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Abstract: We present self-modeling regression models for flexible nonparametric

modeling of multiple outcomes measured longitudinally. Based on penalized re-

gression splines, the models borrow strength across multiple outcomes by speci-

fying a global time profile, thereby yielding a means of dimension reduction and

estimates of trend more precise than those based on univariate regressions. The

proposed models represent nonparametric regression extensions to existing factor

analytic models for a multivariate response recorded at a single timepoint, and are

easily generalized to incorporate serial correlation above that captured by nonlin-

ear effects over time. We illustrate the methods by applying them to data on the

respiratory effects of residual oil fly ash inhalation in humans.
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1. Introduction

Investigations of the effects of environmental exposures on human health
often record measurements on multiple outcomes with interest focusing on the
overall effect of the exposure on the set of outcomes. When each outcome is mea-
sured once, it is well-known that multivariate models that account for correlation
among outcomes hold several advantages over the simpler approach that fits a
univariate model to each outcome. For instance, multivariate models allow one to
reduce the effective dimension of the multivariate response, which in turn yields
greater power to detect effects that are consistent across outcomes (Lefkopoulou
and Ryan (1993) and Pocock (1997)).

In many instances, researchers monitor multiple outcomes over time, result-
ing in data taking the form of multivariate time profiles, or multivariate curves.
A simple approach to analyzing such data is to fit a separate nonparametric
smoother to data on each outcome. As in the univariate multiple outcome set-
ting, disadvantages of this approach include loss of power from ignoring the
multivariate structure of the data (Lefkopoulou and Ryan (1993) and Pocock
(1997)) and difficulty in synthesizing a common effect. Alternatively, one could
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fit a parametric multiple outcome model, but this approach can be susceptible
to misspecification.

Most existing work on smoothing correlated data has focused on the longi-
tudinal data setting (e.g., Müller (1988), Altman and Casella (1995), Staniswalis
and Lee (1998), Zeger and Diggle (1994), Wang (1998), Zhang, Lin, Raz and
Sowers (1998), Lin and Zhang (1999), Zhang (1999), Lin and Carroll (2001) and
Coull, Schwartz and Wand (2001)), with different approaches relating to differ-
ent ways of accounting for correlation among longitudinal observations measured
on the same subject. Zeger and Diggle (1994) used semiparametric regression
methods that estimate a common nonlinear trend over time in the presence of
serial correlation. Altman and Casella (1995), Staniswalis and Lee (1998) and
Zhang (1999) took nonparametric approaches to growth curve analysis. Others
have formulated generalized additive mixed models (e.g., Zhang et al. (1998), Lin
and Zhang (1999) and Coull, Schwartz and Wand (2001)) in which correlation
among repeated measures is modeled using random effects.

In this article, we propose self-modeling regression (SEMOR, Lawton and
Sylvestre (1971), Lawton, Sylvestre and Maggio (1972), Kneip and Gasser (1988),
Kneip and Engel (1995), Lindstrom (1995), Wang and Brown (1996), Ladd and
Lindstrom (2000) and Ke and Wang (2001)) as a latent curve formulation for mul-
tivariate curve data. The model combines the strengths of simpler approaches
in that it provides flexibility in modeling the time profiles while pooling infor-
mation on exposure across outcomes. Existing applications of SEMOR models
to multiple outcomes (1) specify that the outcome-specific curves from multi-
ple subjects depend on a latent curve common to all subjects, and (2) account
for correlation among outcomes by specifying a general covariance structure for
the residuals (Wang, Guo and Brown (2000)). In contrast, our chosen SEMOR
formulation models correlation among multivariate curves by specifying a latent
function common to curves arising from the same subject.

We propose estimating the form of the latent curves using penalized regres-
sion splines (e.g., Eilers and Marx (1996)). This approach results in a mixed
model representation of SEMOR (Altman (2001) and Altman and Villarreal
(2001)), which allows one to use standard likelihood-based methods for both
estimation and inference as well as automatic smoothing parameter selection. A
simulation study presented in Section 5 shows that this likelihood-based approach
can yield large efficiency gains over existing estimation methods for SEMOR mod-
els. Our formulation also shows that SEMOR models generalize factor-analytic
models for outcomes measured at a single timepoint (Sammel and Ryan (1996))
to the functional data setting.

