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Abstract: We consider the problem of attrition under a logistic regression model

for longitudinal binary data in which each subject has his own intercept parameter,

and where parameters are eliminated via conditional logistic regression. This is a

fixed-effects, subject-specific model which exploits the longitudinal data by allowing

subjects to act as their own controls. By modeling and conditioning on the drop-out

process, we develop a valid but inefficient conditional likelihood using the complete-

record data. Then, noting that the drop-out process is ancillary in this model, we

use a projection argument to develop a score with improved efficiency over the

conditional likelihood score, and embed both of these scores in a more general class

of estimating functions. We then propose a member of this class that approximates

the projected score, while being much more computationally feasible. We study the

efficiency gains that are possible using a small simulation, and present an example

analysis from aging research.
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1. Introduction

An important strength of longitudinal data is that subjects can act as their
own controls in evaluating the effects of treatments, policy interventions, and
other time-varying exposures on outcomes. Longitudinal study designs eliminate
confounding that can arise in cross-sectional studies between such exposures and
other subject level factors (Diggle, Liang and Zeger (1994, Chap.1)).

For longitudinal binary outcome data, a common model is

logit{E (Yit|Xi)} = qi + X ′
itβ, (1)

where Yit is a binary outcome variable on subject i at time t, Xit is a vector of
time-varying covariates, β is a vector of regression coefficients, and Xi is the ma-
trix Xi = (Xi1, . . . ,XiJ )′. In this logistic model, qi is a subject-specific intercept
that accounts for the fact that the components of the vector Yi = (Yi1, . . . , YiJ)′

are repeated measures on a single subject i, and hence are positively correlated.
Models of this form are sometimes referred to as ‘subject-specific models’ (Zeger,
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Liang and Albert (1988)) because the interpretation of β is the effect of Xit on
Yit, adjusting for all factors figuring into the subject-specific intercept qi.

These models are sometimes fitted by assuming that the qi’s are random
quantities that follow a probability law such as the normal distribution (e.g.,
Breslow and Clayton (1993)). An alternative is to assume that the qi’s are
fixed unknown parameters (Greene (2003) and Diggle, Liang and Zeger (1994,
Section 9.3.1)). While both models yield a subject-specific interpretation of β,
the ‘random effects’ and ‘fixed effects’ approaches differ fundamentally. In the
random effects models, it is generally assumed that qi is independent of the matrix
of covariates Xi, although it is certainly possible to model the dependence of qi

on Xi. By contrast, in fixed effects models, qi captures all subject level factors,
including those related to Xi. This yields inferences about the effects of Xit on Yit

that are automatically adjusted for confounding due to subject-level factors. In
this way, subjects act as their own controls in longitudinal studies. Greene (2003,
p.700) illustrates the role of fixed effects models in the analysis of longitudinal
binary data through an analysis of time-varying factors on product innovation in
a longitudinal sample of 1270 German firms (Bertschek and Lechner (1998)).

Typically, when qi is seen as a fixed quantity, model (1) is estimated via
conditional logistic regression (CLR; Breslow and Day (1980)). CLR eliminates
qi from the ith subject’s likelihood contribution by conditioning on the sum∑

t Yit, which is a sufficient statistic for qi. A third approach midway between
the random and fixed effects models is to assume that qi is a random variable with
an unknown distribution that depends on Xi in an unknown way. This yields a
semiparametric model, with X ′

itβ being the parametric part, and the distribution
of qi given Xi being the nonparametric. The CLR estimator is semiparametric
efficient for β in this model (Rathouz (2003)).

To fix ideas, we consider an example from aging research in which interest
is on the question of whether elderly subjects with weaker memory experience
greater subsequent increases in disability The data used to address this ques-
tion are from the Study of Assets and Health Dynamics Among the Oldest Old
(AHEAD; Soldo, Hurd, Rodgers and Wallace (1997)), a U.S. national sample of
subjects 70 years and older, and were collected over four waves. They include a
baseline measure of memory and a longitudinal binary measure of disability. A
concern in a cross-sectional analysis of this problem is that unobserved confound-
ing factors may lead to a spurious association between memory and disability.
The question is more appropriately addressed with a fixed effects model with the
longitudinal disability measure as the response, and the interaction of time (year)
with baseline memory as the key predictor of interest. An analysis of these data
is presented in Section 5.
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Attrition is an important problem in aging research such as this. For exam-
ple, our data set comprises 6,350 subjects, but only 3,705 are assessed at all four
time points, and 887 dropped out of the study after the first wave. Subjects may
drop out because they become too disabled to participate, because they move
into an assisted living or nursing facility, or because they die; often, the investi-
gators do not know which if any of these events has occurred for a subject who
can not be located at follow-up waves. Furthermore, the reason for dropout is
potentially related to the longitudinal outcome of disability. Bias due to attrition
is therefore a serious concern.

As this example suggests, problems can arise when subjects drop out of
the study after only Ti observations, where, for some subjects, Ti < J . When
the drop-out time Ti is independent of both Yi and Xi, analysis based on the
standard conditional likelihood generated from the first Ti observations will yield
consistent and asymptotically normal estimators for β. However, if drop-out
depends on Yi and/or Xi, a standard complete record analysis based on the first
Ti observations can yield biased estimators. In this paper, we consider drop-outs
that are missing at random, where Ti may depend on past data Yi1, . . . , YiTi , but
not on future data Yi,Ti+1, . . . , YiJ . Specifically, we assume that

I(Ti = t) � Yi,t+1, . . . , YiJ |Yi1, . . . , Yit,Xi, Zi, (2)

where I(·) is the indicator function. We refer to this condition as ‘missing at
random drop-out’ (Little (1995)). In (2), Zi is a vector of subject-level variables
which may effect drop-out time. Condition (2) arises naturally under a hazard
model for drop-out which expresses the probability that Ti = t given Ti ≥ t as a
function of Yi1, . . . , Yit,Xi, Zi.

