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Abstract: Kernel and smoothing methods for nonparametric function and curve

estimation have been particularly successful in “standard” settings, where function

values are observed subject to independent errors. However, when aspects of the

function are known parametrically, or where the sampling scheme has significant

structure, it can be quite difficult to adapt standard methods in such a way that

they retain good statistical performance and continue to enjoy easy computability

and good numerical properties. In particular, when using local linear modeling, it

is often awkward to both respect the sampling scheme and produce an estimator

with good variance properties without resorting to iterative methods: a good case in

point is longitudinal and clustered data. In this paper we suggest a simple approach

to overcome these problems. Using a histospline technique we convert a problem in

the continuum to one that is governed by only a finite number of parameters, and

which is often explicitly solvable. The simple expedient of running a local linear

smoother through the histospline produces a function estimator which achieves

optimal nonparametric properties, and the “raw” histospline-based estimator of

the semiparametric component itself attains optimal semiparametric performance.

The function estimator can be used in its own right, or as the starting value for an

iterative scheme based on a different approach to inference.
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1. Introduction

In conventional nonparametric regression problems, data Yi are observed
and have respective conditional means θ(Xi) and observation errors εi, where
the latter are independent. In this context there is a wealth of literature on ways
of estimating the function θ under smoothness assumptions alone using kernel
and spline methods. It includes, for example, for kernel methods, Fan and Gijbels
(1995) and Wand and Jones (1995); for smoothing splines, Green and Silverman
(1994), Simonoff (1996) and Wahba (1991); for regression splines, Stone (1991)
and Huang (2003). Local polynomial estimators, with very good statistical and
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numerical performance (see e.g., Fan (1993)), can be written down explicitly and
are readily computed.

However, under even small changes to the model these attractive features
of local polynomial estimators can quickly disappear. A particularly important
example, having significant practical implications and where a great deal of work
has been done, arises in clustered and longitudinal data applications. There, one
observes data (Xij , Yij) generated by the model

Yij = θ(Xij) + εij, 1 ≤ i ≤ n , 1 ≤ j ≤ m, (1.1)

where, conditional on the m-vectors Xi = (Xi1, . . . ,Xim)T and defining εi =
(εi1, . . . , εim)T, the m-vectors Σ−1/2εi, for 1 ≤ i ≤ n, are independent and iden-
tically distributed with a known m-variate distribution having zero mean, for
example the Normal N(0, Im) distribution, and Σ = Σ(α) is an m × m covari-
ance matrix. The Normal assumption is usually a surrogate, doing no more than
motivating an estimator that is consistent quite generally and efficient under
Normality. Typically, m would be small and n relatively large.

Kernel methods have been proposed for the model (1.1), see for example,
Zeger and Diggle (1994), Wild and Yee (1996), Hoover, Rice, Wu and Yang
(1998), Wu, Chiang and Hoover(1998), Lin and Carroll (2000), Ruckstuhl, Welsh
and Carroll (2000), Wang (2003) and Linton, Mammen, Lin and Carroll (2003).
However, with one exception, the local linear modeling literature contains no
explicitly-representable, well-performing nonparametric methods for estimating
θ under (1.1) and its many generalizations. Iterative techniques, derived from
local linear ideas but implemented through backfitting, can be employed, but
for effective implementation they require a good first approximation to θ. The
iterative kernel method of Wang (2003), unlike the other kernel methods refer-
enced, is efficient for (1.1) by effectively accounting for the correlation, and has a
closed-form solution (Lin, Wang, Welsh and Carroll (2004)). However the solu-
tion requires the inversion of an nm× nm matrix and the order of computation
is O{(nm)3}, and thus is not typically available in practice.

Smoothing spline methods have also been proposed for (1.1), for example see
Brumback and Rice (1998), Wang (1998), Zhang, Lin, Raz and Sowers (1998),
Verbyla, Cullis, Kenward and Welham (1999) and Lin et al. (2004). An attractive
feature of the smoothing spline method is that it can be fit through a mixed
effects model. Lin et al. (2004) further show that the smoothing spline estimator
is asymptotically equivalent to the iterative kernel method of Wang (2003) and is
efficient by effectively accounting for the correlation. However, calculations of the
smoothing spline estimator are computationally intensive and require inverting
an nm × nm matrix with the order of computation being O{(nm)3}, and the
classical efficient Reinsch algorithm is not applicable.
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Another important “perturbation” of the standard nonparametric regression
model, one which has been addressed by (for example) Zeger and Diggle (1994),
Zhang et al. (1998), Lin and Carroll (2001a,b), Lin and Ying (2001) and Wang,
Carroll and Lin (2004), is a partially linear model:

Yij = βTZij + θ(Xij) + εij , 1 ≤ i ≤ n , 1 ≤ j ≤ m, (1.2)

where β = (β1, . . . , βm)T and, conditional on Xi and Zij = (Zij1, . . . , Zijm)T, the
vectors Σ−1/2εi are independent and identically distributed with zero mean and
identity covariance. Here, Σ = Σ(γ) denotes an m×m covariance matrix.

A third example, arising in finance, see Hafner (1998) and Carroll, Haerdle
and Mammen (2002), is

Yi =
m∑
j=1

βj−1 θ(Xij) + εi , 1 ≤ i ≤ n , (1.3)

where β is a scalar and, conditional on the Xi’s, the εi’s are independent and
identically distributed with zero mean and variance γ. Of course, β is identifiable
only if θ(•) �≡ 0. In all three examples we wish to estimate θ under smoothness
assumptions alone, and to estimate the parameter α, representing the concate-
nation of β and γ.

Our aim in this paper is to suggest a straightforward yet general methodology
which gives readily computed solutions to these problems and to a wide range of
others. The solutions have attractive statistical and numerical properties. Our
approach is based on fitting a histospline to θ using regularly spaced histogram
bins. One can take the histospline to be the final estimator of θ, or smooth it
a little using a version of the average shifted histogram. Alternatively, one can
pass a local polynomial smoother through the histogram estimator, obtaining a
function estimator that is optimal in the context of Fan (1993). If one is set on
computing an estimator that is based on iteration, then our approach provides
an explicit, easily computed starting value for the algorithm.

The attraction of the histospline approach is that it explicitly converts a
problem which was originally in the continuum, to one that is determined by
only a finite number of parameters which enter the estimating equations in an
elementary way. Indeed, the estimating equations take such a simple form that
in the cases of the models at (1.1) and (1.2), least-squares estimators of all the
unknowns are given explicitly in terms of the data, and computation requires
nothing more complex than matrix inversion. In the case of (1.3) the estimator
of θ is obtained in the same way, for each fixed value of β; and then β is estimated
by an elementary, univariate search routine. This offers substantially greater ease
of computation than existing methods.
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In work that will be reported elsewhere, we have shown that the estimators of
discrete parameters β and γ, arising in this way, achieve semiparametric efficiency
bounds and are root-n consistent. This level of performance is attained using
the same smoothing parameters that give optimal estimation of nonparametric
components, in particular of the functions θ in (1.1)−(1.3). Indeed, optimal
semiparametric estimation is achieved by the basic histogram estimator, without
the need for either undersmoothing or two-step methods.

General methodology is described in Section 2, and specialized there to the
model at (1.1). Numerical properties are described in Section 3. Theory is
discussed in Section 4, with concluding remarks given in Section 5. Theoretical
development is given in an Appendix. Formulae for computing estimators in the
cases of models (1.2) and (1.3) are also given in the Appendix.

