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Abstract: We review functional regression models and discuss in more detail the

situation where the predictor is a vector or scalar, such as a dose, and the response

is a random trajectory. These models incorporate the influence of the predictor

either through the mean response function, through the random components of a

Karhunen-Loève or functional principal components expansion, or by means of a

combination of both. In a case study, we analyze dose-response data with functional

responses from an experiment on the age-specific reproduction of medflies. Daily

egg-laying was recorded for a sample of 874 medflies in response to dietary dose

provided to the flies. We compare several functional response models for these data.

A useful criterion to evaluate models is a model’s ability to predict the response

at a new dose. We quantify this notion by means of a conditional prediction error

that is obtained through a leave-one-dose-out technique.
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1. Introduction

This study is motivated by a medfly experiment described in Carey, Liedo,
Harshman, Zhang, Müller, Partridge and Wang (2002). Age-specific reproduc-
tion in terms of daily eggs laid was recorded for 1,200 female medflies that were
fed one of 12 dietary doses, ranging from ad libitum (full diet) to 30% of ad
libitum diet. Due to an abundance of early deaths, the two lowest doses were
omitted from our analysis, which is based on data for 874 flies that laid eggs and
were assigned to ten dose levels, with varying numbers of flies per dose level.

The shape changes in age-specific fecundity that occur when dietary dose
varies are of interest. Carey et al. (2002) demonstrated that the total number of
eggs produced by individual flies is monotone increasing as dietary dose increases,
with a saturation characteristic. A biological question of interest is whether this
increase in the total is due to a sustained increase over all ages, or whether flies
start to produce eggs earlier, for example, under a richer diet. Figure 1 displays
typical response curves for three doses, 50%, 75% and 100% of the ad lib diet.
A general increase in the level of the egg-laying profiles as dietary levels increase
is clearly visible, and it is of interest whether additional, perhaps more subtle,
changes in the level of egg-laying occur.
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Figure 1. Smoothed egg-laying trajectories of twenty randomly selected in-
dividuals at dose levels 100%, 75% and 50%. The bandwidth is the same
for all curves, and is obtained by minimizing the sum of all individual leave-
one-point-out squared prediction errors.

The models we consider for our analysis fall within the general class of func-
tional regression models (Ramsay and Silverman (1997)). These are regression
models that include some components (predictors or responses) that may be
viewed as random curves. Three subcategories of such models can be distin-
guished: both predictors and responses are functions; predictors are functions
and responses are scalars; predictors are scalars and responses are functions.
Due to the nature of our data, we are primarily concerned here with the latter
class. We begin with a brief review of the two model classes with functional
predictors and discuss the functional response model in Section 2.

Models where both predictors and responses are functions. These are usually
referred to as functional regression models and were introduced in Ramsay and
Dalzell (1991). These models are extensions of the multivariate linear regression
model E(Y |X) = BX, employing a regression parameter matrix B, to the case of
infinite-dimensional or functional data. The data are a sample of pairs of random
functions (X(t), Y (t)), with X the predictor and Y the response functions.

The extension of the linear regression model to functional data is then

E(Y (t)|X) = µ(t) +
∫
X(s)β(s, t) ds,

with a parameter function β and a mean response function µ(t). The estimation
of the parameter function β(·, ·) is a main goal, and amounts to solving an inverse
problem. One could attempt to generalize the least squares normal equation for
Y ∈ R

p, given by Cov (X,Y ) = Cov (X)B from multidimensional to functional
data, leading to the “Functional Normal Equation”

rXY = RXXβ, for β ∈ L2,
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where L2 is the space of square integrable functions and RXX : L2 → L2 is the
autocovariance operator of X, defined by

(RXXβ) (s, t) =
∫
rXX(s,w)β(w, t)dw.

Here rXX(s, t) = Cov [X(s),X(t)] and rXY (s, t) = Cov [X(s), Y (t)] are the auto-
and cross-covariance functions. Since RXX is a compact operator in L2, it is
not invertible. A functional version of a generalized inverse is needed, and exists
under some technical assumptions. According to He (1999) and He, Müller and
Wang (2000, 2003), compare also Dauxois, Pousse and Romain (1982), if

X(t) =
∞∑

j=1

ξjϕj(t), Y (t) =
∞∑

j=1

ζjψj(t)

are the Karhunen-Loève expansions of random functions X and Y , assuming
zero means and eigenfunctions ϕj , ψj of autocovariance operators RXX , RY Y ,
a unique solution to the functional normal equation exists in the image space
I(RXX), provided ∑

i,j

(
E (ξiζj)
Var (ξi)

)2

<∞.