An alternative identifying assumption to (2) is the slightly more general
condition

I(Ti = t) � Yi,t+1, . . . , YiJ ,Xi,t+1, . . . ,XiJ |Yi1, . . . , Yit,Xi1, . . . ,Xit, Zi,

which does not require the Xit’s to be measured after drop-out time Ti, and
which is therefore applicable to problems with random time-varying covariates.
The methods presented in this paper extend easily to this case, but the notation
is more cumbersome; a sketch of the development is given in Section 6.

Models are generally identifiable under missing at random (MAR) assump-
tions such as (2) (Little and Rubin (1987)). However, a full likelihood approach
to the fixed effects modeling problem considered here would require integrating
over the missing Yi,Ti+1, . . . , YiJ , and, by (1), the distribution of these missing
data elements depends on the unknown qi. As this approach does not appear
feasible, we develop a method wherein we condition on Ti and base inferences
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on the conditional likelihood obtained by further conditioning on
∑Ti

t=1 Yit. This
approach exploits a model for the drop-out process to compute the likelihood con-
ditional on Ti. Development of this bias-corrected ‘complete-record’ conditional
likelihood is the subject of Section 2.

Other authors have developed methods to handle attrition in longitudinal
studies; Little (1995) provides a review. Most of these are based either on
‘marginal models’, wherein primary interest is on the mean of Yit as a func-
tion of Xit (Robins, Rotnitzky and Zhao (1995), Robins and Rotnitzky (1995),
Fitzmaurice, Molenberghs and Lipsitz (1995), Baker (1995) and Diggle and Ken-
ward (1994)), or on random effects models (e.g., Wu and Carroll (1988) and
Ten Have, Kunselman, Pulkstenis and Landis (1998)). Attrition in fixed effects
models has received less attention. Conaway (1992) considers a general class of
polytomous data fixed effects models with missing responses, of which our model
is a special case. However, his method of handling attrition differs from ours
in that it is based on application of the EM algorithm to the full-data condi-
tional likelihood. By contrast, the method we present in Section 2 is based on a
conditional likelihood constructed using only complete-records.

A problem with the complete-record approach is that it may result in ineffi-
cient inferences for β, primarily because it relies on information in the observed
drop-out process, which is ancillary for β. In Section 3, we address this prob-
lem by identifying a class of estimating functions of which the score function
developed in Section 2 is one member. Using a projection argument, we identify
the efficient member of that class which, in particular, is guaranteed to improve
efficiency in β-estimation over the score in Section 2. Finally, as the efficient
estimating function is difficult to compute, we propose an approximation to it
that simplifies computation considerably. Section 4 contains a small simulation
study, and in Section 5 we illustrate our methods with an analysis of the AHEAD
data discussed above.

The method developed here follows a similar program to that in Rathouz,
Satten and Carroll (2002). In that paper, we elaborated a methodology for
handling missing covariates in conditional logistic regression models. This paper
differs in that it considers longitudinal data, which specifically incorporates the
element of time, and focuses on missing responses rather than missing covariates.
As such, the bias-corrected estimator proposed in Section 2 takes a different
form than that in our previous work. Moreover, the projection argument and
subsequent approximation in Sections 3.3−3.4 are completely new and specifically
developed for longitudinal data.
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2. Complete-Record Analysis of Fixed Effects Models

2.1. Data, notation and model of interest

Consider a random sample of subjects i = 1, . . . ,K, and suppose that each
subject is potentially assessed at J times, denoted by t = 1, . . . , J . Assessment t

on subject i yields data (Yit,Xit), where Xit is a vector of time-varying covariates
and Yit is a binary response variable. For ease of exposition, we assume that
each subject has the same set of equally-spaced potential assessment times t =
1, . . . , J , although the methods to be developed would certainly allow for different
sets of such times across subjects. In addition to Yit and Xit, let Zi denote a vector
of time-constant subject-level covariates. While these covariates will not figure
directly into our model of interest, they are included in the data structure because
they may figure into the generation of time-varying covariates Xit or into the
drop-out process. For example, time-varying covariates Xit may be deterministic
functions of time, such as t or Zi × t. Alternatively, Xit may include measures
of exogenous time-varying processes such as the level of ambient air pollution in
subject i’s ZIP code at time t. For ease of exposition, we operate under (2) and
assume that Xit can be measured even if subject i drops out before t. Extension
to the case where Xit is a random time-varying covariate that cannot be measured
after drop-out is conceptually straightforward; details are given in the discussion.

To account for random drop-out across subjects, assume that subject i is
observed only at times t = 1, . . . , Ti ≤ J , where Ti ≥ 1 for all i. We refer to Ti

as the ith subject’s ‘drop-out time’. Let Rit = 1 or 0 indicate whether the tth
observation (Yit,Xit) is observed or missing for the ith subject. That is, that
Rit = 1 iff t ≤ Ti.

To denote the data for a given subject i, write Yi = (Yi1, . . . , YiJ )′ for the
J × 1 vector of binary responses, including any values missing due to drop-out.
Similarly define the J × p matrix Xi = (Xi1, . . . ,XiJ )′ of p × 1 row vectors of
covariates for subject i, and the vector Ri of missing data indicators. Further
define Yi,obs to be the Ti observed components of Yi, and Xi,obs to be the Ti

observed rows of Xi, before or at drop-out. Note that which components of
Yi and Xi appear in Yi,obs and Xi,obs is a function of the indicator vector Ri.
Finally, a subscript t added to a Yi or Xi is used to denote the sub-vector or
sub-matrix comprising the first t components of a vector or first t components of
a matrix. For example, Yit = (Yi1, . . . , Yit)′. Of course, with some redundancy,
we then have Yi ≡ YiJ and Yi,obs ≡ YiTi .