We use the proposed models to analyze data from an experiment that stud-
ies the respiratory effects of residual oil fly ash (ROFA), a surrogate for ambient
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air pollution, inhalation in humans. Epidemiological studies have repeatedly
shown associations between air particulate matter and increased morbidity and
mortality in human populations, particularly subjects with pre-existing respi-
ratory or cardiac vulnerability (e.g., Dockery, Pope, Xu, Spengler, Ware, Fay,
Ferris and Speizer (1993) and Samet, Dominici, Curriero, Coursac and Zeger
(2000)). Current laboratory research focuses on the physiological mechanisms
behind these effects by subjecting test subjects to air pollution. In the study
motivating this research, investigators recorded 16 respiratory outcomes on eight
human subjects during one hour exposures, with each subject monitored during
both filtered air and ROFA exposures. The top row of Figure 1 shows minutely
averages of two components of respiratory frequency, log(time to inspiration),
denoted here as TI, and log(time to exhalation), denoted TE, for one subject
under filtered air conditions. The y-axis represents an adjusted response formed
by centering minutely averages of each outcome around a mean value observed
during a pre-conditioning phase conducted before the start of exposure. Fitted
values and pointwise 95% confidence bands from scatterplot smoothing (as dis-
cussed in Section 2) show that, as expected, these outcomes are highly correlated
at any given time point. The bottom row of Figure 1 shows the analogous plot
for the same subject during ROFA exposure. The outcomes are again highly
correlated, yet note that the observed relation is in the opposite direction. Two
goals of this study were to investigate the effect of ROFA exposure on (1) trends
in respiration times over the one hour exposure period, and (2) the relationship
between the inhalation and exhalation components of respiration.

The remainder of this article is organized as follows. Section 2 briefly reviews
penalized regression splines for a single curve. Section 3 presents SEMOR models
for multivariate curve data. Section 4 outlines model fitting and inference for the
penalized spline formulation of SEMOR, and is followed by a small simulation
study in Section 5. Sections 6 and 7 contain an analysis of the human respiratory
data and further discussion, respectively.

2. Penalized Regression Splines for Nonparametric Regression

Consider the case in which repeated measures are recorded on a single out-
come for a single individual. Let yj be the response at time tj, j = 1, . . . , T . A
simple nonparametric model that specifies an arbitrary, smooth time profile for
y is

yj = f(tj) + εj , (1)

where the {εj} are normally distributed with error variance σ2
ε . We first consider

the case in which these errors are independent, but discuss serial correlation
momentarily.
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Figure 1. Data from a representative subject in the human respiratory
study under two experimental conditions, univariate penalized spline fits,
and pointwise confidence intervals. The top row displays log(time to inspi-
ration) (TI) and log(time to expiration) (TE) when exposed to filtered air.
The bottom row displays the same responses when the subject is exposed to
residual oil fly ash (ROFA).

Let κ1, . . . , κK be a set of distinct numbers, or knots, inside the range of the
time points 1, . . . , T , and let x+ = max(0, x). As we discuss below, the model
adaptively smoothes by penalizing a least squares fit on a vector space that has
an excess of basis elements. As a result, the precise locations of the knots does
not matter as long as they are relatively “dense” (e.g., one knot for every 3-4
unique covariate values) among the covariate observations in order to allow f to
have enough curvature (Ruppert (2002)). In our application and simulations, we
use twenty-five equally spaced knots over the range of the covariates. The fits
did not appreciably change when the number of knots was changed by plus or
minus ten. We have had similar experiences in other projects (Coull, Schwartz
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and Wand (2001)), but the number and location of the knots could matter if
there are gaps in the distribution of the covariate.

