

jW (βc
j )(ỹ − η−j). (28)

Here, W and ỹ are again usual working weights and observations in generalized
linear models. The vector η−j = η−Ψjβj is the part of the predictor associated
with all remaining effects in the model. The proposed vector βp

j is accepted as
the new state of the chain with probability

α(βc
j , β

p
j ) = min

(
1,
p(βp

j |·)q(βp
j , β

c
j )

p(βc
j |·)q(βc

j , β
p
j )

)
,

where p(βj |·) is the full conditional for βj (i.e., the conditional distribution of βj

given all other parameters and the data y).
A fast implementation requires efficient sampling from the Gaussian pro-

posal distributions. Algorithms have to take advantage of the special band or
sparse matrix structure of the precision matrices Pj in (28). Rue (2001) uses
matrix operations for band matrices to draw random numbers from the high
dimensional full conditionals, but the different band sizes in every row are not
utilized. In our implementation the different band sizes are exploited by using
the envelope method for Cholesky decompositions of sparse matrices as described
in George and Liu (1981). This implies that the number of calculations required
to draw random numbers from the proposal distribution is linear in the number
of parameters and observations. Also the computation of the acceptance proba-
bilities is linear in the number of observations. For this reason, the FB approach
is able to handle complex models with a larger number of observations and pa-
rameters than the alternative based EB methodology discussed in the previous
section. Currently, the limit is roughly between 200,000 and 300,000 observations
(depending on the complexity of the model).

The full conditionals for the variance parameters τ2
j are inverse gamma with

parameters a′j = aj +0.5rank(Kj) and b′j = bj +0.5β′jKjβj , and updating can be
done by simple Gibbs steps, drawing random numbers directly from the inverse
gamma densities.
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Convergence of the Markov chains to their stationary distributions is as-
sessed by inspecting sampling paths and autocorrelation functions of sampled
parameters. In the majority of cases, however, the IWLS updating scheme has
excellent mixing properties and convergence problems do not occur.

3.3. Hybrid Bayesian inference

As a third alternative, we consider a hybrid Bayesian (HB) approach. It
is motivated by the fact that our simulation study in Section 4 indicates that
REML estimators of variance components are less biased compared to the FB
estimators. For HB inference, variance parameters τ2 are first estimated by
REML. Then, instead of drawing from inverse gamma full conditionals as in
Section 3.2, FB inference is performed by plugging in the REML estimates for
τ2. This strategy aims at combining advantages of EB and FB inference: stable
estimation of variance components, and - on the other side- full posterior analysis
for regression functions and parameters of primary interest. This allows, for
instance, computation of posteriors of any nonlinear functionals, simultaneous
credible intervals (see Knorr-Held (2004)), and of probability statements.

4. Simulation Study

The present simulation study aims at imitating typical spatio-temporal longi-
tudinal data. We investigated performance of FB, EB and HB inference through
a number of applications to artificial data. To assess the impact of information
contained in different types of responses, the following study is based on binary,
binomial (with three repeated binary observations), Poisson and Gaussian regres-
sion models. In each case, data were generated from logit, loglinear and additive
models using the linear predictor

ηit = f1(xit1) + f2(sit) + f3(i) + f4(i)xit2 + f5(i)xit3 + γ1xit2 + γ2xit3

for i = 1, . . . , 24 individuals and t = 1, . . . , 31 repeated measurements, resulting
in 744 observations per simulation run. The function f1 is a sine function, and
the spatial function f2 is shown in the map of Figure 1a, displaying s = 1, . . . , 124
districts of Bayern and Baden-Württemberg, the two southern states in Germany.
The functions f3 − f5 are i.i.d. individual specific Gaussian (random) effects.
From a classical perspective f3(i) is a random intercept, f4(i) and f5(i) represent
random slopes. The effects γ1, γ2 are usual fixed effects.

For the covariate x1, values were randomly drawn from 186 equidistant grid-
points between −3 and +3. Each gridpoint was randomly assigned four times.
Similarly, values for the covariates x2 and x3 were drawn from 186 equidistant
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gridpoints between −1 and +1. The function f2 has 124 different values; each
value was randomly assigned 6 times. The i.i.d. Gaussian (random) effects were
obtained as drawings

f3(i) ∼ N(0; 0.25), f4(i) ∼ N(0; 0.25), f5(i) ∼ N(0; 0.36), i = 1, . . . , 24.

