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Abstract: Proportional hazards regression models assume that the covariates affect

the survival time through a link function and an index which is a linear function

of the covariates. We study the situation when the link is unspecified and some

covariates are time-dependent. Due to the nature of irregular designs, oftentimes

the history of the time-dependent covariates is not observable. We propose a two-

stage approach to account for the missingness. In the first stage, we impute the

missing time-dependent covariates using functional data analysis methods. In the

second stage, we perform a two-step iterative algorithm to estimate the unknown

link function. Asymptotic properties are derived for the non-parametric estimated

link function when time-dependent covariates history is observable. The approach

is illustrated through several simulations and a data set of a prostate cancer clinical

trial.
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1. Introduction

In clinical studies, one is often interested in the relationship between a sur-
vival outcome and some predictive covariates. Proportional hazards regression
models introduced by Cox (1972) have been widely used to examine this rela-
tionship for censored data. Let T be the failure time, C be the censoring time,
X = min(T,C) be the observed event-time and ∆ = I{T ≤ C} be the censor-
ing indicator on the study interval [0, τ ]. Let Z(t) be a q-dimensional covariate
vector measured at time t which may affect the survival distribution. Some co-
variates may be time-dependent, with values that change over time. We assume
that the censoring is noninformative in that the failure time T and the censoring
time C are conditionally independent, given the history of the covariate vector
Z∗(X) = {Z(u) : 0 ≤ u < X}. The data {(Xi, Z

∗
i (Xi),∆i) : i = 1, . . . , n} are

an i.i.d. sample of {(X,Z∗(X),∆)}. Let ti < · · · < tN be the N distinct ordered
failure times, (j) be the label of the item failing at time tj, and Rj = {i : Xi ≥ tj}



886 WEI WANG

be the risk set at time tj. The hazard function for T , is defined as

λ{t | Z∗(t)} = lim
�t↓0

1
�tP{t ≤ T < t+ �t | T ≥ t, Z∗(t)}

(1)
= λ0(t)ψ{βT z(t)},

where z(t) is a realization of Z(t), λ0(t) is an unknown baseline hazard function
corresponding to z(t) = (0, . . . , 0), and ψ(·) is a link function. In this model,
we assume that the hazard depends on the complete covariate history Z∗(t) only
through the current value of Z(t) at t. Here we use the same notation z(t) for
both time-dependent and time-independent covariates. For a time-independent
covariate, z(t) ≡ z. When ψ is specified, the partial likelihood method was
introduced in Cox (1972) and Cox (1975) to estimate the regression parameters
β with censored data.

The Cox model assumes that the covariates affect the risk through a log-
linear link function when ψ{βT z(t)} = exp{βT z(t)} or another known link func-
tion. Such an assumption may not be realistic or, at the least, should be validated
before a specific link function is applied. Several alternative approaches have
been explored to reflect the nature of the covariate effect when the link function
is unspecified with one-dimensional time-independent covariate (Tibshirani and
Hastie (1987) and Fan, Gijbels and King (1997)). Our goal here is to develop
methods to check the link function in (1) with more than one covariate, including
some time-dependent covariates.

When dealing with time-dependent covariates, one has to be very careful
since there are some complications with such data. Kalbfleisch and Prentice
(2002) pointed out that there are two types of time-dependent covariates: exter-
nal covariates and internal covariates. External time-dependent covariates are
those whose values do not depend on the failure process. For example, when
studying how long someone remains employed, the inflation rate is essentially
external to the individual � employment duration. Internal time-dependent
covariates are often the measurements taken on the subjects. Since these time-
dependent measurements can only be taken when the subjects are under observa-
tion, the distribution of these covariates usually carries information on the failure
process. For example, a patient’s daily blood pressure is a time-dependent in-
ternal covariate. The definition of the hazard function and the construction
of the partial likelihood for the proportional hazards regression models apply
to both internal and external time-dependent covariates. But it is not possi-
ble to estimate the conditional survival function when there are internal covari-
ates, because P{T ≥ t | Z∗(t)} = 1 (since if Z∗(t) is known, the subject must
be alive at time t and at risk of failure). Also the baseline survival function
F0(t) = exp{− ∫ t

0 λ0(u)du} has no simple interpretation when internal covariates
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are present. Therefore one needs to pay extra attention when interpreting the
results for data with internal covariates.

Another problem naturally occurs when the whole history of these covari-
ates is not available. For example, in a clinical trial to study the relationship
between PSA levels and time to progression, patients are only scheduled to visit
at certain time points and PSA levels may not be available for all patients at a
particular event time. This may result in incomplete history of the covariates.
This complication exists in both data with external and internal time-dependent
covariates.

Considering the problems in (1) with unknown link function and time-
dependent covariates, we propose some methods to estimate the link and handle
intermittent time-dependent covariates. In Section 2 we present methods for the
proposed model that are applicable to both external and internal time-dependent
covariates when the entire history is available. Asymptotic results for these es-
timators are also presented in Section 2. In Section 3 we discuss the situation
when the full history of the covariates is unobtainable so that covariate values
are only available intermittently on each individual, and introduce some non-
parametric imputation methods to handle this problem. Simulation studies to
examine the finite sample performance are reported in Section 4. The methods
are demonstrated on data from a prostate cancer clinical trial in Section 5.