2. Methodology

2.1. Estimators under general models

To introduce our technique, consider a general model which encompasses
those at (1.1)−(1.3). Assume the data for an individual i are expressed in several
vectors, Xvec

i =(Xi1, . . . ,Ximx)T, Y vec
i =(Yi1, . . . , Yimy)T, Zvec

i =(Zi1, . . . , Zimz )T,
and the negative loglikelihood function for an individual i is, say,

L{Y vec
i , Zvec

i , θ(Xi1), . . . , θ(Ximx), α} (2.1)

with θ denoting a function that occurs multiple times but with different argu-
ments, and α a vector of parameters. For simplicity we take θ to be a real-valued
function of a real variable, but versions of the methodology we suggest are read-
ily developed in multivariate settings. In the case of (1.1), mx = my = m and
Zi plays no role; for (1.2), mx = my = mz = m and α = (βT, γT)T; for (1.3),
mx = m, my = 1, β is a scalar, Zi is degenerate and α = (β, γ)T.

Our histospline estimator is constructed as follows. Assume we wish to
calculate an estimator of “order” 2(p + 1) ≥ 2, suitable for estimating functions
with 2(p + 1) bounded derivatives. The case of even order is more common
in practice, although odd-order cases may be treated similarly. Let θ denote
the polynomial interpolant of degree 2p or 2p + 1 on bins of width h, fitted
to a histogram of height c� on the bin B� = (x0 + (� − 1)h, x0 + �h], where
x0 is arbitrary. Then θ is completely determined by the column vector c =
(c�), which is generally of finite length since the data Xij take values only on
a compact interval. Replacing θ at (2.1) by θ we obtain a likelihood under a
finite-parameter model, in which the number of parameters is determined by h.
Parameter estimators may be obtained in the conventional way, by solving the
estimating equations, giving estimators ĉ� of the respective c�’s.
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The most important special case is p = 0, and there the vector of estimators
is often very easy to compute, with all or most of its components being given
as the solutions of linear equations and therefore defined explicitly in terms of
matrices. Details of algorithms for (1.1) are given in Section 2.2. Estimating
equations for (1.2), and elementary methods for their solution, are discussed in
Appendix A.4. There, as in the case of (1.1), estimators are defined explicitly
in terms of simple matrix formulae. Analogous estimators for the model at (1.3)
are described in Appendix A.5.

Next we describe calculation of θ when p = 0, the simple histogram case,
under the general model (2.1). We conduct inference conditional on the Xi’s
which, although taken to be constant, are usually assumed to have been generated
as independent and identically distributed variables, each with a non-degenerate
m-variate distribution. We have, from (2.1), that the negative loglikelihood of
the data is

n∑
i=1

L{Y vec
i , Zvec

i , θ(Xi1), . . . , θ(Ximx), α} . (2.2)

Incorporating the discrete approximation with bins B�, we obtain

n∑
i=1

∑
�1

. . .
∑
�mx

L(Y vec
i , Zvec

i , c�1 , . . . , c�mx
, α) I(Xi1 ∈ B�1, . . . ,Ximx ∈ B�mx

). (2.3)

Assuming there are L histogram bins and that α is q-variate, and writing Lα and
Lc� for the derivative of L with respect to α and c�, respectively, for 1 ≤ � ≤ L,
we deduce that the estimators ĉ1, . . . , ĉL and α̂ we seek are defined by the L+ q

equations

n∑
i=1

∑
�1

. . .
∑
�mx

Lψ
(
Y vec
i , Zvec

i , c�1 , . . . , c�mx
, α

)× I(Xi1 ∈ B�1, . . . ,Ximx ∈ B�mx
)=0,

(2.4)
where ψ = c� for 1 ≤ � ≤ L or ψ = α.

When p = 0 the estimator θ = θ̃ is visibly unsmooth, but this difficulty may
be alleviated by computing θ̃ for a range of values of x0 in the definition of Bj,
and averaging the result. This reflects Scott’s (1985) averaged shifted histogram
(or ASH) approach. Another simple solution is to pass a polynomial interpolant
through the bin centers. If the interpolant is of degree 2q + 1, if θ has 2q + 2
bounded derivatives, and if h is taken to be asymptotic to a constant multiple of
n−1/(4q+5), then the resulting interpolated histogram estimator of θ converges to
θ at the optimal rate, n−2(q+1)/(4q+5). When q = 0 the interpolant is linear, and
we denote it by θ̃lin.
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Specifically, suppose the histogram has L bins, with respective bin centers
x� = x0 + (�− 1/2)h and each of width h = L−1, in the interval [0, 1]. Then

θ̃lin(x) = h−1{(x�+1 − x) ĉ� + (x− x�) ĉ�+1} (2.5)

provided x� ≤ x ≤ x�+1 and 1 ≤ � ≤ L, and by

θ̃lin(x) =

h−1 {(x2 − x) ĉ1 + (x− x1) ĉ2} if 0 ≤ x ≤ x1,

h−1 {(xL − x) ĉL−1 + (x− xL−1) ĉL} if xL ≤ x ≤ 1.
(2.6)

An alternative to interpolation is smoothing. In particular, we may pass a
local polynomial smoother through the sequence of points (x�, ĉ�), representing
bin centers and bin heights respectively. Here we would use a new bandwidth h1,
say; see Section 2.2 for details. Let θ̂ denote the resulting estimator of θ. If h1 is of
conventional size, and h is smaller, then θ̂ has virtually the same bias and variance
properties as the difficult-to-compute iterative polynomial smoother θ̂pol based
on bandwidth h1. Moreover, θ̂pol can be defined only by iterative algorithms,
and needs a good starting point, such as our estimator θ̃.

The histogram bins, Bj = (x0 + (j − 1)h, x0 + jh], have respective centers
xj = x0 + (j − 1/2)h. Passing a local linear smoother, using a kernel K and
bandwidth h1 say, through the data pairs (xj , ĉj), we obtain a smooth estimator
θ̂ of θ. Specifically, let K be a kernel and h1 a new bandwidth, let a0 and a1 be the
intercept and slope in a local linear regression problem, choose (â0, â1) = (a0, a1)
to minimize

L∑
�=1

[ĉ� − {a0 + a1(x− x�)}]2K
(x− x�

h1

)
,

and put θ̂(x) = â0. More explicitly, θ̂(x) =
∑
� ĉ�w�(x), where

wl(x) = (nh1)−1 {s0(x) s2(x) − s1(x)2}−1
{
s2(x) − s1(x)

x− x�
h

}
K

(x− x�
h

)
,

sj(x) =
1
nh1

L∑
�=1

(x− x�
h

)j
K

(x− x�
h

)
. (2.7)

Properties of θ̂ are discussed in Section 4.2.

2.2. The model at (1.1)

Here we specialize our method to (1.1), showing that it gives elementary
and explicit estimators there. Assuming Normal errors εij, and using a simple
(i.e., p = 0) histogram approximation to θ with height c� on the �th bin, we see
that in the case of (1.1), (2.4) reduces to

− 1
2

n∑
i=1

m∑
j=1

m∑
k=1

∑
�1

∑
�2

(Yij − c�1)σ
jk(Yik−c�2)I(Xij ∈B�1,Xik ∈ B�2)− 1

2 log |Σ|,(2.8)
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where Σ−1 = (σjk), |Σ| is the determinant of Σ, and I denotes the indicator
function. Of course, the assumption of Normality serves only to define least-
squares estimators, which are valid in much more general settings.