In this case, the solution of the functional normal equation can be written as

β∗(s, t) =
∞∑

j=1

ρjuj(s)RY Y vj(t)

in terms of canonical correlations ρj and canonical weight functions uj and vj,
or alternatively in terms of the eigenfunctions as

β∗(s, t) =
∞∑

j,k=1

Cov (ξj , ζk)
Var (ξj)

ϕj(s)ψk(t).

A practical method to estimate β is to discretize the problem, first solving for
a matrix B in a multivariate regression approach, and then adding a smoothing
step to obtain the smooth regression parameter function β. Regularization is
achieved by truncating the series at a finite number of summands K. For further
asymptotic results, we refer to Fan and Zhang (1998) and Cuevas, Febrero and
Fraiman (2002).

Models where predictors are functions and responses are scalars. Such models
have been investigated recently by Cardot, Ferraty and Sarda (1999), Cardot,
Ferraty, Mas and Sarda (2003), James (2002), Ratcliffe, Heller and Leader (2002)
and Müller and Stadtmüller (2004). This type of data arises for example in
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functional prediction problems, such as predicting adult height from a number of
child growth measurements. Other applications are to discriminant and cluster
analysis problems for functional data and random trajectories. Such problems
are of interest in bioinformatics, where one goal is to classify genes according to
their observed time-dependent expression profile.

A generalized functional model along these lines, allowing for generalized
responses, has been proposed by James (2002), who models the principal com-
ponent functions in a suitable B-spline basis and emphasizes applied aspects.
Müller and Stadtmüller (2004) proposed a version of functional discriminant
analysis via functional binomial regression and developed asymptotic distribu-
tion theory, using functional principal component scores. With a suitable link
function g, centered random predictor functions X(t) ∈ L2(dw) and responses
Y ∈ R, the model is

E(Y |X) = g(α+
∫
β(t)Xi(t) dw(t)).

Binomial functional regression could also be based on spline coefficient rep-
resentations of the predictor functions, an approach that goes back to Shi, Weiss
and Taylor (1996) and Rice and Wu (2001). Besides regression approaches, an-
other method for curve clustering that has been investigated in recent years is
based on modes in function space (Gasser, Hall and Presnell (1998), Hall and
Heckman (2002) and Liu and Müller (2003)).

The remainder of the paper is organized as follows. Models for the case of a
functional response and a scalar predictor are discussed in the following section
and response models that include residual processes are proposed. The fitting
of these models is the theme of Section 3, and special features of functional
responses in dose-response analysis are discussed in Section 4. Section 5 is a case
study of reproductive trajectories for medflies in response to dietary dose, and
Section 6 is devoted to issues of model choice.

2. Modeling Functional Responses

In the data set that motivated this study, the predictor is a dose (amount of
diet), while for each individual the response is a random trajectory (daily egg-
laying). Similar situations were considered in Chiou, Müller, Wang (2003) and
Chiou, Müller, Wang and Carey (2003) for different types of egg-laying data,
and for the setting of motion capture data by Faraway (1997). An alternative
approach models the influence of the covariate on the flow of time rather than on
the amplitude of the response curves (Capra and Müller (1997)). In this paper,
we introduce a general model which extends the approaches considered previously
in Chiou, Müller, Wang (2003) and Chiou, Müller, Wang and Carey (2003). The
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covariates are assumed to influence the shape of the response functions mainly
through effects on the overall mean function and, in addition, on the conditional
distributions of the functional principal component scores, if additional random
components lead to better fits.

The random part of the model involves the Karhunen-Loève decomposition
of the residual processes obtained after subtracting the fitted mean effects from
the response functions. This means that residual processes are decomposed into
orthonormal eigenfunctions ψk, k = 1, 2, . . ., of the autocovariance operator RY Y

defined above, with functional principal component scores as coefficients. This
is an extension of the usual spectral decomposition of a covariance matrix, using
eigenvectors, to the functional case. Then the eigenvectors become eigenfunctions
and many new issues arise, such as convergence of the expansion to a limit, where
different modes of convergence can be considered.