We express (1) in terms of the odds that Yit = 1. As such, let θit =
θi(Xit;β) = Pr(Yit = 1|Xi)/Pr(Yit = 0|Xi). The goal is to make inferences
about the p × 1 parameter β in the logistic model given by log(θit) = qi + X ′

itβ,

where qi is a subject-specific intercept which allows Pr(Yit = 1) to vary across
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subjects according to unobserved subject-level variables. Note that covariates Zi

do not figure into this model, as the effects of these covariates are absorbed into
the intercept qi.

2.2. Drop-out model

To account for the drop-out process, define

λi(t,yt−1; γ) = Pr(Rit = 1|Ri1 = · · · = Ri,t−1 = 1,Yi = y,Xi, Zi)

= Pr(Rit = 1|Ri,t−1 = 1,Yi = y,Xi, Zi),

where γ is a finite-dimensional nuisance parameter which does not depend on
response model parameters (qi, β), y = (y1, . . . , yJ)′, and the role of subscript
t − 1 on the bold y is as defined above. Note that 1 − λi(t,yt−1) is the hazard
of drop-out at t, and that (2) ensures that λi(t,Yi,t−1) does not depend on
Yit, . . . , YiJ . For example, λi(t,Yi,t−1) might depend on past values Yit′ , t

′ <
t, via a logistic regression model that only depends on the most recent value
Yi,t−1 independently of t. Alternatively, λi(t,Yi,t−1) might vary across t and/or
depend on more than just the most recent value of Yit′ , t < t′. Also, λi(t,Yi,t−1)
is implicitly allowed to depend on subject-level covariates Zi, such as sex or
treatment assignment, as well as the matrix Xi of time-varying covariates, which
might include time or treatment-by-time interactions. Throughout, we assume
that dependence of λi(t,yt−1) on (Xi, Zi) is indicated by subscript i, but we
make the dependence on yt−1 explicit for reasons that will become clear. We
also assume that λi(1,y0) ≡ 1, i.e., the baseline assessment is always observed,
and, for ease of exposition, that λi(J + 1,yJ) ≡ 0.

Given a model for λi(t,yt−1), the drop-out probability is immediately com-
puted as

πi(t,yt; γ) = Pr(Ti = t|Yi = y,Xi, Zi) =
t∏

s=1

λi(s,ys−1; γ){1 − λi(t + 1,yt; γ)}.

By (2), πi(t,Yit) depends only on data observed at or before t.

2.3. Complete-record conditional likelihood analysis

With the models defined in the previous section, we are now in a position to
define the likelihood arising from the complete-record data Yi1, . . . , YiTi ,Xi, Zi.
This likelihood, Li, is conditional on the drop-out process Ti, that is, Li(β, γ, qi)
= Pr(Yi,obs|Xi, Zi, Ti). Expressing this likelihood via odds θit and drop-out prob-
ability πi(t,yt), yields

Li(β, γ, qi) =
{∏Ti

t=1 θYit
it }πi(Ti,Yi,obs)∑

yobs∈Y∗
i,obs

{∏Ti
t=1 θyt

it }πi(Ti,yobs)
, (3)
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where Y∗
i,obs is the set of all 2Ti possible vectors yobs = (y1, . . . , yTi)

′.
The difficulty with using Li for inferences about β is the presence of nuisance

parameters qi and γ. First, consider the subject intercept qi. Via standard theory
of exponential family models, it is easily seen that, for fixed β and γ,

∑Ti
t=1 Yit is a

complete sufficient statistic for qi in (3). Therefore, conditioning on this statistic
will yield a likelihood that is free of qi. Let

Lc
i (β, γ) = Pr(Yi,obs|

∑Ti
t=1Yit,Xi, Zi, Ti). (4)

Then

Lc
i (β, γ) =

{∏Ti
t=1(e

X′
itβ)Yit}πi(Ti,Yi,obs)∑

yobs∈Yi,obs
{∏Ti

t=1(e
X′

itβ)yt}πi(Ti,yobs)
, (5)

where Yi,obs =Yi,obs(Yi,obs) is the set of all

(
Ti∑Ti

i=1Yit

)
vectors yobs =(y1, . . . , yTi)

′

such that
∑Ti

t=1 yt =
∑Ti

t=1 Yit.

Remark. Likelihood (5) can be contrasted with the standard conditional like-
lihood which ignores the drop-out process. This standard likelihood deletes the
πi(·) terms from (5) and is equivalent to assuming that πi(Ti,yobs) is constant
across all yobs ∈ Yi,obs. The implication is that the standard conditional likeli-
hood method is biased under MAR. The fact that one must account for the drop-
out process is surprising because in likelihood-based approaches, MAR dropout
processes are generally assumed to be ignorable. Further elaboration on this
point is given in the discussion.

For estimation of γ, we model Rit among those subjects for whom Ri,t−1 = 1.
As such, define Lγ

i to be the ith subject’s contribution to the γ-likelihood, i.e.,

Lγ
i (γ) =

{ Ti−1∏
t=1

λi(t,Yi,t−1; γ)
}
{1 − λi(Ti,Yi,Ti−1; γ)}.

Then, accumulating information over subjects i = 1, . . . ,K, let γ̂ be the estimator
of γ obtained by maximizing the likelihood

∏
i L

γ
i (γ).