We may estimate Σ in a variety of ways. One is to estimate all unknowns,
both c = (c�) and Σ, simultaneously. Another is to use a “guess,” V say, at Σ;
then estimate c under the temporary assumption Σ = V , producing a histogram
estimator θ̆, say, of θ; and subsequently estimate Σ from the residuals, ε̂ij =
Yij − θ̆(Xij). This estimator, Σ̂ say, is robust against errors in the guess, V .
Given a general, symmetric matrix estimator, Σ̂ = (σ̂jk), of Σ, and hence an
estimator Σ̂−1 = (σ̂jk) of Σ−1, we obtain from (2.8) the approximate negative
loglikelihood

n∑
i=1

m∑
j=1

m∑
k=1

∑
�1

∑
�2

(Yij − c�1) σ̂
jk (Yik − c�2) I(Xij ∈ B�1,Xik ∈ B�2) ,

the minimum of which gives ĉ = (ĉ�) very simply as the solution of the equation

ĉTÂ = 1TŜ, (2.9)

where 1T = (1, . . . , 1), Â = (â�1�2), Ŝ = (ŝ�1�2) and

â�1�2

ŝ�1�2

}
=

1
n

n∑
i=1

m∑
j=1

m∑
k=1

σjk I(Xij ∈ B�1 ,Xik ∈ B�2) ×
{

1

Yij
, (2.10)

respectively.
The histospline estimator can be viewed as an extension of the classical re-

gression spline estimator to model (1.1) with step base functions. Huang, Wu
and Zhou (2002) consider estimation using general basis expansions in (1.1) by
ignoring the within-cluster correlation and assuming working independence. We
here account for the within-cluster correlation in our estimation. We show in
Section 4.1 that our estimator effectively accounts for the within-cluster correla-
tion, and is most efficient when the true covariance matrix is used and is more
efficient than the working independence histospline estimator.

Of course, when we apply the argument leading to (2.10) in the case of the
models at (1.2) or (1.3), we obtain a semiparametric estimator of α as well as
our nonparametric estimator of θ. As we argue in Section 4, the former is, under
mild regularity conditions, root-n consistent (and asymptotically efficient) for β,
and the latter converges at the same rate as does the estimator of θ in the case of
(1.1). Moreover, these results pertain to one-step estimators where the binwidth,
h, is chosen so that it gives optimal performance for the estimator of θ. It is not
necessary to use different binwidths for estimating θ and α.
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3. Numerical Examples

To understand the performance of the methods at (1.1), we ran a small
simulation with n = 1, 000 clusters and m = 3 observations per cluster. The
correlation structure was either exchangeable with correlation ρ = 0.6, autore-
gressive with correlation ρ = 0.6, or nearly singular with the correlations between
the first and second observations and the second and third at 0.80, while the cor-
relation between the first and third observations was 0.50. There were 200 simu-
lations. In all cases, referring to (1.1), var(εij) = 1. Six functions were evaluated:
(a) sin(4x − 2); (b) exp(4x − 2); (c) sin{2(4x − 2)}; (d)

√
x(1 − x) sin{2π(1 +

2−3/5)/(x+2−3/5)}; (e)
√
x(1 − x) sin{2π(1+2−7/5)/(x+2−7/5)}; and (f) sin(8x−

4) + 2 exp{−256(x − 0.5)2}.
Five estimators were considered.

• A working independence ordinary local linear kernel smoother using the
Epanechnikov kernel with support [−1, 1]. The bandwidth was chosen using
the DPI bandwidth selection method of Ruppert, Sheather and Wand (1995).

• The linear interpolant method (2.5)−(2.6) under working independence.

• The linear interpolant method (2.5)−(2.6) with estimated covariance matrix.

• The two-stage histospline-kernel method under working independence, see the
definition above (2.7)

• The two-stage histospline-kernel method with estimated covariance matrix.

The covariance matrix was estimated by first running the local linear
smoother under working independence, forming the residuals, and then forming
the covariance matrix of the residuals. See also the discussion after (4.3). For
the linear interpolant methods, the number of bins was selected by leaving one
cluster out cross-validation from among L = 4, 8, . . . , 32.

For the two-stage histospline-kernel methods, we used a local linear kernel
smoother with the Epanechnikov kernel with support [−1, 1]. The number of
bins at the first stage was selected from among L = 5, 10, . . . , 45. Whatever the
number of bins, the bandwidth at the second stage was chosen again using the
DPI bandwidth selection method of Ruppert, Sheather and Wand (1995) applied
to the “pseudo-data” consisting of the bin centers and first stage histospline
estimates. The number of bins at the first stage was selected by leaving one
cluster out cross-validation. This particular use of the DPI methods, namely
with pseudo-data, is not optimal because the bandwidth at the second stage
should be determined by the number of observations, not the number of bins
used. To check this, we considered two additional methods. In the first, we used
the bandwidth selected by the working independence ordinary local linear kernel
smoother. In the second, we used cross-validation for both the number of bins
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and the bandwidth. Neither alternative improved upon the first method overall,
and indeed the latter was generally worse, see below.

The results are given in Table 1 for the three correlation structures. As seen
in Table 1, in all cases the weighted methods using the estimated covariance
outperform their working independence counterparts. Thus, for example, the
weighted linear interpolant method accounting for the correlation always has
mean squared error efficiency higher than that of the linear interpolant method
without accounting for the correlation. The weighted linear interpolant method
accounting for the correlation has either modest losses or modest gains compared
to the working independence kernel method except in the nearly unstructured
case. The two-stage histospline-kernel method generally outperforms both the
working independence kernel and the linear interpolant method. As expected,
the gains in efficiency are greatest for the nearly singular covariance matrix case.

We also ran, but do not report here, the same simulations when the data
were independent. As expected, the weighted and unweighted linear interpolant
methods were essentially equivalent as were the weighted and unweighted two-
stage methods, thus indicating little if any loss of efficiency for estimating the
covariance matrix. The working independence local linear kernel and two-stage
methods were also essentially equivalent, with the latter being on average 10%
less efficient. The linear interpolant methods were on average approximately 25%
less efficient than the local linear kernel methods under independence.

Finally, we comment briefly on an alternative approach. As indicated in
Section 2.2, histosplines are simply regression splines of order 0, the basis func-
tions being the indicators of specific intervals. An alternative is to replace this
set of basis functions by smoother bases, e.g., the truncated power series ba-
sis functions or the Bspline basis functions. For the former, we placed knots
(κ1, . . . , κL) at the sample quantiles of the X’s, and the basis functions were
{1, x, x2, x3, (x − κ1)3+, . . . , (x − κL)3+}, where the subscript + indicates trunca-
tion at zero. For the latter, we took equally spaced knots. For both sets of basis
functions, we selected the number of knots by cross-validation. We found that
the truncated power series basis led to estimates that were generally inferior to
our two-stage methods due to numerical instability associated with such basis
functions, which are usually handled via penalization, see Ruppert, Wand and
Carroll (2003). Use of the cubic Bspline basis functions led to estimates that were
roughly comparable to our two-stage methods, being inferior in the exchangeable
case, nearly equivalent in the autoregressive case, and somewhat superior in the
near–singular case. We have, unfortunately, no intuition as to why this happens.
See Chen and Jin (2003) for more details about this approach for the model at
(1.2).
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Table 1. Results of 200 simulations with n = 1000 clusters and m = 3 obser-
vations per cluster. Computed are the mean squared error (MSE) efficiencies
of the various estimators relative to the working independence kernel method
discussed in the text. The correlation structures were autoregressive with
correlation ρ = 0.6, exchangeable with common correlation ρ = 0.6, and
nearly singular with the correlations between the first and second observa-
tions and the second and third being 0.80, while the correlation between the
first and third observations was 0.50. In this table, “LIw” is the linear inter-
polant method (2.5)−(2.6) with weighting and “LIunw” is the linear inter-
polant method without weighting: both used crossvalidation to estimate the
number of bins. Also, “ 2stkw” is the two-stage kernel method with weight-
ing, see definition above (2.7) and “ 2stkunw” is the two-stage kernel method
without weighting. For these two-stage methods, we used three methods to
select number of bins and bandwidths: (1) the number of bins selected by
CV and the bandwidth selected by DPI bandwidth selection method, (2)
the number of bins and the bandwidth selected by CV simultaneously (3)
use the number of bins selected by CV with the bandwidth selected by DPI
bandwidth selection method for the working independence kernel estima-
tor. The functions are g1(x) =