We assume that the eigenfunctions are smooth (say, twice differentiable)
and that they do not change as the covariate level changes. An alternative
approach would be a model where the eigenfunctions themselves change with the
covariate; this increases the complexity but would be of interest for some cases,
for example in applications where the covariate influences the size of the support
of the response function.

The concept of functional principal components was developed in an early
paper by Rao (1958) on growth curves, extending the multivariate technique of
principal components analysis to the infinite-dimensional case. Practical and
smoothing issues in estimating functional principal components were studied
by Castro, Lawton and Sylvestre (1986) and Rice and Silverman (1991), with
an interesting proposal to describe samples of random curves through principal
components in Jones and Rice (1992).

Functional principal components are valued as a device for dimension reduc-
tion, which is essential for functional data. Infinite-dimensional trajectories can
conveniently be reduced to a finite number of functional principal components
that often have an applied interpretation as “modes of variation”. Other approx-
imation techniques such as orthogonal series, wavelets or B-splines may serve
the same purpose and are preferable in some applications. While choosing an
alternative base rather than the eigenbase has the advantage that it eliminates
the need to estimate the eigenfunctions, easing the computational burden, such
choices also encounter a number of disadvantages, e.g., a comparably larger num-
ber of basis functions will be necessary and there will be correlations between
the functional principal component scores.

Assume that data consist of a sample of covariate vectors Z and associated
response curves Y , (Zi, Yi(t)), i = 1, . . . , n, t ∈ T , where T is an interval and the
covariate vector Z is in R

q, q ≥ 1. In developing the proposed functional response
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model, we first approximate E(Y (t)|Z = z) by a product function µ0(t)θ(z),
then introduce a “residual process” whose random effects are functions of the
predictors Z.

We assume that there exist twice continuously differentiable functions µ0, µ1 :
R → R such that E{Y (t)} = µ0(t) is the overall mean of the response processes
Y (t). Defining θ(z) = arg minθ{

∫
T [E(Y (t) | Z = z) − µ0(t)θ]2 dt}, we find by

taking the derivative w.r. to θ that the minimizing function is

θ(z) =
∫
µ0(t)E(Y (t)|Z = z)dt∫

µ2
0(t)dt

, (1)

provided
∫
µ2

0(t)dt > 0. Furthermore, since E[E(Y (t)|Z)] = µ0(t), we find
E(θ(Z)) = 1, so that the least squares approximation µ0(t)θ(Z) to E(Y (t)|Z)
is well defined. In the case of multivariate covariates Z we make the single index
assumption that there exists a parameter vector γ ∈ �q, satisfying ‖γ‖ = 1, such
that µ1(γ′z) = θ(z). As a consequence, E{µ1(γ′Z)} = 1. The function µ1(·) thus
provides an amplitude modifying factor dependent on the linear predictor γ′Z.

We have seen that µ(t, z) = µ0(t)µ1(γ′z) provides a least squares approx-
imation to E(Y (t)|Z = z), and if indeed E(Y (t)|Z = z) = µ(t, z), this model
corresponds to the product surface model described in detail in Chiou, Müller,
Wang and Carey (2003). We note that other functional forms could be consid-
ered for µ(t, z) as well but, according to our experience with functional data, the
product form seems to have the widest applicability in practice.

If E(Y (t)|Z = z) �= µ(t, z), the residual process R(t) = Y (t) − µ0(t)µ1(γ′Z)
plays an additional role in the modeling of the response curves. Since ER(t) = 0,
as E{µ1(γ′Z)} = 1, we can expand this process in terms of its eigenfunctions.
Assuming that the first K eigenfunctions ψk : T → R are sufficient for this

expansion, we obtain R(t) =
K∑

k=1
Akψk(t), where E(Ak) = 0, Cov (Ak, A�) =

λkδk�, using the Kronecker delta notation.
Furthermore, conditional on the covariates, we find

E{R(t)|Z} =
K∑

k=1

E(Ak|Z)ψk(t) =
∞∑

k=1

ηk(Z)ψk(t)

with functions ηk : R
q → R, and for the conditional covariance (and with s = t,

the conditional variance)

Cov {R(s), R(t)|Z} =
∑
k,�

Cov (Ak, A�|Z)ψk(s)ψ�(t).