2. Estimation Procedure

When the entire history of the covariates is available, both ψ(·) and β in (1)
can be estimated simultaneously. To ensure identifiability, we set ψ(0) = 0 and
fix ‖β‖=1 (here ‖ · ‖ represents the Euclidean length) and β1, the first element
of β, is positive.

For a fixed parametric value β, we propose to estimate the link function
ψ(·) by the local likelihood approach as set forth in Fan et al. (1997). More
specifically, for a given point v, assume that the pth order derivative of ψ(·) at
point v exists. Let γ(v) = {ψ′(v), . . . , ψ(p)(v)/p!}T , be the vector associated with
the derivatives of ψ, and βT Z(t) = {βTZ(t) − v, . . . , (βTZ(t) − v)p}T , then, by
Taylor expansion, for βTZ(t) in a neighborhood of v, ψ{Z(t)} can be written as

ψ{Z(t)} ≈ ψ(v) + [βTZ(t)]T γ(v).

Letting Y (t) = I(X ≥ t), we can estimate γ(v) through the local log partial
likelihood defined as

n∑
j=1

[
Kh{βTZ(j)(Xj) − v}

(
[βT Z(j)(Xj)]T γ(v)

− log
{ n∑

i=1

exp{[βT Zi(Xj)]T γ(v)}Kh{βTZi(Xj) − v}Yi(Xj)
})]∆j

, (2)
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where βTZi(t) and βTZ(j)(t) are βT Z(t) with Z(t) replaced by Zi(t) and Z(j)(t),
respectively, and the kernel function is Kh(u) = (1/h)K(u/h), h being the band-
width. It can be shown that the local partial likelihood is strictly concave with
respect to γ(·), so it has a unique maximizer.

Since (2) involves only γ(·) and not ψ(·), ψ(·) can be estimated through
an integration method. For computational simplicity, the trapezoidal rule was
applied in the simulation study of this approach in Section 4, as suggested in
Tibshirani and Hastie (1987), and it appears to be satisfactory.

Once an estimate of ψ(·) is obtained, one can estimate β through the global
partial likelihood with the link being replaced by its estimate, i.e.,

lG(β, ψ̂) =
n∑

j=1

[
ψ̂(Z(j)(Xj)) − log

{ n∑
i=1

exp{ψ̂(Zi(Xj))}Yi(Xj)
}]∆j

. (3)

The following two-step iterative algorithm is used to estimate β and γ(·)
simultaneously.
Step 0. Assign an initial value β̂;
Step 1. Plug β̂ into (2), then for a given v, maximize (2) w.r.t γ(v) to get the
estimate γ̂(v). Obtain the values of γ̂(v), for v = β̂TZi(t), i = 1, . . . , n; t =
X1, . . . ,Xn. Apply the trapezoidal rule to get {ψ̂(β̂TZi(t)) : i = 1, . . . , n, t =
X1, . . . ,Xn}.
Step 2. Plug ψ̂(·) into (3) and maximize it w.r.t β to update the estimate β̂.

Repeat these Steps 1 and 2, until some convergence criterion is met.
The initial value of β can be set in different ways. One method is to fit the

Cox model and use the β estimate in the first step. For details of this estimation
procedure, see Wang, Wang and Wang (2001) and Wang (2001).

Data with time-dependent covariates whose entire history is observable are
not uncommon in socioeconomic studies. Usually, the history of external time-
dependent covariates is more easily observed since it is independent of the study
subject. An example of such data is given in Maples, Murphy and Axinn (2002)
where distance, from each neighborhood a study subject lived at different time
periods to the nearest school, was considered as an exogenous time-dependent
covariate to link dynamic changes in socioeconomic context to individual-level
life histories. There are also data whose internal time-dependent covariates are
attainable throughout the study. Chiou, Mueller and Wang (2003) studied the
relationship between reproductive behaviors and longevity of a cohort of medflies
(Ceratitis capitata). The number of eggs laid daily by a medfly was treated as a
time-dependent covariate.

2.1. Large-sample properties

Let f be the probability density of βTZ(t) and, for a given v, let P (t | v) =
P (X ≥ t | βTZ(t) = v), H = diag{h, . . . , hp}T and u = {u, . . . , up}.
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Now we develop the large-sample properties of the link ψ(·) estimator under
the following regularity conditions.

(C1) K ≥ 0 is a bounded density with compact support, and it has bounded
first and second derivatives.

(C2) ψ(·) has a continuous (p+ 1)th derivative around v.
(C3) The density f(·) of βTZ(t) is continuous at point v and infv f(v) > 0.
(C4) The conditional probability P (t|·) is equicontinuous at v.
(C5)

∫ τ
0 λ0(u)du <∞.