Keeping the resulting 744 predictor values ηit, i = 1, . . . , 24, t = 1, . . . , 31, fixed,
binary, binomial, Poisson and Gaussian responses were generated using logit,
loglinear Poisson and additive Gaussian models, respectively. For each model,
the simulation was repeated over 250 such simulation runs, producing responses
y

(l)
it , l = 1, . . . , 250, for the predictor. For additive Gaussian models, the errors

are i.i.d. drawings from N(0; 0.25).

a. min -0.560 max 0.440 b. min -0.304 max 0.123

-0.6 0 0.5 -0.6 0 0.5

c. min -0.172 max 0.123 d. min -0.298 max 0.210

-0.6 0 0.5 -0.6 0 0.5

Figure 1. Binary responses: Comparison of average estimates for the spatial
effect f2. Panel (a) shows the true function, panel (b) EB estimates, panel
(c) FB estimates with hyperparameters a = 1 and b = 0.005 and panel (d)
FB estimates based on hyperparameters a = b = 0.001. Min and max in the
titles indicate the range of the true function and the estimated effects.



750 LUDWIG FAHRMEIR, THOMAS KNEIB AND STEFAN LANG

Using these artificial data, we compared performance in terms of bias, MSE
and average coverage properties. For f1 we assumed a cubic P-spline prior with
second order random walk penalty, and for the spatial effect f2 the MRF prior
(10).

A general, but not surprising conclusion is that the bias and MSE tend to de-
crease with increasing information contained in the responses, i.e., when moving
from binary responses to Poisson or Gaussian responses. A further observation
is that the REML estimate has convergence problems in about 25% of the an-
alyzed models. In the case of no convergence, usually only one of the variance
components switched between two values which were close to each other, while
iterations converged for the remaining variance components. A closer inspection
of estimates with and without convergence showed that differences in terms of
MSE are negligible and the choice of one of the two switching values leads to
reasonable estimates. Therefore, it is justified to use the final values after the
maximum number of iterations (400) to compute empirical MSE’s, bias, average
coverage probabilities, etc.

The true sine curve f1 and the average obtained from all 250 posterior es-
timates , l = 1, . . . , 250, are hard to distinguish visually for all four observation
models, because the bias is very close to zero. Therefore, we only present MSE’s
in Figure 3.

The true spatial function f2 and averages of posterior estimates , l = 1, . . .,
250, are displayed in Figures 1 and 2 for binary, binomial and Poisson observa-
tion models. Because EB and HB inference give rather similar results, we do not
show HB estimates. We conclude the following: at least for binary observations,
the often recommended standard choice a = 1, b = 0.005 for hyperparameters of
inverse Gamma priors for smoothing parameters results in oversmoothing (Fig-
ure 1c), whereas FB inference with a = b = 0.001 and EB inference perform
considerably better and with comparable bias (Figure 1b and 1d).

For Poisson responses (Figure 2b and 2d), the bias becomes smaller and the
true surface is recovered satisfactorily both with full or empirical Bayes estima-
tion. Estimation properties for binomial observations (Figure 2a and 2c) are
between results for binary and Poisson models. For Gaussian observations (not
shown) we obtain the best results, and EB and FB results are very similar.

For binary and Poisson responses, Figure 3 shows empirical log-MSE’s for
the sine curve f1 and the spatial effect f2, averaged over all covariate values,
and for the random effects averaged over i = 1, . . . , 24. From Figure 3 we see
that EB (and HB) estimation behaves remarkably well in terms of MSE’s when
compared to FB inference. For binary responses, the hyperparameter choice
a = 1, b = 0.005 implies highest MSE for the spatial effect, and also for the
random intercept. For Poisson responses FB, EB and HB behave quite similar
in terms of MSE’s.
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a. min -0.420 max 0.291 b. min -0.439 max 0.361

-0.6 0 0.5 -0.6 0 0.5

c. min -0.419 max 0.291 d. min -0.444 max 0.362

-0.6 0 0.5 -0.6 0 0.5

Figure 2. Binomial and Poisson responses: Comparison of average estimates
for the spatial effect f2. Panel (a) shows EB estimates (binomial), panel (b)
EB estimates (Poisson), panel (c) FB estimates (binomial, a = b = 0.001)
and panel (d) FB estimates (Poisson, a = b = 0.001). Min and max in the
titles indicate the range of the true function and the estimated effects.