We propose maximum conditional likelihood estimation of β using Lc
i , with

γ̂ replacing γ. Combining information across subjects, let β̂ be the maximizer
of
∏

i Lc
i(β, γ̂). Equivalently, β̂ is the solution to

∑
i U

c
i (β, γ̂) = 0, where U c

i (β, γ)
is the ith subject’s β-score contribution U c

i = (∂ log Lc
i/∂β), γ̂ is the solution

to
∑

i S
γ
i (γ) = 0, and Sγ

i (γ) is the ith subject’s γ-score contribution Sγ
i =

(∂ log Lγ
i /∂γ). An estimator for the asymptotic variance of β̂ with estimated

γ is given as a special case of Theorem 1 by replacing Ui there with U c
i .
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Remark. In the special case where λi(t,Yi,t−1) depends only on the most re-
cent response value, that is, λi(t,yt−1) = λi(t, yt−1), β̂ can be computed using
standard software, as follows. First define

Bit =

 log{λi(t + 1, 1)/λi(t + 1, 0)}, t = 1, . . . , Ti − 1

log[{1 − λi(t + 1, 1)}/{1 − λi(t + 1, 0)}], t = Ti.

It is easily shown that

Lc
i (β, γ) =

∏Ti
t=1(e

X′
itβ+Bit)Yit∑

yobs∈Yi,obs

∏Ti
t=1(e

X′
itβ+Bit)yt

, (6)

so that the model accounting for drop-out can be fitted using a standard condi-
tional logistic regression software package, including the offset Bit in the linear
predictor. The resulting estimator for β will be consistent, although the standard
errors produced by the package will be conservative.

3. Efficiency Improvements

3.1. Introduction

While the conditional likelihood Lc
i will yield valid inferences about β, it is

potentially inefficient because it contains information on the missingness process
Ri, which is ancillary for β. To see this, note that likelihood Lγ

i depends in no
way on β, and yet Lc

i depends on random variables Ri. This suggests that more
efficient estimation of β can be achieved by using an estimating function where
the β-ancillary information in Ri has been removed. Heuristically, the idea is
to identify an estimating function Ua

i that (i) contains no β-information, i.e., is
ancillary for β, (ii) is unbiased without any further modeling assumptions, and
(iii) is positively correlated with U c

i . Here, we take Ua
i being ‘ancillary for β’ to

mean that E (−∂Ua
i /∂β) = 0. Then, U c

i − Ua
i will yield a potential increase in

efficiency relative to U c
i .

At (7) and (8), we introduce a class Ui of estimating functions for β that
includes the complete-record estimating function U c

i and that satisfies criteria (i)
and (ii) above. Motivation for the general form of this class, and its component
functions V

(t,s)
i , is elaborated in Section 3.3, where we use a projection argument

and semiparametric efficiency theory to generate the optimal member Uproj
i of Ui.

We show that Uproj
i satisfies (iii) and yields more efficient β inferences than U c

i .
Finally, in Section 3.4, we propose an approximation Uappr

i to Uproj
i , also in Ui,

that is more practical to compute than Uproj
i and that is also expected to sat-

isfy (iii). Simulations in Section 4 illustrate the potential efficiency improvements
in Uappr

i over U c
i .
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Throughout Section 3, we treat qi as an unobserved random variable with
a nonparametric distribution depending arbitrarily on (Xi, Zi). We note that
conditional likelihood Lc

i and scores U c
i remain valid under this model. Refer-

ences to the joint distribution of Yi or of its sub-vectors Yit are conditional on
(Xi, Zi), but marginal over qi. That is, (Yi|X, Zi) has a nonparametric mixture
distribution. Throughout Section 3, detailed proofs and technical material are
omitted; further information is available in a technical report from the author.
Finally, as most development in this section is at the subject level, the subscript
i is omitted except where needed for clarity.

3.2. A class of estimating functions

First, for a given subject i and for every (t, s), 1 ≤ s ≤ t+1, 1 ≤ t ≤ J , define
arbitrary functions V (t,s)(Rs,Ys−1,X, Z;β, γ, α). Generally, V (t,s) will depend
on β, γ and possibly a finite dimensional nuisance parameter α. Set V (J,J+1) ≡ 0.

Now, consider estimating functions of the form

Ua =
J∑

t=1

t+1∑
s=1

Rs−1(V (t,s) − ε(t,s)), (7)

where we define R0 ≡ 1 and, taking expectation over Rs, ε(t,s) = E (V (t,s)|Rs−1 =
1,Ys−1,X, Z). Note that, owing to the factor Rs−1 in (7), Ua can always be
computed with observed data. It is straightforward to show that, regardless of
choice of V (t,s), E (Ua) = E (−∂Ua/∂β) = 0 as long as the missingness model
λi(t,yt−1) is correctly-specified, so that (7) defines a class of unbiased β-ancillary
estimating functions Ua satisfying criteria (i) and (ii) in Section 3.1, and indexed
by the choice of functions V (t,s). The elements of (7) yield a class U of estimating
functions for β of the form

U(β, γ, α) = U c(β, γ) − Ua(β, γ, α). (8)

Specific members of U are the subjects of Sections 3.3−3.4.
For a given choice of V (t,s), to use the resulting estimating function U ∈

U for β-inferences, assume that there exists an α-estimating function Sα =
Sα(Yobs,Xobs, Z, T ;α), and let α̂ be the solution to

∑
i S

α
i (α) = 0. Suppose

that we estimate γ as in Section 2.3, and β by solving
∑

i Ui(β, γ̂, α̂) = 0. The-
orem 1 characterizes the asymptotic distribution of β̂. A sketch of a proof is in
Appendix A.

Theorem 1. Suppose that γ̂ solving
∑

i S
γ
i (γ) = 0 is

√
K-consistent, that α̂ is√

K-consistent for some α∗, and that β̂ solves
∑

i Ui(β, γ̂, α̂) = 0. Then, under
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mild regularity conditions as K → ∞, β̂ → β in probability, and
√

K(β̂ − β) →
N(0,V) in distribution, V = limK→∞ VK , where

VK = K(
∑

i

Ic
βi)

−1(
∑

i

ŨiŨ
T
i )(

∑
i

Ic
βi)

−1, (9)

Ic
βi = E (U c

i U c T
i ), and Ũi = Ui − CSγ

i , where C = (
∑

i UiS
γ T
i ){∑i S

γ
i Sγ T

i }−1.