Extending the single index dimension reduction scheme to random compo-
nents of the model proves useful for cases where the covariate is a vector. Assume
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that each of the conditional link functions associated with a random component,
ηk(z) = E(Ak|Z = z), is a smooth function of a single index formed from the
data; i.e., there exist parameter vectors βk ∈ R

p, ‖βk‖ = 1 and twice continuously
differentiable functions αk : R → R such that

αk(β′kz) = ηk(z) = E(Ak|Z = z), k = 1, 2, . . . . (2)

Prediction of Y (t), given a covariate level z, may then be based on the conditional
expectation

E{Y (t)|Z = z} = µ(t, z) +
K∑

k=1

αk(β′kz)ψk(t). (3)

We note that model (3) reduces to the functional quasi-likelihood regres-
sion model of Chiou, Müller, Wang (2003) when µ(t, z) = µ0(t), and to the
multiplicative effects model of Chiou, Müller, Wang and Carey (2003) when
µ(t, z) = µ0(t)µ1(γ′z) and αk = 0. The inclusion of the residual process R(t)
allows one to check the validity of this product surface model. Instead of the
multiplicative assumption for the mean function, the conditional mean function
µ(t, z) can be modeled as an arbitrary smooth surface in t and γ′z (Chiou, Müller,
Wang and Carey (2003)).

If the residual process R(t) is included in the model, the influence of the
covariates on the shape of the response function Y is determined by the link func-
tions and their single indices, the overall mean function and the eigenfunctions.
To study the effect of covariates, one can look at predictions for various covariate
settings, for example varying one covariate at a time. Approximate inference
for covariate effects can be obtained by formulating tests for the single indices,
assuming one can ignore the estimation of the eigen- and link functions. Confi-
dence regions for the parameters can be translated into uniform confidence bands
for the predicted trajectories, applying projection methods similar to Scheffé’s
method; compare Yao, Müller and Wang (2003) for an example in the functional
setting. The link functions could be parameterized by low-order polynomials
or B-splines, allowing one to apply crude significance tests for regression effect
(non-constant link).

3. Fitting Functional Response Models

Fitting the models that include the residual process R(t) is based on one-
dimensional and two-dimensional scatterplot smoothers and the Quasi-Likelihood
with Unknown Link and Variance Function Estimation (QLUE) algorithm, that
is applicable to any regression data with vector predictors and scalar response
(Chiou and Müller (1998)). The output of the smoothing steps are smooth
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curve and surface estimates. We choose local weighted least squares to imple-
ment smoothing, noting that any of a number of alternative smoothing methods
could be used. The output of QLUE consists of nonparametric link and variance
functions, the parameter estimates for the single index parameter, and their
asymptotic covariance matrix. The latter can be used for inference, pertaining
to the asymptotic normality of the parameter estimates. Detailed descriptions
of smoothing and QLUE algorithms can be found in Chiou, Müller and Wang
(2003). We note that the QLUE steps are intended to provide dimension re-
duction through single index models, and may be replaced by other dimension
reduction methods such as SIR (Li (1991)), (generalized) projection pursuit or
additive modeling. The numerical implementation described in the following
makes use of algorithms of Chiou, Müller and Wang (2003) and Chiou, Müller,
Wang and Carey (2003).

We now make the following assumptions regarding the discrete sampling
of the response trajectories Yi(t): there are mi measurements available for the
ith trajectory which are made at the levels ti1, . . . , timi . We assume min{mi, i =
1, . . . , n} → ∞ as n→ ∞ and that the measurement locations {tij} for each i are
generated by a smooth design density (Müller (1984)); all these design densities
are uniformly smooth and are uniformly bounded away from 0 on the compact
domain on which the Y (t) live. Explicit formulas embodying these requirements
are easily derived and are useful for asymptotic derivations for the consistency
of mean function and eigenfunction estimates, for example along the lines of
Cardot, Ferraty and Sarda (1999), Cardot, Ferraty, Mas and Sarda (2003) and
Yao, Müller and Wang (2003).

To fit the model, one first estimates the overall mean function µ0(t) by
aggregating the observations of all subjects into one scatterplot and applying a
smoother. For simplicity, we ignore the dependence of repeated measurements
coming from the same subject; it was demonstrated in Welsh, Lin and Carroll
(2002) and Wang (2003) that adjusting to a given dependence structure can lead
to substantial efficiency gains. Whether these gains hold up when the correlations
need to be estimated remains an open question.

The next step is the estimation of µ1 and γ1: according to (1), a natural
estimator for θ(Zi) is given by

θ(Zi) =
∑m

j=1 µ̂0(tj)Yi(tj)∑m
j=1 µ̂

2
0(tj)

.