Average coverage properties of pointwise credible intervals for a nominal level
of 95% are shown in Table 1 for the different effects. For EB inference, credible
intervals are computed as described in Section 3.1. In the FB and HB approach
pointwise credible intervals are simply obtained by computing the respective
empirical quantiles of sampled function values. Table 1 provides some evidence
for the following: for EB and HB inference, average coverage probabilities are
almost identical in all cases. All four Bayesian approaches have comparable
coverage properties for Gaussian and Poisson responses. For binary responses,
some difference can be seen. While the average coverage probabilities are still
quite acceptable for the nonparametric function f1, they are partly considerably
below the nominal level of 95% for the spatial effect f2 and the i.i.d. effects f3,
f4 and f5. Only FB inference with a = b = 0.001 gives satisfactory results.
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(d) Poisson: Spatial effect f2
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(g) Binary: Random Slope f4
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Figure 3. Binary (left panel) and Poisson (right panel) responses: boxplots
for log(MSE).
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Table 1. Average coverage probabilities for the different effects based on a
nominal level of 95%.

distribution f1 f2 f3 f4 f5
Gaussian 0.993 0.993 0.993 0.976 0.986

EB Bernoulli 0.967 0.900 0.915 0.723 0.854
binomial 0.975 0.990 0.963 0.915 0.947
Poisson 0.980 0.998 0.972 0.949 0.970

Gaussian 0.971 0.996 0.993 0.975 0.985
FB Bernoulli 0.958 0.884 0.856 0.568 0.670
(a = 1, b = 0.005) binomial 0.970 0.984 0.962 0.861 0.932

Poisson 0.974 0.998 0.973 0.946 0.969
Gaussian 0.973 0.996 0.995 0.978 0.989

FB Bernoulli 0.971 0.985 0.935 0.883 0.910
(a = b = 0.001) binomial 0.971 0.995 0.969 0.927 0.959

Poisson 0.973 0.998 0.976 0.956 0.973
Gaussian 0.970 0.995 0.994 0.975 0.987

HB Bernoulli 0.961 0.896 0.915 0.721 0.857
binomial 0.968 0.986 0.965 0.916 0.949
Poisson 0.971 0.997 0.972 0.949 0.970

The final comparison concerns estimation of variance components of the ran-
dom effects f3, f4 and f5. For each type of response, Table 2 compares averages
of estimates with the “empirical” variances, obtained from the 24 i.i.d. drawings
from the corresponding normals. A comparison with these empirical variances is
fairer than with “true” values (given in brackets). For Gaussian responses, FB
estimates with a = b = 0.001 have larger bias than EB and FB estimates with
a = 1, b = 0.005. For binary responses, on the other side, FB estimates with
a = 1, b = 0.005 have considerable bias. For binomial and Poisson responses,
differences between the two FB versions are less distinct, but EB estimates are
mostly better. A conclusion emerging from these results is that REML estimates
of variance components are preferable in terms of bias.

Table 2. Average bias of the variance components.
emp. value (true value) bias

Gaussian Bernoulli binomial Poisson
0.196 (0.25) 0.010 -0.014 0.003 -0.005

EB 0.226 (0.25) 0.006 -0.047 -0.014 -0.006
0.329 (0.36) 0.017 -0.029 -0.003 0.007
0.196 (0.25) 0.009 -0.066 0.002 -0.001

FB 0.226 (0.25) 0.001 -0.177 -0.070 -0.019
(a = 1, b = 0.005) 0.329 (0.36) 0.013 -0.215 -0.032 -0.004

0.196 (0.25) 0.030 0.024 0.039 0.026
FB 0.226 (0.25) 0.028 -0.019 0.014 0.020
(a = b = 0.001) 0.329 (0.36) 0.051 0.024 0.057 0.048
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5. Applications

5.1. Rents for flats: a spatial study

This application illustrates the approaches with a challenging complex geoad-
ditive model. According to the German rental law, owners of apartments or flats
can base an increase in the amount that they charge for rent on “average rents”
for flats comparable in type, size, equipment, quality and location in a com-
munity. To provide information about these “average rents”, most larger cities
publish “rental guides”, which can be based on regression analysis with rent as
the dependent variable. We use data from the City of Munich, collected in 2002
by Infratest Sozialforschung for a random sample of approximately 3,000 flats.
As response variable we choose

R monthly net rent per square meter in German Marks, that is the monthly
rent minus calculated or estimated utility costs.