√
x(1 − x) sin{2π(1 + 2−3/5)/(x + 2−3/5)};

g2(x) =
√
x(1 − x) sin{2π(1 + 2−7/5)/(x + 2−7/5)}; and g3(x) = sin(8x −

4) + 2 exp{−256(x− 0.5)2}.
sin(4x− 2) exp(4x− 2) sin{2(4x− 2)} g1(x) g2(x) g3(x)

exchangeable correlation structure ρ = 0.6
LIw 0.9273 0.8796 1.0577 1.0039 1.1362 1.2970
LIunw 0.7426 0.6953 0.8145 0.7559 0.8380 0.8614
2stkw(1) 1.3354 1.2683 1.3497 1.3289 1.1835 1.0697
2stkunw(1) 1.0313 0.9309 0.9970 1.0093 0.9269 0.8065
2stkw(2) 1.1527 1.1400 1.2308 1.2231 1.1929 1.6403
2stkunw(2) 0.9192 0.8626 0.8938 0.9152 0.9273 1.2750
2stkw(3) 1.3020 1.2795 1.3424 1.3264 1.2209 1.2108
2stkunw(3) 0.9258 0.9363 0.9268 0.9568 0.9408 0.9431

autoregressive correlation structure ρ = 0.6
LIw 0.9023 0.8733 1.0257 0.9908 1.1300 1.2662
LIunw 0.7258 0.6941 0.8231 0.7951 0.8294 0.8614
2stkw(1) 1.3190 1.2521 1.3152 1.2705 1.1747 1.0517
2stkunw(1) 1.0247 0.9425 0.9858 0.9523 0.9370 0.8075
2stkw(2) 1.1439 1.1316 1.2140 1.2133 1.1907 1.3628
2stkunw(2) 0.9185 0.8597 0.8925 0.9243 0.9384 0.9725
2stkw(3) 1.2741 1.2696 1.2953 1.3089 1.9073 1.1896
2stkunw(3) 0.9270 0.9410 0.9330 0.9561 1.3933 0.9462

unstructured correlation structure where ρ12 = ρ13 = 0.8 and ρ23 = 0.5
LIw 1.3051 1.2987 1.5587 1.4845 1.6703 2.3063
LIunw 0.7509 0.7057 0.8081 0.7581 0.8096 1.1179
2stkw(1) 1.8523 1.7844 1.9588 1.8879 1.6470 2.2741
2stkunw(1) 0.9950 0.9309 0.9962 1.0132 0.9351 1.2912
2stkw(2) 1.5607 1.6080 1.7778 1.7702 1.7644 1.5428
2stkunw(2) 0.9319 0.8730 0.8859 0.9003 0.9320 0.9185
2stkw(3) 1.8031 1.7932 1.9217 1.8728 1.5783 1.5319
2stkunw(3) 0.9206 0.9304 0.9390 0.9488 0.9508 0.9456
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4. Theoretical Properties

4.1. Properties of histogram estimator under model (1.1)

In this section and the next we address least-squares procedures, and there-
fore construct the likelihood L under the assumption of Normal errors, even if
the errors do not have that distribution. Many other settings are possible, but
they generally require different regularity conditions and, for brevity, we do not
follow that route.

Let Σ̂ denote a symmetric m ×m matrix, perhaps determined by the data
and representing an approximation to, or guess at, the covariance matrix Σ of
the errors εi. Assume Σ̂ converges in probability to a strictly positive definite
matrix V , write V −1 = (vjk), suppose the design points are distributed on the
interval [0, 1], let fj and fjk be the respective densities of Xij and (Xij ,Xik), let
f

(1,0)
jk denote the first derivative of fjk with respect to its first component, and

define the function ξ by

12 ξ(x) =
m∑
j=1

vjj{θ′(x) f ′j(x) + θ′′(x) fj(x)}

+
∑
1≤j �=

∑
k≤m

vjk
∫ 1

0

{
θ′(u) f (1,0)

jk (u, x) + θ′′(u) fjk(u, x)
}
du .

Put η =
∑
j v

jjfj and ζ =
∑ ∑

j �=k fjk, denoting univariate and bivariate func-
tions, respectively, and let b represent the unique solution of the linear integral
equation

ξ(x) = b(x) η(x) +
∫ 1

0
b(u) ζ(u, x) du . (4.1)

Define the matrices Â = (â�1�2) and Ŝ = (ŝ�1�2) by (2.10), and then let ĉ = (ĉ�)
be given by (2.9).

Our first result gives uniform stochastic approximations to the histospline
estimator ĉ� at the bin center xl. Regularity conditions (4.9)−(4.14) are given
in Section 4.3.

Theorem 4.1. Assume (4.9)−(4.13) below, and that the data are generated by
the model at (1.1). Then,

ĉ� = θ(x�) + h2 b(x�) +
1 + op(1)
nhη(x�)

n∑
i=1

m∑
j=1

m∑
k=1

vjk I(Xik ∈ B�) εij + op(h2), (4.2)

where the op(·) terms are of the stated orders uniformly in 1 ≤ � ≤ L. Further-
more,

max
1≤�≤L

|ĉ� − θ(x�)| = Op{h2 + (nh)−1/2 (log n)1/2} . (4.3)
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Next we discuss aspects and implications of the theorem, beginning with the
construction of Σ̂. If Σ̂ is computed from the data then it is likely to be based
on a relatively coarse approximation, θ̆ say, to θ, such as the linear histospline
calculated from the histogram using V = Im (the m ×m identity matrix) and
a bandwidth of size n−1/5. Such a version of θ̆ converges to θ at rate n−2/5,
and the naive estimator, of Σ = var(εi), Σ̂ say, computed from the residuals
ε̂ij = Yij − θ̂(Xij), satisfies Σ̂ = Σ + Op(n−2/5). This rate can be improved
to Op(n−1/2) by undersmoothing θ̆, although this slight enhancement does not
affect first-order properties of our estimators of θ.

Note that this particular choice of Σ̂ satisfies the regularity condition (4.12)
below, and so, provided Σ is nonsingular, our ĉ� satisfy (4.2) with vjk = σjk,
where Σ−1 = (σjk). The resulting estimators achieve a minimum variance bound
in the sense of Wang (2003), e.g., smaller variance than any working independence
estimator and the smallest variance among our class of estimators based on a
working covariance matrix.

For a general choice of V it is readily proved that variable
∑n
i=1

∑m
j=1

∑m
k=1

vjkI(Xik ∈ B�)εij , appearing at (4.2), is asymptotically Normally distributed
with zero mean and variance nh

∑
j (V −1ΣV −1)jjfj(x�). Therefore, a central

limit theorem for ĉ� is directly obtainable from (4.10). More to the point, prop-
erties of linear histospline estimators, constructed by interpolating the histogram
with bin centers and heights x� and ĉ� respectively, are easily obtainable from
the theorem.