A linear mixed model formulation of a penalized spline model (Eilers and
Marx (1996) and Brumback, Ruppert and Wand (1999)) for (1) is

yj = β0 + β1tj +
K∑

k=1

uk(tj − κk)+ + εj , (2)

where uk
i.i.d.∼ N(0, σ2

u) and εj
i.i.d.∼ N(0, σ2

ε ). The mixed model fit is the solution to a
ridge regression (Ruppert, Wand and Carroll (2003)), with σ2

ε/σ
2
u acting as the

smoothing parameter. For σ2
ε/σ

2
u close to zero, β and u are estimated by least

squares, and larger σ2
ε/σ

2
u causes u to adaptively shrink closer to zero element-

wise. The truncated linear basis in (2) has the benefit of interpretability, but
can be numerically unstable in some settings (Hansen and Kooperberg (2002)).
We did not experience any such numerical problems with this basis in either
our simulations or application. However, one could implement penalized splines
with an alternative numerically stable basis, such as B-splines (Eilers and Marx
(1996)) or radial basis functions (French, Kammann and Wand (2001)).

In matrix notation, (2) takes the form y = Xβ+ Zu + ε, where β is a 2× 1
vector of unknown, fixed parameters, u = (u1, . . . , uK)T ∼ N(0, σ2

uIK) is a K×1
vector of random effects corresponding to the random truncated line coefficients,
X and Z are appropriate covariate matrices, and ε = (ε1, . . . , εn)T ∼ N(0, σ2

εIn) .
Here, Ik denotes the k×k identity matrix. Thus, (2) falls within the linear mixed
model framework, and we can rely on the well-developed body of methodology
for this broad class of models. In particular, the best linear unbiased predictor
(BLUP) of y is ŷ = f̂ = Xβ̂ + Zû, where expressions for estimates β̂ and
predictions û are provided in Robinson (1991).

So far we have assumed that the residual errors εj are independent. However,
it is often the case that these measures are correlated over time. In theory, the
mixed model representation of (1) extends naturally to accommodate more gen-
eral correlation structures. That is, it is straightforward in SAS PROC MIXED
or R / Splus lme() to fit the model assuming a first order autoregressive process
(AR(1)) εj = ρεj−1 + ζj, where ε1 ∼ N(0, σ2

ε ) and ζj
i.i.d.∼ N(0, σ2

ε (1 − ρ)). Several
authors have shown that, for other smoothers using automatic smoothing pa-
rameter selection, there can be difficulties in estimating serial correlation when
estimating nonparametric trend (Simonoff (1996, Section 5.5.2) and Opsomer,
Wang and Yang (2001)). To our knowledge, however, this issue has not been
formally investigated in the context of mixed model regression splines. In the
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next section we turn to a latent curve formulation that allows us to place more
structure on the trend and correlation components of the model.

3. Self-Modeling Regression for Multiple Curves

We use SEMOR to extend penalized spline regression to multiple outcome
data. A simple SEMOR model that specifies an underlying global time profile
specifies the multivariate model in two stages. Again for a fixed subject, let
ymj be the response on the mth outcome, m = 1, . . . ,M , taken at time tmj,
j = 1, . . . , Tm. Consider the model

ymj = λ0,m + λ1,mf(tmj) + εmj (3)

and f(tmj) = βtmj +
∑K

k=1 uk(tmj −κk)+, where uk
i.i.d.∼ N(0, σ2

u). Here, we assume
λ1,1 = 1.0 to ensure identifiability. This constraint corresponds to the usual
errors-in-variables parameterization in a standard factor-analysis model (Yalcin
and Amemiya (2001)). We select the knots κ = (κ1, . . . , κK)T and check the
sensitivity of the model fits to this choice using the strategies outlined in Section
2. Results of this sensitivity analysis for the human respiratory data suggest that
the results are insensitive to this choice in the SEMOR setting as well.