Covariates characterizing the flat were constructed from almost 200 variables
out of a questionnaire answered by tenants of flats. In our reanalysis we use the
highly significant metrical covariates “floor space” (F ) and “year of construction”
(Y ) and a vector u of 25 binary covariates characterizing the quality of the flat,
e.g., the kitchen and bath equipment, the quality of the heating or the quality
of the warm water system. Another important covariate is the location L of the
flat in Munich. For the official Munich 2003 rental guide, location in the city was
assessed in three categories (average, good, top) by experts. In our reanalysis we
focus on a more data-driven assessment of the quality of location by including
a spatial effect of the location L into the predictor. So we choose a geoadditive
Gaussian model R = η + ε with predictor

η = γ0 + f1(F ) + f2(Y ) + f3(L) + u′γ. (29)

The effects f1 and f2 of floor space and year of construction are modelled by
cubic P-splines with 20 knots and a second order random walk penalty. For the
spatial effect f3(L) we choose the Markov random field prior (10).

A first analysis was based on the classical assumption of homoscedastic errors
εi ∼ N(0, σ2). A careful inspection of residuals ei provides evidence, however, of
heteroscedastic errors. We therefore fitted a geoadditive model with log-squared
residuals log(e2i ) as responses and the same predictor η in (29), and used the
predicted responses ê2i = exp(ηi) as weights for a weighted geoadditive regression
with predictor (29). The Figures 4 and 5 show estimated functions f1, f2 and
the spatial effect f3 for the (weighted) geoadditive model (29) as well as for the
log(e2i ) regression, comparing EB and FB results in each case. The discussion
and presentation of fixed effects γ is omitted.
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Figure 4. Rent data: Effects of floor space (top), year of construction (mid-
dle) and location (bottom) for EB (left panel) and FB (right panel), respec-
tively. Shown are the posterior mode (EB) and mean (FB) estimates. For
floor space and year of construction, pointwise 95% credible intervals are
included additionally.

The effects of year of construction and floor space in the regression model
(29) for rents show the typical nonlinear, monotonically increasing and decreasing
curves, respectively. Posterior mode (EB) and posterior mean (FB) estimates are
quite similar, in particular for the effect of floor space. The spatial effect of the
location in Munich reflects quite well what we know from expert assessments,
with an increase of average rents in popular subquarters along the river Isar and
near to parks. Again, the differences between posterior modes (EB) and means
(FB) are comparably small.
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Figure 5. Rent data: Effects of floor space (top), year of construction (mid-
dle) and location (bottom) on the log of squared residuals log(e2i ) for EB
(left panel) and FB (right panel), respectively. Shown are the posterior mode
(EB) and mean (FB) estimates. For floor space and year of construction,
pointwise 95% credible intervals are included additionally.

The log of squared residuals with predictor (29) is not only useful to construct
weights, it is also important for constructing appropriate prediction intervals
using s2i = exp(ηi) as an estimate of the error variance σ2

i = V ar(εi). Figure 5
shows that floor space and year of construction have a significant effect on the
variance. While the effect of floor space decreases linearly with increasing floor
space, the effect of year of construction is lower in the sixties and the seventies
compared to other years. This can be explained by a boom in construction
building in these years, with flats having comparably homogenous quality. The
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shape of the EB confidence interval in Figure 5(a) is caused by centering F about
0. The effect of location also provides interesting evidence of increased variance
in the central quarters of Munich, whereas some of the suburban quarters are
more homogeneous.