Indeed, our next result, essentially a corollary of Theorem 4.1, describes prop-
erties of θ̃lin, defined at (2.5) and (2.6). Put τ0(x)2 =η(x)−2 ∑

j(V
−1ΣV −1)jjfj(x)

for 0 ≤ x ≤ 1, and, for 0 < x < 1,

τ(x)2 = h−2 {(x� − x)2 + (x�+1 − x)2} τ0(x)2 ∈ [12 τ0(x)
2, τ0(x)2] ,

with � chosen so that x� ≤ x ≤ x�+1 and, for x = 0, τ(0)2 = (5/2)τ0(0)2.

Theorem 4.2. Assume (4.9)−(4.13) below, and that the data are generated by
the model at (1.1). Define θ̃lin as above. Then for each x ∈ (0, 1),

θ̃lin(x) = θ(x) + 1
2(x− x�)(x�+1 − x)θ′′(x) + b(x)h2

+τ(x)(nh)−1/2Zn(x) + op(h2), (4.4)

where the random variable Zn(x) is asymptotically Normal N(0, 1). When x = 0,

θ̃lin(0) = θ(0) − θ′′(0)h2 + b(0)h2 + τ(0) (nh)−1/2 Zn(0) + op(h2) , (4.5)

where Zn(0) is asymptotically Normal N(0, 1). The analogous result holds when
x = 1. Furthermore,

sup
0≤x≤1

|θ̃lin(x) − θ(x)| = Op{h2 + (nh)−1/2 (log n)1/2} . (4.6)
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4.2. Properties of kernel-smoothed histogram estimator under model
(1.1)

Here we discuss properties of the estimator θ̂ obtained by passing a linear
smoother, using the bandwidth h1, through the data (x�, ĉ�) for 1 ≤ � ≤ L, the
latter coming from a histogram with binwidth h. A definition of θ̂ is given in the
formulae leading to (2.7). If h and h1 are taken to be of approximately the same
size, meaning that h/h1 is bounded away from zero and infinity as n→ ∞, then
it may be shown that θ̂(x), like θ̃lin(x), has bias and variance of order h2

1 and
(nh1)−1, respectively, as n→ ∞.

Of more interest is the case where the histogram is constructed by under-
smoothing, i.e., h/h1 → 0 as n→ ∞. There the asymptotic bias formula for θ̂(x)
is the traditional one associated with a local linear estimator, and the asymp-
totic variance formula also has the traditional local-linear form except that the
error variance, which is no longer appropriate since the errors are correlated, is
replaced by the minimum variance bound, τ0(x)2, for grouped data. Details are
given in the theorem below. Note particularly that, unlike the case for the esti-
mator θ̃lin, the bias of θ̂ does not depend on the design density f . As discussed by
Fan (1993), this is the key to strong theoretical performance. The estimator θ̂ is
100% efficient, in the class of linear estimators computed under the assumption
that Σ is known, and in the sense of Fan (1993).

Define κ =
∫
K2 and κ2 =

∫
u2K(u) du, and let b(c) and v(c) denote the

standard asymptotic bias and variance constants for local linear estimators at
a point that is distant ch from a boundary; for definitions, see p.74 of Fan and
Gijbels (1995). If K vanishes outside an interval (−s, s) then b(c) = κ2 and
v(c) = κ for c ≥ s.

Theorem 4.3. Assume (4.9)−(4.14), that the data are generated by the model
at (1.1), and that h1 = h1(n) → 0 and h/h1 → 0. Then for each x ∈ (0, 1),

θ̂(x) = θ(x) + 1
2 κ2 θ

′′(x)h2
1 + (nh1)−1/2 κ1/2 τ0(x)Zn(x) + op(h2

1) , (4.7)

where the random variable Zn(x) is asymptotically Normal N(0, 1). When x = ch

with 0 ≤ c <∞,

θ̂(0) = θ(0) + 1
2 b(c) θ

′′(0)h2
1 + (nh1)−1/2 v(c)1/2 τ0(0)Zn(0) + op(h2

1) , (4.8)

where Zn(0) is asymptotically Normal N(0, 1). The analogous result holds when
x = 1. Furthermore, sup0≤x≤1 |θ̂(x) − θ(x)| = Op{h2

1 + (nh)−1/2 (log n)1/2}.
Results (4.7) and (4.8) imply that, as in the case of conventional second-order

curve estimators, the asymptotically optimal choice of h1 is a constant multiple
of n−1/5. For this choice of h1, condition (4.13) below permits a relatively wide
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range of selections of h which allow the undersmoothing (i.e., h/h1 → 0 as
n→ ∞) that is necessary for the theorem.

4.3. Assumptions and discussion

First we state regularity conditions for Theorems 4.1−4.3. Of course, the
function θ(x) is assumed to satisfy the usual smoothness conditions of being
twice continuously differentiable;

the distribution of εi = (εi1, . . . , εim)T has zero mean, finite
third moments and covariance matrix Σ; (4.9)

the support of the density f of Xi equals the unit cube [0, 1]m,
f has a continuous derivative there and is bounded away from
zero and infinity, and θ has two continuous derivatives on [0, 1]; (4.10)

the vectors Xi and εi, 1 ≤ i ≤ n, are completely independent; (4.11)

the symmetric random matrix Σ̂ = (σ̂jk) satisfies maxj,k |σ̂jk − vjk|
= Op(h1/2), where V = (vjk) is strictly positive definite; (4.12)

h = L−1, where L > 1 is an integer; as n→ ∞, h = h(n) → ∞
and for some δ > 0, n(1/4)−δh→ ∞; m is fixed; and x0, in the
definition of the bins B� = (x0 + (�− 1)h, x0 + �h], equals 0; (4.13)

K is a bounded, symmetric, Hölder continuous, compactly sup-
ported probability density. (4.14)

The assumption at (4.13) that h is the inverse of an integer, and x0 = 0,
serves only to ensure there is a whole number of bins B� in [0, 1]. In particular,
there are no bin fragments at the ends of the interval. Minor modifications of
our arguments allow the case of bin fragments to be treated. Note that we do
not specify how Σ̂ is constructed – it might be calculated directly from data, or
it could be a deterministic guess at the true Σ.

4.4. Theory under other models, especially (1.2) and (1.3)

Here we make a few remarks about other models. For simplicity we confine
attention to the simple histogram case (i.e., p = 0), where general methodology
for estimating the bin heights ĉ� and discrete parameters â was described in
Section 2; see (2.2)−(2.4). Limit theory for estimation of θ is very similar under
the models (1.2) and (1.3) to what it is under (1.1). Slightly altered versions
of Theorems 4.1−4.3 hold, having the same convergence rates but different bias
and variance formulae.
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In particular, assuming (1.2) or (1.3), the histospline estimator θ̃lin (i.e., the
case p = 0) has asymptotic bias and variance of orders h2 and (nh)−1, respec-
tively, and uniform convergence rate Op{h2 + (nh)−1/2(log n)1/2}. Under (1.2)
and (1.3) the bias of ĉ� admits a Taylor expansion, E(ĉ�) = θ + h2 b(x) + o(h2),
where the bias function b satisfies an integral equation analogous to (4.1). In the
context of (1.2) the bias functions and variance formulae in Theorems 4.2−4.3
are in fact identical in the cases of models (1.1) and (1.2); see below for further
discussion.

Under (1.2) and (1.3), in work to be reported elsewhere, we have shown that
the semiparametric estimator of β achieves a semiparametric minimum variance
bound and has bias of smaller order than n−1/2. The efficiency bound itself for
(1.2) was exhibited by Lin and Carroll (2001a), while a semiparametric efficient
estimate using interactive kernel methods was developed by Wang et al. (2004).