We follow the proofs in Wang (2001) with Z replaced by Z(t). For any√
n consistent estimator β̂ of the true parameter β0, let γ̂{β̂T z(t)} be the cor-

responding estimator for the derivative vector γ0{β0
T z(t)} of the true link ψ

and ψ̂(v) =
∫ v
0 ψ̂

′(x)dx, where ψ̂′(·) is the first component of γ̂(·). If n → ∞,
h→ 0, nh→ ∞, nh2p+3 is bounded, and nh4 → ∞ then sup|z(t)|≤B |ψ̂{β̂T z(t)}−
ψ{β0

T z(t)}| →p 0, and

√
nh

{
H(γ̂{β̂T z(t)} − γ0{β0

T z(t)}) − ψ(p+1){β0
T z(t)}

(p+ 1)!
A−1bhp+1

}

→D N

{
0,
σ2{β0

T z(t)}
f{β0

T z(t)} A
−1DA−1

}
,

where ν1 =
∫

uK(u)du, b =
∫
up+1(u − ν1)K(u)du, A =

∫
uuTK(u)du − ν1ν

T
1 ,

D =
∫
K2(u)(u − ν1)⊗2du and σ2{β0

T z(t)} = E{δ|Z(t) = β0
T z(t)}−1.

Although we can get an estimate for β from the proposed procedure, the
main purpose is not to estimate β under the nonparametric link, but rather
to use the two-step iterative procedure as a tool to check the proper form of
the link function. A suitable parametric form of the link function to estimate
the covariate effects can be chosen based on the point estimate and the interval
estimate of the nonparametric link function.

3. Intermittent Time-dependent Covariates

The previous section considered an ideal situation in which the entire history
of Z(t) from the origin to the observed event time X is known for each individual.
The reason that the covariate history needs to be known before one can either
use a parametric link or estimate the link nonparametrically can be shown from
the partial likelihood for the Cox model with time-dependent covariates.

Examine the partial likelihood

L(β) =
n∏

j=1

[ exp{βTZ(j)(Xj)}∑n
i=1 exp{βTZi(Xj)}Yi(Xj)

]∆j

, (4)
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to see that, for each failure timeXj , the covariate value Zi(Xj) for each individual
i at risk at time Xj needs to be present. But sometimes it is not practical to
observe the entire history of a time-dependent covariate. For example in a clinical
trial, patients are usually scheduled at preset time points and it is very common
that some patients’ covariates are not measured at other patients’ event time.
That is, even though one patient can make all of his visits, there could still be
missingness in the sense that we may need to know his covariate value at an
event time which does not fall on his scheduled visiting time points. This results
in missing values for time-dependent covariates in (4). Here we assume that the
“real missingness” that dictates the intermittent times at which we have covariate
values is completely at random. In the rest of the paper we will use the word
“missing” interchangeably with “intermittent”.

They are some ways to handle this situation. If one is willing to make the
assumption that the time-dependent covariates follow linear mixed effects models
with or without measurement errors, common strategies can be adopted includ-
ing regression calibration methods (Pawitan and Self (1993), Tsiatis, Degruttola
and Wulfsohn (1995) and Dafni and Tsiatis (1998)), joint likelihood methods
(Degruttola and Tu (1994), Faucett and Thomas (1996), Wulfsohn and Tsiatis
(1997) and Henderson, Diggle and Dobson (2000)), and conditional score meth-
ods (Tsiatis and Dividian (2001)). But there are no existing methods which can
be directly applied to estimate the unknown link function.

Alternatively, one can model the time-dependent covariates in a nonpara-
metric way. An ad hoc approach commonly adopted in practice and in SAS and
Splus, referred as the last value carried forward (LVCF) method, is to impute the
missing covariates with the nearest observation from the same individual before
the time at which the covariates were missing. This is equivalent to adopting a
nearest 1-neighbor estimate for the missing data, or conceptually assuming that
the covariates have not changed since the most recent measurement. Obviously,
different smoothing methods based on each individual’s observations can be used
to estimate the unobserved part of the data. For example, one can apply kernel
smoothing methods to the observed part of Zi(t) for individual i to get an esti-
mated curve {Ẑi(t) : t1 ≤ t ≤ Xi}, then replace the missing Zi(tj) with Ẑi(tj) for
t1 ≤ tj ≤ Xi. However, when the data are sparse, none of these methods works
well as they only utilize information from the individual history. A more appeal-
ing approach for imputing missing covariates for a particular individual may be
to utilize relevant information from other individuals. This is often referred to as
“borrowing strength”. When the time-dependent covariates are all external and
are missing completely at random, “borrowing strength” methods will work well
since one can utilize the time-dependent data beyond the failure time. But for
internal time-dependent covariates, there is a major complication caused by the
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fact that the longitudinal trajectories are truncated by death, which may induce
informative censoring, as discussed by Wu and Carroll (1988) and many other
authors. Failure to take into account this problem can lead to biased estimates
of interest.

Here we first outline a general nonparametric method based on functional
principal components analysis (FPCA) to impute time-dependent covariates by
“borrowing strength” that does not take the informative censoring into account,
then we modify the procedure by adopting an idea similar to one of Tsiatis et al.
(1995) when there is informative censoring.

Although for each study only discrete data points are observed, one can
assume that these data are realizations of a smooth L2 stochastic process. Thus
the data are regarded as sample curves of functions, and termed “curve” or
“functional” data. The observed covariate process for an individual is often
referred as a sample “curve”, Z(t), with t being the index of the function. In
practice, t often represents observation time in a longitudinal study.

Assume {Z(t) : 0 ≤ t < τ} is an L2-process with mean µ(t). Let Σ(s, t) be the
covariance function of Z(t) at time (s, t), and {(ωj , φj(t)), j = 1, 2, . . . , 0 ≤ t < τ}
be the corresponding eigenvalues and eigenfunctions.