To infer the single index components γ and µ1, we then apply QLUE to the
scatterplot (Zi, θ(Zi)). This provides both the link function estimate µ̂1 and the
parameter estimate γ̂, leading to the functional least squares estimate

µ̂(t,Z) = µ̂0(t) µ̂1(γ̂′Z). (4)
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We note that in the case of a one-dimensional predictor, the QLUE step above
will be replaced by a simple smoothing step for the scatterplot (Zi, θ(Zi)), leading
to just µ̂1 and γ = 1.

Obtaining Ri(t) = Yi(t) − µ̂(t,Zi), we calculate sample covariances between
R(t), R(s), from one or few subjects where Ri(t), Ri(s) are observed simulta-
neously. These raw covariances are smoothed with a surface smoother and
the smooth covariance surface is then discretized in order to obtain eigenval-
ues/eigenvectors of the resulting covariance matrix. The resulting eigenvectors
are smoothed to obtain the eigenfunction estimates ψ̂k (see Rice and Silverman
(1991); Staniswalis and Lee (1998)) for residual processes R(·).

Next, given a choice K for the number of random components, the random
effect functions ηk(·), k = 1, . . . ,K in (2) are obtained via iterative procedures.
Suppose that a current estimate Ê(Ri(t)|Z = Zi) of

E(Ri(t)|Z = Zi) =
K∑

k=1

αk(β′kz)ψk(t)

is obtained by substituting current estimates for αk(·) and βk. Let

Âik =
∫

T
{Ri(t) − Ê(Ri(t)|Z = Zi)}ψ̂k(t) dt, k = 1, . . . ,K,

implemented by numerical integration. Applying QLUE (or a simple smoother in
the one-dimensional case) to the scatterplot (Zi, Âik) then yields updates for pa-
rameter estimates β̂k and link function estimates η̂k(·). After fitting the residual
processes Ri(t), the fitted response curve at covariate level Z is

Ŷ (t|Z) = µ̂0(t)µ̂1(γ̂′Z) +
K∑

k=1

α̂k(β̂k
′
Z)ψ̂k(t). (5)

Basic consistency properties of the estimates can be derived analogously to
Chiou, Müller and Wang (2003) and Chiou, Müller, Wang and Carey (2003).
The estimation of mean, covariance and eigenfunctions works also for the case of
noisy and irregular data. Numerical approximations of integrals Âik however will
encounter problems. These can be overcome by employing alternative shrinkage
estimators for functional principal component scores (Yao et al. (2003)).

4. Dose-Response Analysis With Functional Responses

The univariate predictor “dose” d replaces here the generic multivariate pre-
dictor Z of the previous section. As the dose levels are experimentally determined,
the requirements of Section 3 pertaining to the behavior of random covariates
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Z need to be modified for this fixed design case, replacing, for example, con-
straints on expected values by analogous constraints on discrete sums. Since
dose is a univariate predictor, dimension reduction is not needed in the covariate
space. The iterative QLUE steps of the algorithm of Section 3 are replaced by
one-dimensional regressions in this case. For implementing these regressions we
consider both parametric and nonparametric approaches.

Initial nonparametric fits can guide parametric model choices. In our appli-
cation, this points to quadratic regressions as reasonably close parametric fits,
and least squares fits of such models indeed were found to work well. Compared
to nonparametric smoothers, parametric fits have the general disadvantage of
less flexibility and potential lack-of-fit problems, but on the positive side they
succinctly summarize the regression relationship in terms of a few fitted param-
eters. They do not require choice of a smoothing parameter and allow testing
for significance of the regression relationship, if one is willing to ignore potential
perturbations stemming from the estimation of mean and eigenfunctions. The
ability to test for regression effects is an attractive feature of parametric regres-
sions. For example, one might want to test whether, for a given k, the k-th
random component (ψk, Ak) should be included in the model, and to assess the
overall relevance of dose level for the shape of the response curves.