The fact that β̂ converges at rate n−1/2 suggests that the properties of θ̃lin
and θ̂ are equivalent, to first order, to those that would be obtained if θ̃lin and θ̂
were computed with β replaced by its true value, without attempting estimation
of β. This is readily proved to be the case for models (1.2) and (1.3), and also
in more general cases. The method of proof is straightforward; see Hall, Reiman
and Rice (1999) for a recent example.

5. Concluding Remarks

The models (1.1)−(1.3) and the more general version (2.1) have significant
structure that makes it difficult to adopt standard local linear methods for them.
For example, at (1.1), longitudinal/clustered data with a marginal mean struc-
ture, traditional kernel approaches are known to have failed to successfully con-
struct methods that can account for correlation structure and produce an esti-
mator with good variance properties. At (1.3), the financed–inspired model, even
constructing a computationally feasible local linear method has proved difficult,
much less one with good variance properties.

Our histospline technique converts the problem from one in the continuum
to one that is governed by only a finite number of parameters. As we have
shown, this can greatly lessen the computational burden, largely by avoiding
some of the iteration necessary in other methods. As a general tool, at the
very least the histospline approach can be used to produce starting values for
iterative methods. This ease of computation is not, however, accompanied by
any loss of asymptotic efficiency for both the nonparametric model (1.1) and the
semiparametric models (1.2)−(1.3). A referee has pointed out that the histospline
method could be viewed as a member of the class of estimation methods based
on finite-dimensional linear estimating spaces, for which Huang (1998, 2003) has
developed general theory, not for our problem but for the independent data case.
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A few remarks about small sample efficiency comparisons may be in order.
Consider the model at (1.1). Here it is known that Wang’s (2003) computa-
tionally more complex iterative kernel methods dominate working independence
kernel methods. She also showed via simulation that her iterative kernel meth-
ods are as efficient as generalized least squares (GLS) penalized regression and
smoothing splines, both of which are straightforward to implement in the model
at (1.1). In simulations not reported here, we compared our simple histospline
techniques with GLS penalized regression splines, and hence from Wang’s sim-
ulations also to her method. For the exchangeable and autocorrelated cases in
Table 1, our two-stage kernel methods were on average approximately 10% less
efficient in mean squared error than the spline method, while for the nearly sin-
gular case the loss of efficiency was approximately 15%−20%. When compared
to Wang’s iterative kernel methods, this slight loss of efficiency may be an accept-
able price to pay for computational convenience. When compared to penalized
regression splines and smoothing splines, we again point out that our methods
are rather more straightforward to implement and have closed form solution, but
have computationally the same asymptotic efficiency as smoothing splines.
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Appendix. Technical Arguments

Proof of Theorem 4.1

Observe that Ŝ = Ŝ1 + Ŝ2 where, for r = 1, 2, we define

(Ŝ1)�1�2

(Ŝ2)�1�2

(T̂r)�1�2

 =
1
n

n∑
i=1

m∑
j=1

m∑
k=1

σ̂jk I(Xij ∈ B�1,Xik ∈ B�2) ×


θ(Xij)

εij

(Xij − x�1)
r

,

respectively. Note too that θ(Xij) = θ(x�) + (Xij − x�)θ′(x�) + (1/2)(Xij −
x�)2θ′′(x�) + op(h2), uniformly in i, j, � such that Xij ∈ B�. Therefore,

(Ŝ1)�1�2 = θ(x�1) â�1�2 +
2∑
r=1

1
r
θ(r)(x�1) (T̂r)�1�2 + op(h2|â�1�2 |) , (A.1)
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uniformly in 1 ≤ �1, �2 ≤ L.
For r = 0, 1, 2, define U�1�2(j, k, r)= (1/n)

∑n
i=1 I(Xij ∈B�1,Xik ∈B�2)(Xij−

x�1)
r. If j �= k then the variance of U�1�2(j, k, r) is asymptotic to n−1h2r+2gjk(x�1,

x�2), where the function gjk is bounded away from zero and infinity; if j = k and
�1 = �2, the asymptote is n−1h2r+1gj(x�1), where gj is bounded away from zero
and infinity; and U�1�2(j, k, r) = 0 if j = k and �1 �= �2. Therefore, using
Bernstein’s inequality, we may prove that for each C, δ > 0, and for r = 0, 1, 2,

max
j �=k,�1,�2

P
{
|U�1�2(j, k, r) − E U�1�2(j, k, r)| > nδ−(1/2) hr+1

}
= O(n−C) ,

max
j,l

P
{
|U��(j, j, r) − E U��(j, j, r)| > nδ−(1/2) hr+(1/2)

}
= O(n−C) .

Hence, for all C, δ > 0,

P
{

max
j �=k,�1,�2

|U�1�2(j, k, r) − E U�1�2(j, k, r)| > nδ−(1/2) hr+1
}

= O(n−C) , (A.2)

P
{

max
j,l

|U��(j, j, r) − E U��(j, j, r)| > nδ−(1/2) hr+(1/2)
}

= O(n−C) . (A.3)

Therefore, by (A.1),

(Ŝ)�1�2 = θ(x�1) â�1�2 +
2∑
r=1

1
r
θ(r)(x�1) (Ûr)�1�2

+ Op{nδ−(1/2) (h2 + δ�1�2 h
3/2)} + op(h2|â�1�2 |) , (A.4)

uniformly in 1 ≤ �1, �2 ≤ L, where (Ûr)�1�2 =
∑m
j=1

∑m
k=1 σ̂jk E{U�1�2(j, k, r)} .

Let fjk denote the joint density of (Xij ,Xik). If �1 �= �2 and j �= k then

E{U�1�2(j, k, r)} = hr+2
∫ 1

2

−1
2

ur du

∫ 1
2

−1
2

fjk (x�1 + hu, x�2 + hv) dv .

When r = 2 the right-hand side equals (1/12)h4fjk(x�1 , x�2) + o(h4), uniformly
in j �= k and �1 �= �2. When r = 1 it equals

h4
∫ 1

2

−1
2

u2 du

∫ 1
2

−1
2

f
(1,0)
jk (x�1 , x�2) dv + o(h4) = 1

12 h
4 f

(1,0)
jk (x�1, x�2) + o(h4) ,

uniformly in the same j, k, �1 and �2, where f (1,0)
jk (u, v) = (∂/∂u)fjk(u, v). Fur-

thermore, E{U��(j, k, r)} = O(h4) uniformly in j �= k, 1 ≤ � ≤ L and r = 1, 2;
and

E{U��(j, j, r)} =
∫ x�+

1
2h

x�−1
2h

(x− x�)r fj(x) dx

= hr+1
∫ 1

2

−1
2

ur fj(x� + u) du = o(h3) +
1
12
h3 ×

{
f ′j(x�) if r = 1
fj(x�) if r = 2

,
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uniformly in j, �. Combining the results in this paragraph, and recalling that
U�1�2(j, k, r) = 0 if �1 �= �2 and j = k, we deduce that

2∑
r=1

1
r
θ(r)(x�1) (Ûr)�1�2

=
m∑
j=1

m∑
k=1

σ̂jk
[
θ′(x�1)

{
(1 − δ�1�2) (1 − δjk) 1

12 h
4 f

(1,0)
jk (x�1 , x�2)

+δ�1�2 δjk
1
12 h

3 f ′j(x�1)
}

+ θ′′(x�1)
{
(1 − δ�1�2) (1 − δjk)

× 1
12 h

4 fjk(x�1 , x�2) + δ�1�2 δjk
1
12 h

3 fj(x�1)
}]

+ op(h4 + δ�1�2 h
3)

=
m∑
j=1

m∑
k=1

vjk
[
δ�1�2 δjk

1
12 h

3
{
θ′(x�1) f

′
j(x�1) + θ′′(x�1) fj(x�1)

}
+(1 − δ�1�2) (1 − δjk) 1

12 h
4
{
θ′(x�1) f

(1,0)
jk (x�1 , x�2)

+θ′′(x�1) fjk (x�1 , x�2)
}]

+ op(h4 + δ�1�2 h
3) , (A.5)

uniformly in 1 ≤ �1, �2 ≤ L.
Combining (A.4) and (A.5), and noting the assumption that n(1/4)−δh→ ∞

for some δ > 0, we deduce that

(1TŜ1)�=
L∑

�1=1

θ(x�1)â�1� + 1
12h

3{ξ1(x�) + ξ2(x�)} + op

(
h3 + h2

L∑
�1=1

|â�1�|
)
,(A.6)

uniformly in 1 ≤ � ≤ L, where

ξ1(x�) =
m∑
j=1

vjj{θ′(x�) f ′j(x�) + θ′′(x�) fj(x�)} ,

ξ2(x�) =
m∑
j=1

m∑
k=1

(1 − δjk) vjk
∫ 1

0

{
θ′(u) f (1,0)

jk (u, x�) + θ′′(u) fjk(u, x�)
}
du .