Remark. From (9), we see that the asymptotic efficiency of β̂ for U c or any
U ∈ U is improved by estimation of γ, even if γ is already known. Similarly,
using a model for the drop-out process λ(t,yt−1) that is richer than required,
for example by including unnecessary interaction terms, will not harm efficiency
and may yield further gains. These phenomena have been previously noted in
missing data problems (Robins, Rotnitzky and Zhao (1995)). We explore their
implications for a simple model in the simulations presented in Section 4.

3.3. Improved efficiency via projection

We now exploit ideas in semiparametric efficiency theory to obtain a member
Uproj that is optimal in the class U . The key idea is to remove from U c its
projection onto the tangent space W for the nuisance parameter γ (i.e., the closed
linear span of L2 scores for γ; Newey (1990, Section 3) and Robins, Rotnitzky
and van der Laan (2000, Section 3)). To do so, we first establish a representation
of W. Then, we rewrite U c as a sum over all possible drop-out times, which
facilitates computing the projection.

We show in a technical report that W is the L2 subspace spanned by the
union of subspaces Ws, indexed by s = 1, . . . , J , where Ws is the L2 sub-
space of functions of (Rs, Rs−1,Ys−1,X, Z) which are unbiased conditional on
(Rs−1,Ys−1,X, Z). Let P (Ps) be the L2 projection operator into W (Ws). By
the definition of Ws, for any L2 regular estimating function g,

Psg = E (g|Rs, Rs−1,Ys−1,X, Z) − E (g|Rs−1,Ys−1,X, Z).

Also, because the Ws’s are orthogonal to one another, the projection of g onto
W is just the sum of the projections onto the Ws’s, that is, Pg =

∑J
s=1 Psg.

Further development requires that the dependence of U c on T (or R) be
explicit. As such, we write a version of conditional likelihood Lc corresponding
to each of the t = 1, . . . , J possible drop-out times. Let L(t) be the value that Lc

takes when T = t, that is, following (4), L(t)(β, γ) = Pr(Yt|
∑t

s=1Ys,X, Z, T = t).
Then, Lc =

∏J
t=t L(t) I(T=t). Similarly, writing U (t) = (∂ log L(t)/∂β), we can

rewrite U c as

U c =
J∑

t=1

I(T = t)U (t). (10)
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To compute projections PsU
c, we exploit (10), operating one term at a time.

It can be shown that, for 1 ≤ s ≤ t + 1, 1 ≤ t ≤ J ,

PsI(T = t)U (t) = Rs−1

(
V

(t,s)
proj − ε

(t,s)
proj

)
, (11)

where V
(t,s)
proj (β, γ, α) = E {(1−Rt+1)RtU

(t)|Rs, Rs−1 = 1,Ys−1,X, Z}, expecta-

tion being taken over (Y,R), and ε
(t,s)
proj(β, γ, α)=E (V (t,s)

proj |Rs−1 =1,Ys−1,X, Z),
expectation being over Rs. Similarly, for s > t + 1, PsI(T = t)U (t) = 0 and, for
ease of exposition, we define PJ+1g ≡ 0.

Summing over (t, s), the projection of U c onto γ-tangent space W is therefore

PU c =
J∑

t=1

t+1∑
s=1

Rs−1

(
V

(t,s)
proj − ε

(t,s)
proj

)
(12)

and, subtracting PU c from U c, we thereby define a new estimating function

Uproj = U c − PU c = U c −
J∑

t=1

t+1∑
s=1

Rs−1

(
V

(t,s)
proj − ε

(t,s)
proj

)

for inferences about β. Since V
(t,s)
proj is a function of (Rs,Ys−1,X, Z), PU c satis-

fies (7), and Uproj is therefore in the class U defined by (8). Theorem 2 elucidates
the efficiency benefit in using Uproj over U c, or any other U ∈ U , for inferences
about β, and implies that projection (12) satisfies criterion (iii) in Section 3.1.

Theorem 2. Uproj is optimally efficient in U in the sense that, for any U ∈ U ,
Iproj

β − Iβ is positive semidefinite, where the Uproj information matrix Iproj
β is

Iproj
β = Ic

βE (UprojUproj T)−1Ic
β and Iβ is the corresponding information matrix

for U .

Sketch of a proof. The proof of Theorem 2 involves three main points, which
hold for any U ∈ U . First, E (−∂U/∂β) = Ic

β. Second, U − PU = U c − PU c =
Uproj. Third, PU is positively-correlated with U , so that

E (UUT) − E (UprojUproj T
) ≥ 0 (13)

in the positive semidefinite sense.

Remarks.
1. Theorem 1 demonstrated, for a given choice U ∈ U , that efficiency is

improved by estimation of γ and by using overly-rich models for the drop-out
process. However, it said nothing about the choice of Ua (i.e., of V (t,s)) in
U = U c−Ua. Theorem 2 provides guidance in choosing Ua to improve efficiency.
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2. Note that PU c, and hence Uproj, depend on the joint distribution of
(Y|X, Z) to compute V

(t,s)
proj , and the distribution of (Y|X, Z) in turn depends

on a model for the mixture distribution of (q|X, Z). This is the first place in
our development where (q|X, Z) is needed. However, note that if the model for
(Y|X, Z) is misspecified, the resulting V

(t,s)
proj ’s will not be the optimal functions,

but they will still be valid functions V (t,s) as defined in Section 3.2. Also, given
any V (t,s) (V (t,s)

proj ), correct computation of ε(t,s) (ε(t,s)
proj) only depends on the drop-

out model, λ(t;yt−1). The implication is that even if the joint distribution of
(Y|X, Z) is misspecified, the resulting PU c, while not optimal, will still be a
valid member of the class (7), and the resulting Uproj = U c −PU c will still be a
valid unbiased estimating function in the class U . The main assumption required
throughout our development of U c, Uproj and the class U is that the drop-out
model (3) be correctly specified.