For nonparametric fitting, the necessary choice of smoothing parameters
may be based on selection criteria for individual scatterplots, for example cross-
validation or related criteria, leading to a separate bandwidth choice for each
scatterplot smoothing step. Or one can aim at minimizing an overall sum of
individual prediction error estimates, such as the leave-one-curve-out prediction
error of Rice and Silverman (1991),

PE =
n∑

i=1

mi∑
j=1

{Ŷ (−i)
i (tij) − Yi(tij)}2, (6)

to be minimized in dependence on bandwidths and number of components K,
assuming n subjects and mi measurement times tij per subject. Here Ŷ (−i)

i is the
prediction for trajectory Yi, obtained by deleting the data for the i-th subject.

An alternative is to consider prediction of the mean response at each dose
level, which is especially attractive for dose-response situations where typically
several experimental units are assigned to the same dose, as in our example
data. When using (6), one is trying to predict individual response trajectories.
This is not very meaningful if individual trajectories display substantial ran-
dom variation. Therefore we propose to predict the conditional mean response
E(Y (t)|Z = d) instead, by leaving out all data recorded at the dose level d, and
then to compare this prediction with the observed empirical average response at
the corresponding dose level.
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Formally, assume the data are (di, Yi(t)), i = 1, . . . , n, di denoting the dose
level administered to the ith subject, and that the dose levels di are grouped
into L distinct levels D1, . . . ,DL, L << n. Define dose level average trajectories
(which may be obtained from pointwise means coupled with interpolation or
smoothing with a small bandwidth)

Ȳ (t|D�) =
n∑

i=1

Yi(t)1{di=D�}/
n∑

i=1

1{di=D�},  = 1, . . . , L.

This empirical mean response curve at dose D� is compared with the pre-
dicted mean trajectory at the same dose level, based on a current model and
independent of the actual observations made at that dose level. We refer to this
device as leave-one-dose-out predictor. Noting that the single indices in (5) are
simply replaced by dose levels,

Ŷ (−�)(t|D�) = µ̂
(−�)
0 (t)µ̂(−�)

1 (D�) +
K∑

k=1

α̂
(−�)
k (D�)ψ̂

(−�)
k (t),

where function estimates µ̂(−�)
0 (·), µ̂(−�)

1 (·), α̂(−�)
k (·) and ψ̂

(−�)
k (·) are computed

from a reduced sample where all subjects i with dose di = D� have been omitted.
We then obtain the conditional prediction error

CPE =
L∑

�=1

1
L

∫
T
{Ŷ (−�)(t|D�) − Ȳ (t|D�)}2dt, (7)

where the integrals are approximated by suitable sums. We note that computing
leave-one-dose-out conditional prediction error (7) is considerably faster than
computing leave-one-curve-out prediction error (6).

5. Analysis of Egg-Laying Profiles in Response to Dietary Dose

The data resulted from a dose-response experiment with functional responses,
the trajectories of daily egg-laying for female medflies, recorded for ten different
dietary dose levels. Egg-laying is a measure of reproductive success and its overall
pattern reflects both physiological constraints and evolutionary strategy to cope
with varying environments. Biological background and details of the experiment
are described in Carey et al. (2002).

We include records of egg-laying from 0 to 40 days of age for flies that survive
10 days and produce eggs. Summary data are provided in Table 1. Median
lifetime does not increase beyond dose levels of 0.70 and is short for the lowest
dose group at level 0.50, with similar findings for the median number of eggs.
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Table 1. Median lifetime and number of eggs at each dose level for medfly
reproduction data.

Dose level No. flies Median lifetime Median no. eggs
0.50 61 33.0 383.0
0.60 89 48.0 836.0
0.65 84 47.5 849.0
0.70 93 55.0 1116.0
0.75 88 56.0 1181.5
0.80 91 56.0 1187.0
0.85 89 49.0 1162.0
0.90 95 51.0 1197.0
0.95 87 53.0 1367.0
1.00 97 49.0 1264.0
Total 874 51.0 1120.0

Egg-production requires protein and a reduction in diet is consequently asso-
ciated with fewer total eggs, as demonstrated in Table 1 and Carey et al. (2002).
Underlying such a reduction in overall reproductive output can be a variety of
physiological responses to food shortage: a delay in starting or raising the level
of egg production, lowered egg-production proportionally at all ages, an earlier
end to egg production, or other shape changes in egg-laying trajectories.