Define Vjk� = n−1/2 ∑
i I(Xik ∈ B�) εij , and note that var(Vjk�) is asymptotic

to a constant multiple of h. Since the εij’s have zero mean and finite (2 + δ)th
moments for some δ > 0, then for C > 0 sufficiently large, maxj,k,l P{|Vjkl| >
C (h log n)1/2} = o(h) . See Petrov (1975, p.254), and note assumption (4.9).
Therefore,

P
{

max
j,k,l

|Vjkl| > C (h log n)1/2
}
→ 0. (A.7)

Using this property, and recalling the assumptions σ̂jk = vjk + Op(h1/2) and
n(1/4)−δh→ ∞ for some δ > 0, we deduce that

(1TŜ2)� = n−1/2
m∑
j=1

m∑
k=1

σ̂jk Vjkl
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= n−1/2
m∑
j=1

m∑
k=1

vjk Vjkl +Op{n−1/2 h1/2 (h log n)1/2}

= n−1/2
m∑
j=1

m∑
k=1

vjk Vjkl + op(h3) , (A.8)

uniformly in 1 ≤ � ≤ L.
Combining (A.6) and (A.8), and writing ξ = (1/12)(ξ1 + ξ2), we find that

(1TŜ)� = (1TŜ1)� + (1TŜ2)�

=
L∑

�1=1

θ(x�1) â�1�
+ h3 ξ(x�) + n−1/2

m∑
j=1

m∑
k=1

vjk Vjkl

+op
(
h3 + h2

L∑
�1=1

|â�1�|
)
,

uniformly in 1 ≤ � ≤ L. The �th component of the vector of equations at (2.9)
that define ĉ can therefore be written as

L∑
�=1

{ĉ�1 − θ(x�1)} â�1�

= h3 ξ(x�) + n−1/2
m∑
j=1

m∑
k=1

vjk Vjkl + op

(
h3 + h2

L∑
�1=1

|â�1�|
)
, (A.9)

uniformly in 1 ≤ � ≤ L.
Equation (A.9), and indeed (2.9), is linear in ĉ�1 − θ(x�1) for 1 ≤ � ≤ L. It

may be proved, using (A.9) and the approximations to â�1�2 that we develop in
the next paragraph, that (A.9) admits a solution satisfying

max
1≤�≤L

|ĉ� − θ(x�)| = Op[{h2 + (nh)−1/2}nδ] (A.10)

for all δ > 0, and that for each sufficiently small δ > 0, with probability converg-
ing to 1 as n → ∞ there is a unique solution within radius {h2 + (nh)−1/2}nδ
of the first-mentioned solution. Therefore, with probability converging to 1 the
matrix Â = (â�1�2) is invertible, and so (A.10) holds for all δ > 0, for the unique
solution of (2.9) that arises with probability converging to 1 as n→ 0.

Using (A.2) and (A.3) with r = 0 we deduce that

â�1�2 =
m∑
j=1

m∑
k=1

σ̂jk E{U�1�2(j, k, 0)} + op(h3 + δ�1�2 h
5/2) ,
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uniformly in 1 ≤ �1, �2 ≤ L. Now,

E{U��(j, j, 0)} = P (Xij ∈ B�) = h fj(x�) + o(h) ,

E{U�1�2(j, k, 0)} = P (Xij ∈ B�1,Xik ∈ B�2) = h2 fjk(x�1 , x�2) +O(h3) ,

the first formula holding uniformly in j and � and the second uniformly in j �= k
and 1 ≤ �1, �2 ≤ L. Therefore,

â�1�2 = δ�1�2 hη(x�1) + h2 ζ(x�1, x�2) +Op(h3) + op(δ�1�2 h) = Op(h2 + h δ�1�2) ,

where η =
∑
j v

jjfj, ζ =
∑ ∑

j �=k vjkfjk, and all remainders are of the stated
orders uniformly in 1 ≤ �1, �2 ≤ L. Substituting these formulae into the left-hand
side of (A.9), and using (A.10), we deduce that

{1 + op(1)} {ĉ� − θ(x�)} η(x�) +
L∑

�1=1

{ĉ�1 − θ(x�1)} ζ(x�1 , x�)

= h2 ξ(x�) + n−1/2 h−1
m∑
j=1

m∑
k=1

vjk Vjkl + op(h2) , (A.11)

uniformly in 1 ≤ � ≤ L.
Result (A.7) implies that

max
j,k,l

|Vjkl| = Op{(h log n)1/2} . (A.12)

Therefore, if b satisfies
∫ 1
0 b(u) ζ(u, v) du = ξ(v)−b(v) η(v), there exists a solution

to (A.11) which satisfies both (A.10) and

ĉ� = θ(x�) + h2b(x�) +
1 + op(1)
n1/2 hη(x�)

m∑
j=1

m∑
k=1

vjk Vjkl + op(h2) , (A.13)

where the remainders are of the stated orders uniformly in 1 ≤ � ≤ L. This must
be the solution which is unique, with probability converging to 1 as n → ∞,
and so (4.2) is proved. Combining (A.12) and (A.13) we deduce that (A.12)
holds with the right-hand side replaced by Op{h2 + (nh)−1(log n)1/2}, which
establishes (4.3).

A.2. Proof of Theorem 4.2

The terms in θ′′(x) and b(x) in (4.4) and (4.5) follow directly from (4.2),
noting the definition of θ̃lin. To derive the coefficients of Zn(x), observe that
when 0 < x < 1 the error-about-the-mean contribution to an expansion of θ̃lin(x)
equals

1 + op(1)
nh2 η(x)

n∑
i=1

m∑
j=1

m∑
k=1

vjk {(x�+1 − x) I(Xik ∈ B�) + (x− x�) I(Xik ∈ B�+1)} εij ,
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the asymptotic variance of which equals (nh)−1η(x)−2 multiplied by

h−3
m∑
j1=1

m∑
k1=1

m∑
j2=1

m∑
k2=1

vj1k1 vj2k2 σj1j2δk1k2{(x�+1 − x)2 P (Xik1 ∈ B�)

+(x− x�)2 P (Xik1 ∈ B�+1)}

∼ h−2 {(x�+1 − x)2 + (x− x�)2}
m∑
j=1

(V −1ΣV −1)jjfj(x) .

This gives (4.4), and (4.5) may be derived similarly. Result (4.6) follows directly
from (4.3).