We use SEMOR to model multiple curves for each subject as a parametric
transformation of a single subject-specific latent curve. This represents a gen-
eralization of existing factor-analytic models for outcomes measured at a single
timepoint (Sammel and Ryan (1996)) to the functional data setting. The latent
curve assumption induces correlation among the multiple curves within a given
subject. In particular, the shared random effects u induce correlation among
the M curves, with Cov (ymj , ym′j) = σ2

uλ1,mλ1,m′zmjzT
m′j. Here, zmj is the row

vector of truncated polynomial basis functions for u associated with observation
j on outcome m. Because this basis and σ2

u are strictly non-negative, the sign of
λ1,mλ1,m′ determines the direction of correlation between curves m and m′. In
the special case of M = 2, this product simplifies to λ1,2 due to the identifiability
constraint on λ1,1.

We assume that the residual errors εm = (εm1, . . . , εmTm)T for outcome m

are normally distributed with variance covariance matrix Σm = σ2
ε,mR, where

the (jj′)th element of R is ρ|tj−tj′ |. That is, we assume that the serial correlation,
but not the residual error, is homogeneous across outcome.

4. Estimation and Inference

In this section we describe an Expectation-Conditional Maximization (ECM)
algorithm (Meng and Rubin (1993)) for model fitting. The algorithm yields both
maximum likelihood estimates of the fixed effects and variance components, as
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well as predictions of the random effects given the data. In particular, we treat the
random effects u as missing data, and iterate between calculating the expectation
of complete data log-likelihood given the observed data and maximizing this
expectation with respect to the fixed effects and variance components. In the case
of nonlinear mixed model (3), the ECM algorithm yields closed-form estimators
for all fixed effects and residual variances at each maximization step (Sammel
and Ryan (1996)), allowing for easy and quick implementation of the model.

Let ψ = (λT
0 ,λT

1 , β, σu,σT
ε , ρ)T denote the vector of fixed parameters and

variance components, where the mth elements of λ0 and σε are λ0,m and σε,m,
respectively, and the mth element of λ1 is λ1,m+1. In addition, let ψ(p) and
R(p) denote the current values of ψ and R, respectively, after ECM iteration p.
Iteration p + 1 of the ECM algorithm consists of

• E-step: Calculate
1. E(u|y,ψ(p))
2. E(uuT|y,ψ(p))

• M-step: Update parameter estimates using the following steps:
1. Fixing ρ(p), σ(p)

ε , R(p), σ
(p)
u , λ(p)

0 and λ(p)
1 update β using weighted least

squares.
2. Fixing ρ(p), σ(p)

ε , R(p), σ
(p)
u , β(p+1), update λ0 and λ1 using weighted least

squares.
3. Fixing β(p+1), λ(p+1)

0 and λ(p+1)
1 , update σ2

u, ρ and σ2
ε using the expected

(REML) log likelihood.

See the appendix for the necessary expectations for the E-step and detail
on the M-steps. An R implementation of the algorithm is very fast, converging
in under a minute when applied to the bivariate response (TI, TE) for a given
subject in the human respiratory experiment.

Ruppert, Wand and Carroll (2002) showed that the relevant quantity for
standard error estimation in penalized spline models is with respect to the joint
distribution of y and u. In the case of the linear mixed model, Henderson (1975)
showed that this quantity is the expected negative inverse Hessian, or equivalently
the negative inverse Fisher information, of the joint log density of y and u with
respect to the fixed and random effects.

We extend this strategy and use the negative inverse Fisher information
under (3). Let tm and Zm be the vector of times and the matrix of basis functions
associated with u for outcome m, respectively, let Km = [1 βtm + Zmu], m =
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2, . . . ,M, and let

K =


1 0 0 . . . 0 t1 Z1

0 K2 0 . . . 0 λ1,2t2 λ1,2Z2

0 0 K3 . . . 0 λ1,3t3 λ1,3Z3
...

...
...

. . .
...

...
...

0 0 0 . . . KM λ1,MtM λ1,MZM

 .