The left panel of Figure 2 demonstrates the estimated unconditional overall
mean µ̂0(t) for µ0(t), which depicts the basic shape of an egg-laying curve in

Figure 2. Function estimates of the mean function and multiplicative com-
ponents, with overall mean function µ̂0(t) (left) and multiplicative effect
function µ̂1(d) (right), for mean component µ̂(t, d), with dietary dose level d
as covariate. The dashed curve on the right panel is fitted by least squares
quadratic regression and the solid curve by nonparametric regression with
cross-validated bandwidth.
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dependence of age. The estimated functional multiplicative effect function µ̂1(d)
for µ1(d), that reflects the effect of dose on mean response, is displayed in the
right panel of Figure 2. This is a monotone increasing function, for which a
quadratic regression appears to provide an adequate fit. The least squares re-
gression coefficients for the quadratic fit are listed in Table 2 and are significant,
if we are willing to assume that usual inference applies. Cross-sections at the dose
levels for the functional multiplicative effect mean surface µ̂(t, d) = µ̂0(t)µ̂1(d)
are shown in Figure 6, left panel.

To describe the results for various models we highlight two special cases.
One case that was investigated previously in Chiou, Müller and Wang (2003)
includes the residual process R(·) but does not include a covariate effect on the
conditional mean, stipulating µ1(·) ≡ 1, and is referred to as Model I in the
following. The model with general multiplicative mean function µ1 and residual
process R(·) is referred to as Model II.

Table 2. Estimated coefficients of the linear quadratic regression for µ1(d).

Variable Coeff S.E. p-value
Intercept -1.6548 0.3587 0.0000

d 5.6685 0.9549 0.0000
d2 -2.8079 0.6193 0.0000

The first three estimated eigenfunctions ψ̂k(t) for Model I, corresponding
to the first three largest eigenvalues, are shown in Figure 3, and they are very
close to those obtained for Model II (not shown). The eigenfunctions essentially
provide a decomposition of the peak in the egg-laying trajectory that occurs
soon after egg production starts, in terms of its timing and shape. The link
function estimates α̂k, associated with the first three eigenfunctions, are shown
in Figure 4 for Model I and in Figure 5 for Model II, obtained with both least
squares quadratic regression fits (dashed) and local linear regression fits (solid).
Quadratic regression is seen to provide a reasonably good approximation.

For Model I, the third link function appears almost flat, indicating that there
is not much to be gained by including more than two random components. This
is corroborated by the approximate inference provided in Table 3, where the es-
timated regression coefficients for the three quadratic regressions for these link
functions are summarized. The regression coefficients for the first two compo-
nents (k = 1 and k = 2) are significant, while those for the third component
are not. This provides support for the choice of K = 2 random components,
and indicates that the residual process R(t) provides a necessary addition to this
model.
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Figure 3. The first three estimated eigenfunctions {ψ̂k}k=1,2,3 for Model I for
the medfly dose-response data. The first eigenfunction explains 35.31%, the
second additional 16.84%, and the third additional 8.82% of total variation.
Bandwidths are selected by cross-validation.

For Model II, the approximate inference provided for the quadratic regres-
sion fits for the link functions in Table 4 indicates that only the second random
component contributes significantly. The insignificance of the first random com-
ponent link function is likely a consequence of the fact that the shape of the first
estimated eigenfunction ψ̂1 resembles that of the estimated overall unconditional
mean function µ̂0. The contribution of the first random component then dimin-
ishes as a similar effect is already reflected in the multiplicative mean structure.
Also for Model II, the residual process R(t) seems to be a necessary additional
component.

Figure 4. Estimated smooth link functions α̂k for Model I, k = 1, 2, 3, for
the random components as functions of dose level, based on a sample of 874
medflies. The dashed curves are fits obtained from least squares quadratic
regression, and the solid curves are nonparametric regression fits, using cross-
validation bandwidths.
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Figure 5. Same as Figure 4, but for Model II.

Table 3. Estimated least squares regression coefficients for Model I, fitting
quadratic regressions for link functions αk(d), k = 1, 2, 3.

k = 1 k = 2 k = 3
Variable Coeff S.E. p-value Coeff S.E. p-value Coeff S.E. p-value
Intercept -387.52 49.38 0.000 86.99 37.87 0.022 4.23 23.78 0.859

d 843.08 131.48 0.000 -230.19 100.83 0.023 -3.32 63.32 0.958
d2 -427.05 85.27 0.000 148.52 65.39 0.023 -1.93 41.06 0.963

Table 4. Same as Table 3, but for Model II.