3. Even if the joint distribution (Y|X, Z) and resulting PU c are only ap-
proximately correct, we still might expect an increase in efficiency in Uproj over
U c. The reason is that, even an approximate PU c will be positively correlated
with U c (criteria (iii)), so that (13) in the sketch of proof will still hold.

3.4. A practical estimator

The results of the foregoing section show that, to compute the V
(t,s)
proj ’s and

the projection PU c needed for Uproj, we require the the full joint distribution
(Y|X, Z), marginally over q. In computing Uproj, distribution (Y|X, Z) plays
a role in increasing efficiency of β̂, but correct specification of this distribution
is not critical for consistency. Also, it may be difficult to compute the V

(t,s)
proj ’s,

as they require specification and estimation of the unknown mixture distribu-
tion (q|X, Z), and then complicated numerical integration over this distribution.
Indeed, avoiding specification of (q|X, Z) was one motivation for using a fixed
effects model in the first place. Therefore, in real data-analytic settings, it may
be practical to employ a working model for (Y|X, Z) for purposes of computing
PU c. In this section, we accomplish this by using a parametric working model for
(Y|X, Z) based on the transition distribution of (Yt|Yt−1,X, Z). We emphasize
that (1) is still assumed to be the true model, and that the working transition
model is only to be used for approximating the projection operator P that will
be applied to U c. Specifically, the working transition model is used to obtain
approximations V

(t,s)
appr to V

(t,s)
proj ; ε

(t,s)
appr is then obtained from V

(t,s)
appr as in (7).

Define the transition probabilities

η(t,yt−1;α) = Pr(Yt = 1|Yt−1 = yt−1,X, Z), (14)

for t = 2, . . . , J , where α is a finite-dimensional nuisance parameter. In princi-
ple, model η(·;α) and parameter α depend on the interest parameter β. How-
ever, exploiting this dependency requires specification of the mixture distribution
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(q|X, Z) which we would like to avoid. Even though it ignores these dependen-
cies (14), meets our needs for a practical approximation to distribution (Y|X, Z).

Model (14) for (Y|X, Z), together with the model λ(t,yt−1; γ) for the drop-
out process (R|Y,X, Z), yields a working model for the joint distribution of
(R,Y|X, Z). This model is used in place of the true but unknown distribution
to approximate the projection PU c. As such, define functions V

(t,s)
appr as

V (t,s)
appr (γ, α) = Ẽ

{
(1 − Rt+1)RtU

(t)|Rs, Rs−1 = 1,Ys−1,X, Z;α, γ
}

,

where Ẽ (·;α, γ) denotes expectation taken with respect to the working distribu-
tion of (R,Y|X, Z). Note importantly that functions V

(t,s)
appr are of the form V (t,s)

given in Section 3.2, and hence they define an element Uappr in U . Specifically,

Uappr(β, γ, α) = U c −
J∑

t=1

t+1∑
s=1

Rs−1(V (t,s)
appr − ε(t,s)

appr).

We propose Uappr as an improvement over U c for inferences on β.
In order to use Uappr, we require an estimator of the transition model pa-

rameter α. For this, note that, under (2), the ith subject’s contribution to the
likelihood function Lα

i for α is given by

Lα
i (α) =

J∏
t=2

[ηi(t,Yi,t−1;α)Yit{1 − ηi(t,Yi,t−1;α)(1−Yit)}]Rit .

Accumulating information over subjects i = 1, . . . ,K, let α̂ be the estimator of α

obtained by maximizing the likelihood
∏

i L
α
i (α). We assume that α̂ is consistent

for some value α∗ even if (14) is not valid or is misspecified. Note that, similarly
to γ̂, α̂ can be computed via Lα

i before estimation of β. With estimators γ̂ and α̂,
Uappr(β, γ̂, α̂) is an approximate projected estimating function, and the resulting
estimator β̂ solving

∑
i U

appr
i (β, γ̂, α̂) = 0 has the asymptotic distribution given

in Theorem 1. We investigate the performance of Uappr compared to U c via
simulations, in the next section.

4. Simulation Study

To investigate the performance of the estimators based on U c and Uappr, as
compared with those arising from the standard conditional likelihood based on
the first Ti records, we performed a small simulation study. Each replicate sample
consisted of i = 1, . . . ,K = 200 subjects potentially measured at t = 1, . . . , J = 5
equally-spaced times. Each subject was randomly assigned treatment Zi = 1 or
control Zi = 0, with about 31% of subjects receiving Zi = 1. The model that was
used both to generate and to analyze the data was logit{Pr(Yit = 1|Xi, qi)} =
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qi + βt(t − 1)/4 + βxXit, where Xit = Zi × (t − 1)/4. Note that (t − 1)/4 ranges
from zero to one. We set βt = βx = log(1.5) and qi = {(i − 1)/199}2 − 1.5,
yielding a marginal Pr(Yit = 1) = 0.30. Drop-out was generated using the model

logit{Pr(Rit =1|Ri,t−1 =1,Yi,t−1,Xi, Zi)}=γ0+γt(t−1)/4+γyYi,t−1+γzZi (15)

for t = 2, . . . , 5, with this probability being one for t = 1 and zero for t = 6.
We set γ = (γ0, γt, γy, γz) = (1.6, 0.1, 0.4, 0.4)T , yielding a drop-out hazard of
16−21% across t = 1, . . . , 4, and 44% of subjects with complete data through
t = 5.