Further, let λ = (λ0,1, λ0,2, λ1,2, . . . , λ0,M , λ1,M )T. Then the negative inverse
Fisher information is

Cov

 λ

β

û − u

 =
(
KTΣ−1K + D

)−1
, (4)

where D =

[
0 0
0 σ2

uIK

]
. We calculate standard errors by plugging in maximum

likelihood estimates ψ̂ = (λ̂
T

0 , λ̂
T

1 , β̂, σ̂u, σ̂T
ε , ρ̂)T and predictions û into (4).

5. Simulation Study

In this section we report the results of a small simulation study designed
to compare the finite sample performance of our proposed likelihood-based ap-
proach to SEMOR model fitting (denoted by MM for mixed model) to that from
(1) existing SEMOR fitting strategies, and (2) univariate penalized splines fit
to each outcome separately. The existing approach we consider is the two-stage
procedure of Kneip and Engel (1995). At the first stage, this approach esti-
mates the cross-sectional mean over time by smoothing all of the observations
(tmj , ymj)m=1,...,M ;j=1,...,Tm together. The second stage then entails estimating
the parameters λ0, λ1 and the variance components by least squares and mo-
ment estimators, respectively. Kneip and Engel (1995) showed that the estimates
from this simple scheme are asymptotically as efficient as those that would be
available if the cross-sectional mean function were known. For the univariate pe-
nalized spline fits, we base estimation on restricted maximum likelihood (REML)
estimation of the variance components.

In view of the human respiratory data, our experiment uses M = 2, T1 =
T2 = 60 with tjs evenly spaced between zero and one, λ0 = (0.27, 0.13) and
λ1 = (1.00, 1.14). We use a factorial combination based on functional forms
f(t) = {sin(4πt), 3− 4(t− 0.5)2}, autoregressive parameter values ρ = {0.0, 0.2},
and residual variance values σ2

ε =

{(
0.1
0.1

)
,

(
0.1
0.6

)}
. The Monte Carlo sample



SEMOR MODELS FOR MULTIVARIATE CURVES 703

size is 500 and we re-used the simulated errors from case to case as a variance
reduction technique. We used lme() in R to perform the REML penalized spline
fits and to conduct the smoothing step in the KE method. All fits are computed
assuming first-order serial correlation ρ among observations taken on the same
outcome.

Tables 1 and 2 show results for the latent sine curve and the latent quadratic
curve, respectively. In both cases, we see that the differences in both the root
mean squared error and the absolute bias of the three curve estimators are small
when both outcomes have equal residual variances. However, there exist notice-
able differences among the three strategies when one outcome is noisier than
the other. In this case, both SEMOR estimators outperform their univariate
counterpart substantially. These SEMOR estimators achieve this large efficiency
gain by borrowing strength from the low noise observations to help fit the curve
observations. Further, our proposed MM method outperforms the KE method
by using a likelihood to more efficiently borrow this strength. The gains come
in terms of both root mean squared error and absolute bias. We also note that
this difference between the MM method and the others grows as the autocorre-
lation increases. Thus, the MM method uses a single likelihood to combine the
information from both outcomes, estimate the autocorrelation, and adjust the
amount of smoothing accordingly.

Table 1. Average RMSE and average absolute bias of the SEMOR-based
mixed model (MM) estimates and two-stage estimates of Kneip and Engel
(KE), as well as univariate penalized splines based on REML when the latent
curve is f(t) = sin(4πt).

Average Root Mean Squared Error X 1000
Outcome 1 Outcome 2

SEMOR SEMOR
ρ (σe,1, σe,2) MM KE REML MM KE REML

0.0 (0.1,0.1) 39.19 38.10 52.80 42.70 40.99 52.29
0.2 (0.1,0.1) 44.69 41.77 56.45 50.17 46.10 57.75
0.0 (0.1,0.6) 51.03 52.98 51.50 124.13 198.06 260.56
0.2 (0.1,0.6) 59.31 60.67 56.76 135.57 226.30 396.12