By the Karhunen-Loève Theorem (Ash and Gardner (1975)), we can write

Z(t) = µ(t) +
∞∑

j=1

Ajφj(t), 0 ≤ t < τ,

where Aj =
∫ τ
0 φj(t)Z(t)dt ≡ 〈φj , Z〉, j = 1, 2, . . ., are called functional principal

components (see details in the book by Ramsay and Silverman (1997)). It is
easy to show that Aj ’s, are uncorrelated random variables with E(Aj) = 0 and
E(|Aj |2) = ωj. The series µ(t)+

∑r
j=1Ajφj(t) converges in L2 to Z(t) as r → ∞,

uniformly in t.
If we calculate the sample covariance function of {Zi(t) : i = 1, . . . , n; 0 ≤

t < τ} and perform a FPCA to estimate the eigenvalues and eigenfunctions,
{ω̂j, φ̂j(t) : j = 1, 2, . . . ; 0 ≤ t < τ}, we can approximate Zi(t) with

Ẑi(t) = µ̂(t) +
r∑

j=1

Âij φ̂j(t), (5)

where Âij =
∫ τ
0 φ̂j(t)Zi(t)dt.

A nice and simple example of FPCA is given by Rice and Silverman (1991).
In most cases, the curve data are sampled at irregular time points, and some
smoothing of the covariance function is required before we employ the function
principal component analysis. Suppose we have data {Zi(tij) : i = 1, . . . , n; j =
1, . . . , ni}, the measurements for subject i observed at the time points tij. Note
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that for each subject i, the observed time interval can be different. Let {S1, . . .,
SL} be the distinct ordered time points of {tij : i = 1, . . . , n, j = 1, . . . , ni}
observed from all individuals. Denote the sample mean function by Z̄(t) =
(1/nt)

∑nt
i=1 Zi(t) and the sample covariance function between the time points

s and t by Σ̄(s, t) = (1/nst)
∑nst

i=1(Zi(s) − Z̄(s))(Zi(t) − Z̄(t)), where nt is the
number of individuals without missing values at the time point t and nst is the
total number of available pairs at the time pair (s, t).

If there is sufficiently large number of observations nt and nst available at
time points s and t, then we can use Z̄(t) and Σ̄(s, t) as the estimates for µ(t)
and Σ(s, t). Generally, we may need to apply smoothing techniques to Z̄(t)
and Σ̄(s, t) to obtain µ̂(t) and Σ̂(s, t) when individual’s observed time points are
different.

Smoothing procedures for the mean function and the covariance function
can be found in Rice and Silverman (1991), Staniswalis and Lee (1998) and
Diggle and Verbyla (1998). The details of how to smooth Z̄(t) and Σ̄(s, t) are
as follows. Note that the choices of smoothers are subjective, here the local
polynomial smoother is chosen.

First, one needs to estimate the mean function µ(t) and this can be achieved
through a scatter-plot smoothing. Let K1 be a kernel function satisfying

∫
K1(u)

du = 1,
∫
uK1(u)du = 0. Define K1,h(u) = (1/h)K1(1/h), where h is a band-

width. Suppose the p1th derivative of µ(t) exists at point t, and let the design
matrix be

D1 =




1 1 · · · 1
S1 − t S2 − t · · · SL − t

· · · · · · · · · · · ·
(S1 − t)p1 (S2 − t)p1 · · · (SL − t)p1




T

,

W1 = diag{K1,h(S1 − t),K1,h(S2 − t), . . . ,K1,h(SL − t)} and Z̄ = {Z̄(S1), . . .,
Z̄(SL)}.

The estimator of the rth derivative of µ(t) is then given as r!1T
r (DT

1 W1D1)−1

D1W1Z̄, where 1r is the (p1 + 1) × 1 vector having the value 1 in the rth entry
and 0 elsewhere. The local linear (p1 = 1) estimator of µ(t) can be written as
(1, 0)(DT

1 W1D1)−1D1W1Z̄.
Similarly, a local linear smoothing can be applied to the covariance function

of e(t) = Z(t)− µ̂(t). Let u∗ = (u1, u2) and K2 be a bivariate nonnegative kernel
function satisfying

∫
K2(u∗)du∗ = 1,

∫
u∗K2(u∗)du∗ = 0 and

∫
uiujK2(u∗)du∗ =

δijµ2(K2) with µ2(K2) ≥ 0, where i, j = 1, 2 and δij = 1 if i = j, 0 otherwise.
Define K2,H∗(u∗) = (1/|H∗|)K2([H∗]−1u∗), where H∗ is a nonsingular 2 × 2
matrix.
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For a given time pair (s, t), let the design matrix be

D2 =


 1 · · · 1 1 · · · 1 · · · 1 1
S1−s · · · S1−s S2−s · · · S2−s · · · SL−1−s SL−s
S1−t · · · SL−t S2−t · · · SL−t · · · SL−t SL−t




T

,

which is a (L(L+ 1)/2) × 3 matrix.
Let Σ∗(s, t) = (1/nst)

∑nst
i=1(ei(s) − ē(s))(ei(t) − ē(t)) for s ≤ t with ē(t) be-

ing defined similarly to Z̄(t). Let W2 = diag{K2,H∗(S1 − s, S1 − t),K2,H∗(S1 −
s, S2−t), . . . ,K2,H∗(S1−s, SL−t), . . . ,K2,H∗(SL−1−s, SL−t),K2,H∗(SL−s, SL−
t)}, which is a (L(L+ 1)/2) × 3 matrix, and V = {Σ∗(S1, S1),Σ∗(S1, S2), . . .,
Σ∗(S1, SL), . . . ,Σ∗(SL−1, SL),Σ∗(SL, SL)}, a (L(L+ 1)/2) vector of distinct ele-
ment of the covariance matrix of e(t).