For each replicate, seven estimators were computed. The first was the es-
timator computed using standard CLR applied to the first Ti observed records
for each subject i. The next three estimators were based on the bias-corrected
likelihood Lc

i and score U c
i proposed in Section 2.3. For the second estimator,

we assumed that λi(t;yt−1), and hence πi(t,yt−1), were known. In the third,
we estimated λi(t;yt−1) using (15), performing maximum likelihood estimation
with Lγ

i to obtain γ̂, as described in Section 2.3. We refer to (15) as the ‘min-
imal’ drop-out model. The fourth estimator used a richer drop-out model than
required, adding all two- and three-way interactions between t, Yi,t−1 and Zi

to (15). We call this the ‘rich’ drop-out model. We include it to evaluate po-
tential increases in efficiency due to over-specification of the missingness model.
Finally, three estimators based on Uappr were computed. The first used a ‘min-
imal’ transition model, modeling Yit as a function of Yi,t−1 only. Here, (15)
was used. In the second and third, a ‘full’ transition model was used, model-
ing logit{Pr(Yit = 1|Yi,t−1,Xi, Zi, qi)} = γ0 + αt(t − 1)/4 + αyYi,t−1 + αzZi for
t = 2, . . . , 5. In the third estimator, the ‘rich’ drop-out model was used. For
all estimators, we computed 95% Wald-type confidence intervals based on the
variance estimator (9).

Results based on 1,000 replicates are reported in Table 1. These include
percent bias, mean square error efficiency relative to the bias-corrected estimator
with estimated γ under the ‘minimal’ drop-out model, and confidence interval
coverage probabilities. As can be seen, the standard CLR estimator in this setting
is strongly biased. All of the new estimators correct this bias. When using the
bias-corrected U c, estimation of γ improves efficiency in β̂ relative to the case
where γ is assumed known, and using a richer drop-out model than required
yields an additional 5−10% efficiency improvement. In contrast, the approximate
projection method using Uappr yields a 15−20% efficiency improvement. This
efficiency gain is robust to the transition model chosen for (Yit|Yi,t−1,Xit, Zi),
as the results are the same for the ‘minimal’ and the ‘full’ transition models.
Finally, when using Uappr, richer drop-out models no longer provide efficiency
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improvements, as the projection PU c has effectively already accounted for all
such improvements.

Table 1. Simulation results based on 1,000 replicates. Upper entries are for
βt and lower entries are for βx. True values are βt = βx = 0.405.

Drop-out
Method Model Mean(β̂) % Bias SE(β̂) Rel. Eff. Cov. %

Standard complete – 0.230 -43.2 0.350 74 91.3
case 0.453 11.6 0.570 100 94.7

U c, known λ ‘min’ 0.401 -1.0 0.354 90 95.4
0.405 -0.1 0.574 99 94.9

U c, est. λ ‘min’ 0.401 -1.2 0.336 – 95.1
0.405 -0.1 0.570 – 95.1

U c, est. λ ‘rich’ 0.401 -1.1 0.328 105 95.3
0.407 0.5 0.542 111 95.0

Uappr, ‘min’ Yt model ‘min’ 0.400 -1.3 0.313 115 95.3
0.405 0.0 0.522 119 94.6

Uappr, ‘full’ Yt model ‘min’ 0.400 -1.3 0.313 115 95.6
0.405 -0.1 0.521 120 94.5

Uappr, ‘full’ Yt model ‘rich’ 0.401 -1.1 0.313 115 95.2
0.405 -0.1 0.522 120 94.5

Rel. Eff., mean square error efficiency relative to Uc with estimated ‘minimal’ drop-out model.
Cov. %, coverage percent for 95% Wald-type confidence intervals.

5. Disability–Memory Example

We now revisit the aging research example introduced in Section 1. In that
study, baseline (year 0) data were collected in 1993, and follow up data were
collected two, five and seven years later. Disability here is a assessed via a
binary variable indicating whether the subject reports difficulty with at least one
of the following activities: preparing hot meals, shopping for groceries, making
telephone calls, taking medications and managing money. Memory was assessed
at baseline by the sum of immediate and delayed word recall. A list of ten words
was read aloud and the respondent was asked to repeat as many as possible;
the resulting count of correct words is the immediate word recall. About five
minutes later, after some other questions, the respondent was again asked to
name as many of the words as he or she remembered, providing a measure of
delayed word recall. The average of the two, scaled to have standard deviation
one, is used in this analysis.
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Interest is on the change in disability over time, and how that change is
affected by level of memory at baseline. We adjust our results for age, sex and
education, all measured at baseline. Because we are interested in change, the key
parameters of interest are the interactions between year and each of age, sex, ed-
ucation and memory. We model the main effect of year non-parametrically, with
a dummy variable for each year of follow up (Table 2). This allows for non-linear
effects of time on study which, in fact, we observe in the data. Deviations from
this trend are modelled smoothly, however, through interactions of covariates
with linear year. Our first analysis uses standard conditional logistic regression
on the available data, yielding the estimates of subject-specific log odds ratios in
the first column of Table 2.

Table 2. Fixed effects models for changes in disability as a function of
baseline factors.

Standard Bias-corrected Efficiency-improved
Est. Est. SE Est. SE

I(Year = 2) -0.030 -0.20 (0.07) -0.16 (0.07)
I(Year = 5) 0.92 0.66 (0.11) 0.63 (0.10)
I(Year = 7) 1.44 1.04 (0.14) 0.95 (0.14)
Age × year 0.11 0.095 (0.021) 0.096 (0.020)
Sex × year 0.047 0.058 (0.022) 0.064 (0.022)

Education × year 0.059 0.045 (0.012) 0.045 (0.012)
Memory × year -0.033 -0.028 (0.012) -0.024 (0.012)

Est., β̂ parameter estimates of subject-specific log odds ratios.

SE, robust standard errors correcting for estimation of drop-out model.