Average Absolute Bias X 1000
Outcome 1 Outcome 2

SEMOR SEMOR
ρ (σe,1, σe,2) MM KE REML MM KE REML

0.0 (0.1,0.1) 7.54 7.09 7.93 8.23 8.13 8.87
0.2 (0.1,0.1) 7.69 7.58 8.46 8.22 8.68 9.62
0.0 (0.1,0.6) 8.89 9.16 8.35 12.80 59.64 75.26
0.2 (0.1,0.6) 10.41 10.34 8.68 17.10 105.43 167.52
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Table 2. Average RMSE and average absolute bias of the SEMOR-based
mixed model (MM) estimates and two-stage estimates of Kneip and Engel
(KE), as well as univariate penalized splines based on REML when the latent
curve is f(t) = 3 − 4(t − 0.5)2.

Average Root Mean Squared Error X 1000
Outcome 1 Outcome 2

SEMOR SEMOR
ρ (σe,1, σe,2) MM KE REML MM KE REML

0.0 (0.1,0.1) 27.08 25.15 31.73 29.37 27.10 32.25
0.2 (0.1,0.1) 30.64 28.77 36.61 32.37 30.28 35.82
0.0 (0.1,0.6) 35.74 37.49 31.56 106.01 113.82 138.14
0.2 (0.1,0.6) 37.35 38.92 36.10 142.36 156.14 183.15

Average Absolute Bias X 1000
Outcome 1 Outcome 2

SEMOR SEMOR
ρ (σe,1, σe,2) MM KE REML MM KE REML

0.0 (0.1,0.1) 2.66 5.50 6.32 5.43 6.32 6.33
0.2 (0.1,0.1) 4.44 5.59 6.78 6.16 8.56 8.21
0.0 (0.1,0.6) 2.75 7.23 5.68 14.38 15.14 24.58
0.2 (0.1,0.6) 5.76 6.07 6.13 10.23 30.72 41.41

6. Analysis of Respiratory Data

In the human respiratory study outlined in the Introduction, interest focuses
on observations yscmj, j = 1, . . . , Tscm, from two outcomes (m = 1, 2) for eight
subjects (s = 1, . . . , 8), each observed under two conditions: filtered air exposure
and ROFA exposures (c = 1, 2). A SEMOR model for this setting is

yscmj = λ0scm + λ1scmf c
s (tscmj) + εscmj, (5)

where f c
s (tscmj) = βc

1stscmj +
∑K

k=1 uc
sk(tscmj − κk)+, uc

sk
i.i.d.∼ N(0, σ2

u,sc), s =
1, . . . , S, c = 1, 2, and εscm = (εscm1, . . . , εscmTscm)T are normally distributed
with variance covariance matrix Σscm = σ2

ε,scmRsc. Here, the (jj′)th element of

Rsc is ρ
|tj−tj′ |
sc . As before, λ1sc1 = 1.0 for all s and c for identifiability. Thus, the

TI outcome (m = 1) is the reference curve for each subject and condition. This
model corresponds to fitting SEMOR model (3) to each subject separately. Fig-
ure 2 presents the fit of this model to the data shown in Figure 1. Here, the 95%
pointwise confidence bands for each profile are obtained using (4) and applying
the delta method to the outcome-specific fits λ̂0,m+[1+(λ̂1,m−1)∗I(m = 2)]f̂(t),
where I() is the indicator function. The quality of the model fit for the remaining
seven subjects in the study is similarly good.
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In this setting, primary scientific interest focuses on the differences between
the curves under air and ROFA conditions for both the TI and TE outcomes,
or ds,m=1(t) = [f2

s (t) − f1
s (t)] and ds,m=2(t) = [λ1s22f

1
s (t) − λ1s12f

0
s (t)] respec-

tively. Figure 3 summarizes these difference curves, averaging them over the
eight subjects in the study. We note that six of the eight subjects in each condi-
tion displayed the general pattern described by the average curve, supporting the
fact that these averages represent the general trends and not an average of widely
disparate curves for each condition. Also, differences based on univariate curves
(not shown) have similar shapes, but the 95% pointwise confidence intervals are
wider.
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Figure 2. SEMOR fit to the data displayed in Figure 1.