The estimator Σ̂(s, t) of Σ(s, t) is given by Σ̂(s, t) = (1, 0, 0)(DT
2 W2D2)−1

DT
2 W2V. For simplicity, one can choose the product kernel, so that the smoothed

covariance function at time (s, t) borrows the information from the neighbor

rectangle. The bandwidth matrix H∗ is now of the form

(
h1 0
0 h2

)
. This may

be further simplified by choosing h1 = h2, as we are dealing with a covariance
function.

Note that the aforementioned procedure can be easily modified to account
for data with measurement errors. For data with measurement errors, suppose
we observe Zε(t) = Z(t) + ε(t), 0 ≤ t ≤ X, where ε(t) are the uncorrelated
measurement errors with mean zero and variance σ2, independent of the event
time X, the measurement time points and the true covariate history Z∗(X). We
assume that one is interested in estimating the relationship between the survival
and the true covariate history Z∗(X) rather than the observed covariate history
that are contaminated with errors, that is, we consider the same model (1), i.e.,
λ{t | Z∗(t)} = λ0(t)ψ{βT z(t)}.

To adjust for measurement errors, one may apply smoothing procedures for
the variance part and the covariance part separately. Consider

Cov (Zε(t), Zε(s)) = Cov (Z(t), Z(s)) + σ2δ(s, t), (6)

where δ(s, t) = 1 if s = t and 0 otherwise. So the {Σ∗(s, t) : s = t} part of the
raw covariance of Z(t) (or e(t)) should be taken out of the vector V along with
the corresponding parts of matrix D2 and W2 in the procedure for smoothing
the covariance matrix. Local linear and local quadratic forms are chosen to
smooth the covariance matrix along the direction of diagonal and perpendicular
to diagonal, respectively, due to the fact that the variance of Zε(t) is maximized
along the diagonal. Estimate of the variance function of Zε(t) can be obtained
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by any smoother using the data {Σ∗(s, t) : s = t}. Then the variance term of the
measurement errors can be written as

σ̂2 =
1
τ

∫ τ

0
( ˆvar(Zε(t)) − Σ̂(t, t))dt. (7)

More details of smoothing variance/covariance matrix for data with measure-
ment errors can be found in Staniswalis and Lee (1998) and Yao et al. (2003).

By applying functional principal components analysis in the setting of sur-
vival data with longitudinally measured time-dependent covariates, one is able
to handle missing time-dependent covariates by following the steps below.
Step A. Calculate the sample mean function Z̄(t), 0 ≤ t ≤ SL, and the sample
covariance function Σ̄(s, t), S1 ≤ s, t,≤ SL for Z(t). Apply certain smooth-
ing techniques to get a smoothed mean function µ̂(t) and covariance function
Σ̂(s, t), S1 ≤ s, t,≤ SL.
Step B. Apply functional principal components analysis to Σ̂(s, t) and get the
estimates Ẑi(t), t1 ≤ t ≤ tN , as defined in (5) for each i = 1, . . . , n.
Step C. Run the two-step iterative algorithm in Section 2 with Zi(t) replaced by
Ẑi(t).

In practice, the number of functional principal components, r, can be selected
so that 90% of variation can be explained by the first r functional principal
components.

For data with internal time-dependent covariates, one can modify this FPCA
method to reduce the bias caused by informative censoring. Instead of using all
data from all individuals during the smoothing, one can perform smoothing at
each failure time point t using only the data up to that time t from those individ-
uals at risk at time t, as done in the parametric context by Tsiatis et al. (1995).
This approach is referred as the functional principal components analysis within
risk set (FPCARS). Simulation studies in Section 4 indicate that this modified
method leads to much smaller bias. One drawback of the FPCARS method is
the computational complexity caused by applying smoothing procedures at each
event time.

The estimation procedure of the FPCARS approach is essentially the same as
the FPCA method except for some definition changes. Suppose at a failure time
tj, {S∗

1 , . . . , S
∗
m} is the distinct ordered time points of {tik : i ∈ Rj, k = 1, . . . , ni}

observed from the individuals in the risk set Rj. Denote the sample mean func-
tion by Z̄RS(t) = (1/nm)

∑nm
k=1 Zk(t) and the sample covariance function between

time s and t by Σ̄RS(s, t) = (1/nm1)
∑nm1

k=1(Zk(s) − Z̄RS(s))(Zk(t) − Z̄RS(t)),
where nm is the number of individuals in the risk set Rj without missing values
at the time point t, and nm1 is the total number of available pairs at the time
or before pair (s, t) from the risk set. DRS

1 ,DRS
2 ,WRS

1 ,, WRS
2 , Z̄RS and V RS can

be defined accordingly.
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The local linear (p1 = 1) estimator of µ(t) can be written as (1, 0)[(DRS
1 )T

WRS
1 DRS

1 ]−1DRS
1 WRS

1 Z̄RS , and the estimator Σ̂RS(s, t) of ΣRS(s, t) is

Σ̂RS(s, t) = (1, 0, 0)[(DRS
2 )TWRS

2 DRS
2 ]−1(DRS

2 )TWRS
2 V RS .