Covariates: Baseline year is 0. Age is in 10-year units, centered at 80 years.

Education is in four year units, centered at 12 years. Memory has mean zero,

standard deviation one.

As mentioned earlier, attrition is a major concern in this analysis. We fit-
ted a logistic drop-out model λi(t; ·) at waves t = 2, 3, 4 that contained main
effects of year, age, sex, education, memory and disability at time t − 1, as well
as interactions between year and age, sex, education and disability, and between
education and disability. Other two-way interaction terms contributed very lit-
tle to the fit of the dropout model. We assume here that the drop-out yields
data that are missing at random. We note that it may very well be true that
subject drop-out is associated with disability response Yit for t after drop-out
time Ti. However, the MAR assumption does not require that these processes be
marginally independent; rather, MAR only requires the milder assumption that
they be independent given covariates in the model and all observed disability
outcomes up to drop-out. As drop-out due to death, serious decline in health
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and/or a change in residence is likely to be preceded by an increase in disability
as measured by the ability to due complex tasks such as grocery shopping or
managing money, this assumption does not appear unreasonable.

Using this drop-out model with U c and the method in Section 2.3, bias-
corrected estimates were computed, with standard errors estimated using the
estimator in Theorem 1 (Table 2, columns 2−3). The estimated increase in
disability as a function of year is markedly weaker in this model fit. In addition,
it appears as if the standard method ignoring drop-out over-estimates the effects
of age, education and memory by between 14 and 32%, while the effect of sex
is underestimated by about 20%. The fact that slopes with respect to time
would be over-estimated in a standard analysis makes sense because subjects
experiencing an increase in disability are more likely to drop-out soon thereafter,
so that subsequent declines would not be detected.

Finally, we used a transition model to implement the improved efficiency
estimator Uappr from Section 3.4. The transition model for disabilitiy at time t

included year, age, sex, memory, disability at time t − 1, as well as all two-way
interactions involving year and disability (Table 2, columns 4−5). The estimates
are generally closer to the bias-corrected estimates than to the estimates from
standard CLR, as expected, and the standard errors are slightly smaller. Here,
the efficiency improvements of Uappr over U c are only on the order of 5%. This
could be due to the richness of the drop-out model, which contained several
interaction terms. From our analysis, we conclude that higher memory leads
to slower declines in disability. The effect of age is as expected, while that of
education is in the opposite direction. Additional analyses suggested that the
observed education effect was due to regression to the mean as, cross-sectionally
at baseline, eduction was negatively associated with disability.

6. Discussion

Under MAR, a full integrated likelihood-based estimator assuming a para-
metric random effect distribution is consistent, but the standard conditional
likelihood estimator is biased. It may be puzzlling that a MAR process is not
ignorable here, as ignorability is usually assumed to hold for likelihood-based
estimators under MAR processes. The reason for this has to do with the likeli-
hood used for conditioning, and can be seen as follows. First, suppose that q is
fixed and that the observed dropout time T is t. Then, ignoring dependencies on
(X, Z), the likelihood is

Pr(T = t,Yobs) = Pr(Yt|T = t)Pr(T = t) = Pr(T = t|Yt)Pr(Yt).

In this last form for the likelihood, if q is not to be eliminated from the problem,
then, since neither q nor β appear in Pr(T = t|Yt), this factor can be dropped
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and likelihood Pr(Yt) = Pr(Yobs) can be used for inferences on (β, q). Similarly,
if q is treated as a random variable, then the integrated likelihood is∫

q
Pr(T = t,Yobs) dq = Pr(T = t|Yt)

∫
q
Pr(Yt) dq,

where again Pr(T = t|Yt) does not depend on q. Again, inferences can be
based on

∫
q Pr(Yobs) dq, ignoring the factor Pr(T = t|Yt). However, when q is

to be eliminated from the problem using conditioning, one must do the con-
ditioning on a proper probability mass function. In this paper we work with
Pr(Yobs|T ), for which further conditioning on

∑T
t=1 Yt eliminates q. By contrast,

Pr(Yobs) = Pr(YT ) by itself is not a proper probability mass function because it
does not account for the role of T as either a random variable or a conditioning
statistic. Valid probability functions are Pr(YT |T ), which we use in this paper,
and Pr(YT , T ). Because our starting point is Pr(YT |T ), the drop-out process
plays a role. We do not use the joint distribution Pr(YT , T ) because without
further conditioning on T , it is very difficult to eliminate q from the problem.

We have assumed that the covariate vector Xit for subject i is observable even
for t > Ti. This assumption will hold if Xit is a function of baseline covariates Zi

and time t and/or if Xit is measured through an external process. More generally,
we might consider a model in which Xit is replaced by (Xit,Wit), where Wit is a
vector of covariates that are measured concurrently with Yit and which cannot be
measured for t > Ti. The method developed in Section 2 easily extends to this
setting, as long as λi(t,yt−1) depends only on Wi = (Wi1, . . . ,WiJ)′ through
(Wi1, . . . ,Wi,t−1)′. Then, to extend the projection method in Section 3.3 to
incorporate Wit, we would require that the expected value in V

(t,s)
proj to be taken

over (Yi,Wi,Ri). The transition-model based approximation in Section 3.4
would still apply, providing that (14) were extended to a joint transition model
for (Yit,Wit).
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Appendix A. Sketch proof of Theorem 1

The argument is similar to that of Theorem 1 of Robins, Rotnitzky and Zhao
(1995). Consistency of β̂ follows from standard pseudo-likelihood theory (Gong
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and Samaniego (1981)). The asymptotic normality involves a standard Taylor
series argument, wherein the form of the asymptotic variance V follows from
the facts that both U c and Sγ are likelihood scores, so that minus the expected
value of their derivatives is equal to their variances, and that E (−∂Ua/∂β) =
E (−∂Sγ/∂β) = 0.
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