Overall, the analysis suggests that, relative to control conditions, ROFA
inhalation initially decreases one’s time to inspiration up until approximately 30
minutes into the exposure, with this difference gradually disappearing toward the
end of the exposure period. In contrast, results suggest that exposure initially
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increases time to exhalation.
In addition to inference on each outcome, the subject-specific SEMOR model

(5) yields inferences on the effect of exposure on the associations between the
outcomes outcomes via the sign of λ1sc2. Table 3 shows that four subjects exhibit
negative correlation between outcomes (TI, TE) under ROFA (c = 2) conditions,
whereas only one subject exhibits negative correlations under control conditions
(c = 1).
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Figure 3. Average effect (averaged over subjects) of ROFA relative to clean
air on log(time to inspiration) and log(time to exhalation).

Table 3. Subject-treatment specific “self-modeling” coefficients λ1sc2 ob-
tained from the fit of SEMOR model (5) to the eight subjects in the human
respiratory experiment.

Air (c = 1) ROFA (c = 2)
Subject (s) λ̂1s12 λ̂1s22

1 0.99 -0.20
2 0.85 1.02
3 0.28 -0.77
4 1.00 -0.38
5 0.11 -0.92
6 1.36 0.98
7 -0.95 1.34
8 2.14 1.81

7. Discussion

In this article we have proposed a penalized spline formulation of self-modeling
regression for multivariate curve data. Wand (2003) showed that the mixed model
representation of penalized splines allows one to easily incorporate complications
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such as clustering, missing data, and measurement error into smoothing models.
In this paper, we have shown that we can add multivariate models for multiple
outcomes to this list, as this mixed model makes the connection between SEMOR
regression and existing latent variable models for multiple outcomes immediate.
Our approach differs from that of other penalized spline formulations of SE-
MOR (Altman (2001) and Altman and Villarreal (2001)) in that we use a fully
likelihood-based framework for estimation and inference. This SEMOR frame-
work allows one to easily estimate both the serial correlation within an outcome
and the correlation among outcomes measured at a given timepoint.

We applied the models to explore the effects of residual oil fly ash inhala-
tion on respiration in humans. Instead of using overall respiratory frequency
as an endpoint, investigators were interested in the bivariate outcome (time to
inspiration, time to exhalation). This multivariate analysis yielded greater in-
sight into the mechanisms of air pollution inhalation, in that not only did it
compare breathing patterns exhibited during the two exposure protocols, but it
also yielded a formal mechanism for inference on the effect of exposure on the
relationship between the two outcomes.

In the human respiratory example, we checked the fits of the SEMOR la-
tent curve assumption by visually inspecting the difference in deviances from
this model to that obtained from the univariate fits. The subject-specific SE-
MOR model fits extremely well for all subjects (see Figure 2), implying that
more complicated SEMOR models are not necessary for this application. How-
ever, in other applications, one could extend the model to be more flexible
in several ways. For instance, other SEMOR formulations use a linear time
scale transformation (see Lindstrom (1995)). Alternatively, if interest focuses on
m > 2 manifest curves, one could easily extend (3) to specify multiple latent
curves. Alternatively, as in other hierarchical settings, information could be fur-
ther pooled by placing constraints on parameters in the hierarchical formulation
(5). For instance, a model that assumes that the associations between outcomes
are homogeneous across subjects undergoing a particular exposure constrains
λ11cm = λ12cm = . . . = λ1Scm for all c and m. We fit this model to the respira-
tory data, but it fit the data poorly, as is suggested by the unrestricted estimates
presented in Table 3.