5.2. A space-time study on forest damage

These longitudinal data have been collected in yearly visual forest damage
inventories carried out in a forest district in the northern part of Bavaria from
1983 to 2001. The observation area extends 15 km from east to west and 10 km
from north to south, with 84 stands of trees as observation points. In the fol-
lowing application, we consider beeches. For each tree, the degree of defoliation
serves as an indicator for its damage state, which is given as a binary response,
with yit = 1 (damage of tree i in year t) and yit = 0 (no damage), i = 1, . . . , 84,
t = 1983, . . . , 2001. Figure 6 shows the temporal development of the frequency
of damaged trees, and the spatial distribution of trees together with the percent-
age of damage, averaged over the entire observation period. For an illustrative
analysis with a spatio-temporal logit model we include age Ait (in years) of the
tree and canopy density Cit at the stand, measured in steps of 10 %, as the most
influential covariates. The pH-value of the soil is less important here, because it
does not vary a lot within the observation area. Therefore we chose the following
logit model

log
P (yit = 1)
P (yit = 0)

= γ0 + f1(t) + f2(Ait) + f3(Cit) + f4(Si),

where the function f1,f2 and f3 are modelled through cubic P-splines with second
order random walk penalty, and the spatial component f4 follows Markov random
field prior (10), with Si denoting the site of tree i. Two trees are considered as
neighbors if their distance is less than 1.2 km.

 

0.125

0.25

0.375

0.5

0.625

1983 1989 1995 2001
year

0.0 1.0

Figure 6. Forest health data: the left panel shows the temporal development
of the frequency of damaged trees. The right panel displays the percentage
of damage, averaged over the entire observation period.
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a: EB Spatial effect b: FB Spatial effect

0-5.0 5.0 0-5.0 5.0

Figure 7. Forest health data: spatial effect for EB (left panel) and FB (right
panel). Shown is the posterior mode for EB and the posterior mean for FB.

Figure 8 shows the estimated functions f1, f2 and f3 for EB and FB, respec-
tively. Functions f1 and f2 are clearly nonlinear and, again, EB and FB results
are rather similar, even for credible intervals. The effect f1 of calendar time re-
flects the descriptive trend in Figure 6, with a peak in the mid-eighties, recovering
thereafter and staying on a more or less constant level in the nineties. Aston-
ishingly, the nonlinear effect of age is not monotone, with a first peak around 65
years. The effect f3 of canopy density appears to be linearly decreasing, which
means that a dense stand is good for the health of beeches. Note, that this con-
clusion depends on the type of tree, and can be quite different for other species.
The spatial effects in Figure 7 reflect the raw spatial effects in Figure 6, with EB
and FB estimates being close to each other again.

In Table 3 we compare the classification of trees for all years based on the
spatio-temporal logit model and, alternatively, on a model without the spatial
component f4. The classification table of the spatio-temporal model shows a clear
improvement, confirming that inclusion of the spatial information is substantial.

Table 3. Forest health data: Classification tables. Table a) shows the classi-
fication including a spatial effect and Table b) shows the classification with-
out spatial effect. In each cell of the tables predictions for EB estimates are
shown first and predictions for FB estimates are shown second. Predictions
are based on the Bayes rule, i.e., ŷit = 1 if P̂ (yit = 1) > P̂ (yit = 0) and
ŷit = 0 otherwise.

(a) ŷit

yit 0 1
0 900 / 896 71 / 75
1 113 / 110 465 / 468

(b) ŷit

yit 0 1
0 846 / 848 125 / 123
1 207 / 209 371 / 369

6. Conclusions

We developed empirical Bayesian inference, based on mixed model repre-
sentations, for a broad class of structured additive regression models. The ap-
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proach has been compared to full Bayesian inference using MCMC techniques
through simulation studies and applications to spatial and longitudinal regres-
sion data. Because we use a computationally efficient modification of the usual
version of REML estimation of smoothing parameters, empirical Bayes inference
is a promising alternative to full Bayes inference even for fairly large data sets.
As the applications to artificial and real data sets show, posterior mode (EB)
and mean (FB) estimators are often rather similar, motivating theoretical work
to justify this for large samples.

The software provided greatly facilitates applications of the methods in other
areas than considered in this paper, and should be of relevance for applied re-
searchers in economics and biostatistics who are confronted with space-time data.

In future research, we aim at extending the methodology to multivariate and
multicategorical responses as well as to survival and event history data.
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Figure 8. Forest health data: effects of calendar time (top), age of the trees
(middle) and canopy density (bottom) for EB (left panel) and FB (right
panel), respectively. Shown are the posterior mode (EB) and mean (FB)
estimates, together with pointwise 95% credible intervals.
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