Then (5) is used to obtain the estimate of {Zi(tj) : i ∈ Rj}. Repeat this process
at each event time to get the estimated covariate history for each individual at
risk at that time.

Note that there are limitations to this approach at both very early and very
late failures. For very early failures, there may be lots of individuals in the risk
set, but very few observed covariate values over time from each individual in the
risk set. Similarly, for very late failures, there will be very few individuals in the
risk set even though each of these individuals may provide lots of observations
over time. Smoothing may not perform well in these cases.

Another drawback of this approach is that one needs to run the entire pro-
cess N times, where N is the total number of failures. When there are lots of
failures, it will be computationally expensive. One shortcut is to run the entire
process only at a few selected failure times, and then use some kind of imputa-
tion or interpolation method to get the estimates at all failure times. A similar
shortcut was mentioned in Tsiatis and Dividian (2001). In the simulation studies
in Section 4, we selected the 25th, 50th, 75th and 100th percentiles of the ordered
failure times, and then applied interpolation methods to get the estimates at all
failure times. The results seem to be satisfactory.

4. Simulation Studies

Several simulations were carried out to examine the finite sample perfor-
mance of the procedures discussed in the previous sections. A sample size of 100
was selected for all studies.

Simulation 1: To check the performance of the semiparametric procedures
described in Section 2 when the time-dependent covariates are available through-
out the study interval, we did two simulations. First, a linear link function
ψ(t) = Z1(t)+Z2(t) was examined on the fixed interval [0, 300] with Z1(t) ≡ Z1,
a time-independent covariate sampled from N(0, 1), and Z2(t) = θ1 +θ2t, a time-
dependent process where θ1 ∼ N(−100, 10) and θ2 ∼ N(0.5, 0.1). We set up
the simulation so that subjects were only censored at the end of the study. The
censoring rate was about 10%. Figure 1 shows the mean curve based on 100
simulated datasets and a few randomly selected samples of the estimated link
functions. It is clear that the mean curve is almost a straight line. The perfor-
mance of the estimate of β was also explored though it was not the main target
of the new procedure. Due to the identifiability conditions discussed in Section
2, we can only estimate β subject to ||β|| = 1. To see the difference between
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the Cox estimate, which assumes the true link function, and the semiparametric
estimate, we then fix the first component of both estimates of β to be the true
value 1, and compare the second component only. The two methods yielded sim-
ilar results − the mean difference between the proposed estimate and the true
parameter was 0.052 with a standard deviation of 0.173 when the bandwidth was
set to be half of the covariate range, and the mean difference between the Cox
estimate and the true parameter was 0.039 with a standard deviation of 0.170.
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Figure 1. The estimated link function. The solid line is the true link func-
tion, the dashed line is the mean curve of the estimated link functions, and
the dotted lines are some randomly selected samples of the estimated link
functions.

Simulation 2: A quadratic link ψ(t) = [Z(t)]2 was selected with Z(t) sampled
from Z(t) = θ1 + θ2t, where θ1 ∼ U(0, 0.02) and θ2 ∼ N(−0.5, 1) on the interval
[0,150]. Here we assume that we can observe the complete history of this time-
dependent covariate. Censoring variables were generated independently from
exponential distributions to ensure that the censoring rate is around 25%. Figure
2 shows the mean curve based on 100 simulated datasets and a few randomly
selected samples of the estimated link functions. The difference between the
adjusted second component of β̂ and the true β is 0.008 with a standard deviation
of 0.156.
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Figure 2. The estimated link functions. The solid curve is the true link
function, the dashed curve is the mean function and the dotted curves are
some randomly selected samples of the estimated link functions.
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Simulation 3: The functional principal components analysis approach was
applied in the longitudinal data setting to understand the imputation only, with-
out the complication of considering the survival outcome.

A fixed time interval from 0 to 300 days with increment of 10 days was
adopted as the scheduled visiting time points. Each subject followed one of
the three schedules: {10, 40, 70, . . . , 280}, {20, 50, 80, . . . , 290} or {30, 60, 90, . . .,
300}. The process Zi(t) is sampled from Zi(t) = µ(t) + ηi(t), where µ(t) =
0.01t + sin(πt/150), ηi(t) = −√1/150 cos(πt/300)ai +

√
1/150 sin(πt/300)bi, ai

and bi are independent N(0, 4). A leave-one-curve-out cross-validation method
was used to select the optimal bandwidths for smoothing the mean function
and the covariance function. Random errors from distribution N(0, 0.09) were
then added to each of the individual process after the initial fitting. The “BIC”
criterion was used to select the optimal bandwidths. Estimated curves from ten
subjects, with or without random error terms, are shown in Figure 3. The two
sets of estimated curves are very close to the true links, suggesting that the FPCA
procedures worked well under this setting.
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Figure 3. Top part: Estimated curves from five randomly selected datasets
simulated from the model without random errors. Bottom part: Estimated
curves from five randomly selected datasets simulated from the model with
random errors.