Because (3) represents a generalization of existing latent variable models
for multiple outcomes taken at a single time point, it inherits an important
disadvantage associated with this class of models (Sammel, Lin and Ryan (1999)
and Sammel and Ryan (2002)) that may make it unsuitable in some settings. In
particular, the mixed-model representation of SEMOR implies that the loading
parameters λ1 enter into the mean and covariance model for Y, often leading
to problems with robustness. As demonstrated by (6) in the appendix, this is
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compounded by the fact that λ1,m also serves to adjust the smoothing parameter
σ2

ε,1/σ
2
u. In other applications, the more flexible formulation

ymj = β0,m + β1,mtmj + δm

K∑
k=1

uk(tmj − κk)+ + εmj

may be more robust. Again restrictions on some of the parameters would be
necessary for identifiability. A disadvantage of this alternative formulation is
interpretability and the lack of a global latent curve (Sammel, Lin and Ryan
(1999)).

Another minor disadvantage of the SEMOR formulation is that, since the
correlation among outcomes is captured solely through the nonlinear component
of the model, the model does not cover all possible cases of correlated curves.
For instance, the model does not cover the case in which observations taken on
different outcomes are dependent, yet the profiles are linear (i.e., σ2

u = 0). In
such cases, however, if the latent curve assumption truly holds, then both profiles
are likely to be flat and ordinary general linear models with correlated errors can
be used to model the data. Thus, this does not appear to be a severe limitation
of the model. If one curve is nonlinear and the other is constant, then the latent
curve assumption itself is suspect and the SEMOR formulation is probably not
the best model for the data. We note that we did not encounter any linear profiles
in the human respiratory application.

An interesting problem for future research is to establish a theoretical frame-
work for identifiability of mixed model representations of regression splines with
data-driven smoothing parameter selection in the presence of autocorrelation. As
noted in Section 2, this has been problematic in other smoothing contexts, but
has not been formally investigated in this context. Our experience suggests that,
using SAS PROC MIXED, REML iterations for model (2) with first-order serial
correlation can converge to a weakly-identified local maximum of the likelihood
if one does not provide the algorithm with good starting values of the variance
components. However, once we start the algorithm at the variance components
obtained from the model assuming independent errors, we have not observed any
cases of non-identifiability. Others (Opsomer, Wang and Yang (2001), Currie and
Durban (2002) and Durban and Currie (2003)) have reported similar empirical
results for regression and smoothing splines in this regard.

Finally, the application of our model to the human respiratory data used
subject-specific fixed effects. An alternative would be to extend the model to
include subject-specific random effects. Such an extension would complicate
model fitting though, and fully Bayesian approaches may be preferable. Overall,
we find SEMOR models can be an effective strategy for modeling multivariate
curve data.
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Appendix

Let X̃m = [1 λ1,mtmj ]1≤j≤Tm, βm = [λ0,m β]T, and Z̃m = λ1,mZm. From
the definitions of u and εm in Section 3, it follows that the marginal distribution
of ym is

ym ∼ MVNTm

(
X̃mβm, σ2

uZ̃mZ̃T
m + σ2

e,mR
)

. (6)

Let T =
∑M

m=1 Tm, X̃ = blockdiagX̃m, Z̃ = [Z̃T
1 , . . . , Z̃T

M ]T, β = [βT
1 , . . . ,βT

M ]T

and Σ = diag σ2
e,m⊗R. Using this notation, we can succinctly write the marginal

distribution as y ∼ MNVT (X̃β, σ2
uZ̃Z̃T + Σ), and the joint distribution of (y,

u) as multivariate normal with

E

(
y
u

)
=

(
X̃β
0

)
and Cov

(
y
u

)
=

(
σ2

uZ̃Z̃T + Σ σ2
uZ̃

σ2
uZ̃

T σ2
uIK

)
=

(
Σy,y Σy,u

ΣT
y,u Σu,u

)
.

Thus, using standard results, the conditional normal distribution of u|y can be
derived. Letting C̃ = [X̃ Z̃], the conditional mean can be simply expressed as
the last K elements of{

C̃TΣ−1C̃ +

(
0 0
0 σ2

uIK

)}−1

C̃TΣ−1y

(e.g., Robinson (1991)). A benefit of this form is that it illustrates that the
SEMOR mixed model smoothes in a similar manner to the simpler mixed model
presented in Section 2.
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