k = 1 k = 2 k = 3
Variable Coeff S.E. p-value Coeff S.E. p-value Coeff S.E. p-value
Intercept -15.60 49.28 0.752 115.36 37.91 0.002 -18.05 23.81 0.449

d 45.87 131.21 0.727 -291.29 100.92 0.004 44.09 63.40 0.487
d2 -29.88 85.09 0.726 179.11 65.45 0.006 -25.31 41.11 0.538

Cross-sections at each of the experimental dose levels through the overall
fitted surface Ŷ (t, d), obtained by fitting Model II, including the multiplicative
mean component and the first two random components of the residual process
R(t) with associated link functions estimated by quadratic regression, are in the
right panel of Figure 6. We note that differences with the fitted multiplicative
mean surface without residual process on the left panel of this figure are notice-
able in the cross-sections for smaller doses. The question arises which model
ultimately is preferable. As dose levels increase, the mean component of Model
II is increasing, with a saturation characteristic, as seen from Figure 2.

Additional shape changes are represented by the second random component
of the residual process, as determined by the second eigenfunction ψ2 in Figure 3,
middle panel, and by the second random components link function in Figure 4,
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middle panel. An increase in this component signals an earlier and sharper peak
in the egg-laying trajectory. The model predicts that such peaks are more likely
to be found for small doses and for large doses, but less so for the middle doses.
This is reflected in the earlier and sharper rise to the peak observed for small
doses in the fitted model as compared to the fitted multiplicative mean surface
(comparing the left and the right panels of Figure 6) without residual process.
In contrast, Model II with residual process reflects shifts in the peak location,
and therefore this more complex model adapts in a flexible way to functional
response data.

Figure 6. Cross-sections at each of the experiment’s dose levels through the
fitted multiplicative mean surface µ̂(t, d), with the multiplicative effect func-
tion µ1(d) fitted by nonparametric regression (left panel, corresponding to
Model II with K = 0), and of the fitted surface Ŷ (t, d), with additional ran-
dom components link functions η̂k(d) fitted by linear quadratic regressions,
corresponding to Model II with K = 2 (right panel).

6. Model Comparisons via Conditional Prediction Error

In order to compare model choices for these data, we investigate the pre-
dictive capabilities of various model fits. The criterion that we adopt is the
conditional prediction error CPE at (7), based on the leave-one-dose-out tech-
nique, comparing the model predictions with the mean over all response curves
observed at the experiment’s dose levels.

Table 5 provides comparisons between the more flexible nonparametric and
the more interpretable quadratic fits for the link functions, for both Model I and
Model II and with/without residual process components. We find that, with
regard to the multiplicative function µ1, the quadratic fit is clearly preferred
for K = 0, while it is sometimes slightly better and sometimes slightly worse for
K > 1; for the link functions αk there is no clear preference. Given the advantages
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of parametric fitting, such fits seem justified in view of these results. Model I,
without the covariate effect in the mean function, clearly requires inclusion of
the residual process, and adding K = 2 random components leads to the best fit
among all such models. The differences with Model II, also including two random
components from the residual process, at K = 2, are negligible, except for the
nonparametric fitting of the αk where Model I is worse.

Table 5. Conditional prediction errors with nonparametric (Nonp) and
quadratic least squares (Para) fits for functions µ1(·) and α(·) and with
the number of random components (eigenfunctions) for the residual process
varying between 0 and 3. Model I does not include a multiplicative mean
function µ1, while Model II does.

Model µ1(·) αk(·) K = 0 K = 1 K = 2 K = 3
I - Para 1324.62 132.46 118.68 125.74

- Nonp 1324.62 150.21 139.68 144.23
II Nonp Nonp 161.86 133.92 115.18 119.26

Nonp Para 161.86 131.25 108.59 115.78
Para Nonp 136.60 135.06 114.90 118.77
Para Para 136.60 144.34 119.12 125.72

For K = 0, Model I does not include a residual process, just fits an overall
mean function µ0 irrespective of the dose level, and thus serves as a null model
that does not include any dose effect on the response function. It is clear from
the results that this model is not appropriate. Model II without residual process
(i.e., K = 0), works considerably better. In terms of the CPE criterion, this
multiplicative mean surface model is not as good as extended models that include
random components from the residual process, but the differences are small for
the parametric link functions for µ1. We find that for K = 3, the CPE values
start to increase, confirming that inclusion of K = 2 random components is the
best choice, if a residual process is added. The overall best results are achieved
for K = 2 and Model II.
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