Simulation 4: A nonparametric imputation method was applied to data
with survival outcome and possibly missing time-dependent covariates. Z(t)
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was sampled from Z(t) = θ1 + θ2t + ε(t), where θ1 ∼ U(0, 2), θ2 ∼ U(0, 0.3)
and ε(t) ∼ N(0, 0.1). Each individual was randomly assigned to one of the three
visit schedules: day {5, 20, . . . , 140}, {10, 25, . . . , 145} or {15, 30, . . . , 150}. Vari-
ous bandwidths 25, 30, 45, 60, 75, 90 were tried in covariance function smoothing.
Considering the fact that the proposed method is in the framework of two-stage
approaches which might introduce bias in the estimation of β, we first focused
on the impact of the nonparametric imputation methods without estimating the
link function. For computational simplicity, the identity link, i.e., the Cox model,
was employed. A constant baseline hazard of 0.0005 was used in the simulation
at all censoring rates. Censoring variables were generated independently from
the exponential distributions. All these parameters were chosen to ensure that
there are not too many very early deaths. Figure 4 shows the distribution of the
event time and the trajectory of the time-dependent covariate from a random
simulated dataset under each censoring rate.
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Figure 4. The histograms of the event time and the trajectories of the time-
dependent covariate from a randomly simulated dataset under each censoring
rate.

Four estimates of β were obtained by using the full data assuming no miss-
ing time-dependent covariates, and by replacing the missing covariates with the
LVCF estimates, the linear mixed-effects estimates, and the FPCARS estimates.
Here, since these time-dependent covariates are internal, the FPCA method will
not provide good estimates.
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Several bandwidths were applied, and the results of the best procedures in
terms of the smallest MSE of the differences between estimated β and true β
are listed in Table 1 based on 100 runs. The corresponding bandwidths for
the FPCARS methods were 25, 60 and 50. Both the LME estimates and the
FPCARS estimates performed better than the LVCF estimates. Since the true
model is a linear mixed-effects model, it is not surprising that the LME estimators
did the best. The FPCARS estimators were also very close to the complete
estimators, suggesting that the bias can indeed be very small. This was quite
remarkable since, even though we had around ten planned visits (i.e., the time-
dependent covariates should be longitudinally measured ten times), the actual
number of measurements for the time-dependent covariates per subject was much
less due to the occurrence of event or censoring. The large variation might be
reduced with larger samples.

Table 1. The differences between the true β and estimated β based on the
best procedure with time-dependent covariates under the model: ψ[Z(t)] =
Z(t) where Z(t) = θ1 + θ2t + ε(t), θ1 ∼ U(0, 2), θ2 ∼ U(0, 0.3), ε(t) ∼
N(0, 0.1) and t = 5, 10, . . . , 150.

Complete LVCF Parametric FPCARS
censoring rate

estimate estimate estimate estimate
0 Bias -0.001 -0.128 -0.004 -0.008

Std 0.107 0.094 0.110 0.118
MSE 0.011 0.025 0.012 0.014

25% Bias 0.006 -0.165 0.011 -0.016
Std 0.146 0.118 0.150 0.155
MSE 0.021 0.041 0.023 0.024

50% Bias 0.030 -0.156 0.065 0.081
Std 0.134 0.110 0.151 0.169
MSE 0.019 0.041 0.027 0.035

Simulation 5: A similar setup to the previous one was chosen with a different
covariate pattern Z(t) = θ1

√
t + θ2 sin(

√
πt/75) + ε(t), θ1 ∼ U(0, 0.2), θ2 ∼

N(−4, 1) and ε(t) ∼ N(0, 0.1). Figure 5 shows the distribution of the event time
and the trajectory of the time-dependent covariate from a random simulated
dataset under each censoring rate. A cubic polynomial term was used in the
parametric mixed-effects model. The results shown in Table 2 indicate that both
the parametric method and the FPCARS method performed much better than
the LVCF method. The FPCARS method performed a little bit better than the
parametric model, suggesting that the FPCARS method is more data adaptive.
The bandwidths for the FPCARS methods were 75, 75 and 90, respectively,
under three censoring rates.
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Figure 5. The histograms of the event time and the trajectories of the time-
dependent covariate from a randomly simulated dataset under each censoring
rate.

Table 2. The differences between the true β and estimated β based on the
best procedure with time-dependent covariates under the model: ψ[Z(t)] =
Z(t) where Z(t) = θ1

√
t + θ2 sin(

√
πt/75), θ1 ∼ U(0, 0.2), θ2 ∼ N(−4, 1)

and t = 5, 10, . . . , 150.