A.3. Proof of Theorem 4.3

For simplicity we derive only (4.7). Our starting point is (A.9) and the
approximations derived in the paragraph containing (A.10). From the latter
approximations we see that if we define

η̂n(x�) =
m∑
j=1

σ̂jj h−1 P (Xij ∈ B�) , (A.14)

ζ̂n(x�1 , x�2) =
∑
1≤j,

∑
k≤m

σ̂jk h−2 P (Xij ∈ B�1 ,Xik ∈ B�2), (A.15)

then (A.11) holds in the form

{ĉ� − θ(x�)} η̂n(x�) + h
L∑

�1=1

{ĉ�1 − θ(x�1)} ζ̂n(x�1 , x�)

= h2 ξ(x�) + n−1/2 h−1
m∑
j=1

m∑
k=1

vjk Vjkl + op(h2) ,

uniformly in 1 ≤ � ≤ L. From this formula, and since σ̂jk = vjk + Op(h1/2) for
1 ≤ j, k ≤ m, we see that if we define ηn and ζn as at (A.14) and (A.15) but with
σ̂jk replaced by vjk, then

ĉ� − θ(x�) = h
L∑

�1=1

{ĉ�1 − θ(x�1)}αn(x�1 , x�)

+h2 βn(x�) + n−1/2 h−1
m∑
j=1

m∑
k=1

vjkWjkl + op(h2) , (A.16)

uniformly in 1 ≤ � ≤ L, where αn(u, v) = ζn(u, v)/ηn(v), βn = ξ/ηn and Wjk� =
Vjk�/ηn(x�).
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Now pass our local linear smoother through both sides of (A.16), obtaining

L∑
�=1

{ĉ�−θ(x�)}wl(x) + h
L∑
�=1

L∑
�1=1

{ĉ�1−θ(x�1)}αn(x�1 , x�)wl(x) = T (x) +Op(h2),

where T (x) = n−1/2 h−1 ∑L
�=1

∑m
j=1

∑m
k=1 v

jkWjklw�(x) and w�(x) is as defined
at (4.7). The variable

h
L∑
�=1

L∑
�1=1

{ĉ�1 − θ(x�1)}αn(x�1, x�)wl(x)

equals Op(h2) + op{(nh1)−1/2}, and T (x) is asymptotically Normally distributed
with zero mean and variance (nh1)−1κτ0(x)2. Therefore, θ̂(x) =

∑L
�=1 ĉ�w�(x) =∑L

�=1 θ(x�)w�(x) + (nh1)−1/2κ1/2τ0(x)Zn(x)+Op(h2), where Zn(x) is asymptot-
ically Normal N(0, 1). Result (4.7) follows on noting that

∑L
�=1 θ(x�)w�(x) =

θ(x) + (1/2)κ2θ
′′(x)h2

1 + o(h2
1).

A.4. Estimating equations for model at (1.2)

Using a working covariance matrix V rather than the true Σ, and writing
V −1 = (vjk), the negative loglikelihood becomes:

n∑
i=1

m∑
j=1

m∑
k=1

L∑
�1=1

L∑
�2=1

(Yij − βTZij − c�1) v
jk (Yik − βTZik − c�2)

×I(Xij ∈ B�1,Xik ∈ B�2) . (A.17)

First eliminate β by differentiating with respect to βt and equating to zero:

n∑
i=1

m∑
j=1

m∑
k=1

βTZij v
jk Zikt =

n∑
i=1

m∑
j=1

m∑
k=1

L∑
�=1

(Yij − c�) vjk Zikt I(Xij ∈ B�) .

Equivalently, βTÂ = ŝT, where Â = (ârs), ŝ = ŝ(c) = (ŝr), ŝr = d̂r − ∑
� êr�c�,

ârs =
1
n

n∑
i=1

m∑
j=1

m∑
k=1

vjk Zijr Ziks ,

d̂r =
1
n

n∑
i=1

m∑
j=1

m∑
k=1

Yij v
jk Zikr ,

êrl =
1
n

n∑
i=1

m∑
j=1

m∑
k=1

vjk Zikr I(Xij ∈ B�) .
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Inverting to express β as a function of c = (c�) we deduce that

β = (û1, . . . , ûp)T +
L∑
�=1

c�(v̂�1, . . . , v̂�p) , (A.18)

where ûr and v̂�r are explicitly defined functions of the data alone.
Using (A.18) to substitute for β in (A.17), differentiating with respect to c�,

and equating to zero, we obtain

n∑
i=1

m∑
j=1

m∑
k=1

L∑
�1=1

L∑
�2=1

(
Ỹij −

L∑
�3=1

c�3 Z̃ij�3 − c�1

)
vjk

{
Z̃ikl + I(�2 = �)

}
×I(Xij ∈ B�1 ,Xik ∈ B�2) = 0 ,

where Ỹij = Yij − ∑
r ûr Zijr, Z̃ij� =

∑
r v̂�r Zijr. Therefore ĉTQ̂ = q̂T, where

ĉ = (ĉ1, . . . , ĉL)T, Q̂ = (q̂rs), q̂ = (q̂r),

q̂rs =
1
n

n∑
i=1

m∑
j=1

m∑
k=1

vjk
{
Z̃ijr + I(Xij ∈ Br)

} {
Z̃iks + I(Xik ∈ Bs)

}
,

q̂r =
1
n

n∑
i=1

m∑
j=1

m∑
k=1

vjk Ỹij
{
Z̃ikr + I(Xij ∈ Br)

}
.

This gives us an explicit formula for ĉ in terms of the data alone. Substituting
into (A.18) we obtain an explicit formula for β̂ in terms of the data alone.

A.5. Estimating equations for model at (1.3)

The negative loglikelihood may be written as

n∑
i=1

L∑
�1=1

· · ·
L∑

�m=1

(
Yi −

m∑
j=1

βj−1 c�j

)2

I(Xij ∈ B�j , 1 ≤ j ≤ m) . (A.19)

It is simplest to eliminate c = (c�) first, by expressing c as a function of β. To
this end, differentiate (A.3) with respect to c� and equate to zero, obtaining

n∑
i=1

L∑
�1=1

· · ·
L∑

�m=1

m∑
j=1

m∑
k=1

βj+k−2 c�j I(�k = �;Xij ∈ B�j , 1 ≤ j ≤ m)

=
n∑
i=1

L∑
�1=1

· · ·
L∑

�m=1

m∑
k=1

Yi β
k−1 I(�k = �;Xij ∈ B�j , 1 ≤ j ≤ m) . (A.20)

The left-hand side may be simplified to
∑L
r=1 cr

∑n
i=1

∑m
j=1

∑m
k=1 β

j+k−2 I(Xij

∈ Br,Xik ∈ B�) , and the right-hand side to
∑m
k=1 β

k−1 ∑n
i=1 Yi I(Xik ∈ B�) .



672 R. J. CARROLL, P. HALL, T. V. APANASOVICH AND X. LIN

Therefore (A.20), defining c = ĉ = (ĉ�), may equivalently be written as ĉTÂ = ŝT,
where Â = Â(β) = (ârs), ŝ = ŝ(β) = (ŝr),

ârs =
m∑
j=1

m∑
k=1

βj+k−2 1
n

n∑
i=1

I(Xij ∈ Br,Xik ∈ Bs) ,

ŝr =
m∑
j=1

βj−1 1
n

n∑
i=1

Yi I(Xij ∈ Br) .

Thus we have an explicit formula for ĉ as a function of β and of the data.
Substituting into (A.19), and minimizing over the single unknown β by either
grid search or a Newton-Raphson procedure, is elementary. Having computed
β = β̂ we now calculate Â = Â(β̂) and ŝ = ŝ(β) as functions of the data alone,
and finally, compute ĉ = ŝTÂ−1.
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