Complete LVCF Parametric FPCARS
censoring rate

estimate estimate estimate estimate
0 Bias -0.071 -0.496 -0.160 -0.094

Std 0.133 0.093 0.140 0.151
MSE 0.023 0.255 0.045 0.032

28% Bias 0.068 -0.492 0.182 -0.021
Std 0.143 0.117 0.195 0.239
MSE 0.025 0.256 0.071 0.058

50% Bias 0.046 -0.493 0.180 0.034
Std 0.210 0.147 0.235 0.262
MSE 0.047 0.265 0.088 0.069

Simulation 6: We did a full simulation combining the imputation procedure
and the nonparametric link estimation procedure. We substituted the FPCARS
estimates and estimated the link function under the same setting as in Simulation
4, i.e., the true link function is a linear function. The mean curve of the estimated
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link functions is shown in Figure 6. Again it seems to be a straight line.
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Figure 6. The estimated link functions. The solid curve is the true link
function, the dashed curve is the mean function and the dotted curves are
some randomly selected samples of the estimated link functions.

5. Data Analysis

Prostate cancer is the most common cancer among men in the United States
behind skin cancer, and is second only to lung cancer as a cause of cancer-related
death among men. The American Cancer Society estimated that 220,900 new
cases of prostate cancer would be diagnosed and that approximately 28,900 men
would die of the disease in 2003 in the United States. Approximately half of
the estimated cases of prostate cancer are not curable by surgery or radiation.
The majority of these men eventually develop clinical manifestations of distant
metastases, and most will succumb within three years of the appearance of bone
metastases. Although androgen deprivation therapies provide temporary con-
trol, metastatic disease usually progresses within 12−18 months. The failure
of hormonal therapies is a consequence of the selective growth and dominance
of androgen-independent cells. Progress in the systemic treatment of prostate
cancer will depend on the ability to eradicate or restrain the growth of androgen-
independent tumor cells.

The study was designed to examine the effect of weekly paclitaxel plus estra-
mustine in patients with hormone-refractory prostate carcinoma. Seventy-eight
patients were enrolled in the study from February 1999 to November 2000. The
serum prostate specific antigen (PSA) levels were measured at the time of entry,
weeks 3 and 6 of each 8-week course of treatment, and every 4 weeks after treat-
ment until progression. The number of measurements ranges from 3 to 11 with
a median of 8. There were 56 progressions among these patients. Literature has
shown that PSA plays a very important role in the diagnosis and treatment of
prostate cancer. We are interested in the relationship between PSA velocity or
PSA history and time to progression. The profile of the PSA levels is shown in
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Figure 7. It seems that linear mixed models may not be adequate to fit the PSA
trajectories.
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Figure 7. The PSA profile.

First a Cox model was fitted to study the impact of the baseline PSA levels
(after log transformation) on the time to progression. The result suggested that
the effect was not significant (p=0.92). Then a linear mixed effects model was
attempted to find the patterns of these PSA levels measured over time. Quadratic
term, cubic term and higher-order polynomials of the time since registration were
also added to the model as random effects. To see whether these polynomial
terms were needed in the final model, we used the parametric bootstrap approach
described in Tsiatis et al. (1995) to derive the distribution of the likelihood ratio
test since the null models occurred on the boundary of the covariance parameter
space and the asymptotic distribution of the likelihood test statistic became a
mixture of χ2 distributions (Self and Liang (1987)). We randomly generated
data from distributions corresponding to the model with only linear term of
time and computed the maximized likelihood from fitting the model with only
a linear time term and from the model with an added quadratic time term for
each simulated dataset. In this way we obtained an empirical distribution of
the likelihood ratio test. The likelihood ratio test for the actual dataset was
compared to the empirical distribution of the likelihood ratio test to determine
whether the quadratic time term was necessary. A significant increase in the
maximized log-likelihood was found in the model with the quadratic term. This
resampling procedure was repeated to test for higher-order terms and it turned
out that the third, fourth and fifth order terms were all significant (we stopped
the procedure after testing for the fifth order term). We felt it would be better
to use a nonparametric form of the time variable in the proportional hazards
regression model to describe the stochastic process of the PSA levels.

Since the PSA levels are internal covariates with measurement errors, the
proposed FPCARS method for data with measurement errors was applied to es-
timate the PSA levels at each event time. We then fitted the Cox model again
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with these estimated time-varying PSA levels, and the result suggested that,
while the baseline PSA was of little prognostic value, the process of PSA was
a significant predictor of time-to-progression (p<0.01) with a higher PSA level
corresponding to a larger hazard rate. Finally, the nonparametric estimating
procedures were used to check the link function. Figure 8 shows some departure
from the identity link. Though it is not our intention to promote the nonpara-
metric model, bootstrapping methods may be used to make inference on the β
estimate with the estimated link function and the imputed time-dependent co-
variates. Since there are only 78 patients in the trial, further investigation with
more data is needed for inference.
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Figure 8. The estimated link functions of the prostate cancer clinical trial.

6. Discussion

A lot of studies have been done on checking the individual forms of co-
variates in the proportional hazards regression model with a pre-specified link
function, but very little has been explored to check the parametric form of the
link function. The proposed nonparametric method for data with multivariate
covariates provides a graphic tool to suggest or examine a parametric form of
the link function. The estimating procedures are easy to use and are distribution
free. Simulation results and the asymptotic distribution for the non-parametric
link have supported the approach when there are no missing time-dependent
covariates.

Even though the proposed FPCARS method for handing intermittent
time- dependent covariates are in the framework of the two-stage approach which
usually induces bias, the simulation results suggest that the bias is relatively
small.

The asymptotic property of the estimated link function with estimated
time-dependent covariates is highly technical and an open problem.
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