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Abstract: The perspectives and methods of functional data analysis and longitu-
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1. Introduction

Until recently, functional data analysis (FDA) and longitudinal data anal-
ysis (LDA) have been rather disjoint enterprises. Both are concerned with the
analysis of data consisting of repeated measurements of objects over time. Mea-
surements treated in the FDA literature typically are recorded by high frequency
automatic sensing equipment, whereas those treated in the LDA literature are
more typically sparsely, and often irregularly, spaced measurements on human or
other biological subjects. The aims of the analysis are often somewhat different,
partly because of different scientific subject matter (it is interesting to read and
compare the introductions of the two classic texts of Diggle, Liang, and Zeger
(1994) and Ramsay and Silverman (1997)). Those of FDA tend to be exploratory
− to represent and display data in order to highlight interesting characteristics,
perhaps as input for further analysis − whereas those of LDA have a stronger
inferential component. This contrast can be seen in the use of estimated time-
correlation functions in the two areas; correlation functions are used in the FDA
literature in a descriptive manner to characterize time dependencies in the curves,
whereas an important aim in the LDA literature of estimating these correlation
functions is to draw valid inferences. Another important difference is that the
LDA literature has had to pay much more attention to data that are missing
because of a variety of mechanisms.

Despite these differences in focus, there are many common aims, among them
are the following:
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1. Characterization of average or “typical” time course.
2. Estimation of individual curves from noisy and, often in LDA studies, sparse

data. Functionals of these curves, such as derivatives and locations and values
of extrema, are sometimes also of interest.

3. Characterizing homogeneity and patterns of variability among curves, and
identifying unusual ones.

4. Assessing the relationships of shapes of curves to covariates.

Many of these objectives entail smoothing individual curves, either explicitly or
implicitly. That is the primary focus of this paper.

I will attempt to compare and contrast LDA and FDA perspectives and
methods of smoothing for this volume of Statistica Sinica, based on the stimulat-
ing conference, Emerging Issues in Longitudinal Data Analysis, which brought
the two communities together. Themes I pursue include considering how strength
is borrowed in FDA and LDA, how they can borrow strength from each other,
the relationships between stochastic models and smoothing algorithms, and direc-
tions in which current methodology might advance. This paper thus constitutes
a selective comparison and a view toward future directions, from my personal
perspective, and is not intended to be a complete, all-encompassing review.

The remainder of the paper is organized as follows. In Section 2, kernel
methods and their relation to random effects models are considered from both
the FDA and LDA perspectives. Basis function methods are considered in Section
3. Linear and non-linear methods of interpolation and extrapolation are treated
in Section 4, where I try to make the case for going beyond linear Gaussian
models. Section 5 is concerned with assessing the relationships of correlates to
curve shapes, touching briefly on joint modeling. Some final remarks are made
in Section 6.

2. Local Kernel Smoothing and Random Effects Models

I first compare kernels that are typically used in FDA and those arising from
an LDA perspective. I then discuss smoothing of multiple curves and illustrate
how FDA can benefit from LDA practices.

2.1. Comparison of kernels

Kernel smoothing (linear averaging with smooth weights) can arise from
different perspectives. As a simple example, consider the Nadaraya-Watson esti-
mate

f̂(t) =
∑n

i=1 Yiw(t− ti)∑n
i=1 w(t− ti)

. (1)

From the FDA or non-parametric function estimation perspective, this estimate
is appealing prima facie for purposes of estimating a broad variety of functions
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f(t) under weak assumptions. In the LDA literature, smoothing procedures more
typically arise from stochastic models. For a fixed value of t, the estimate (1)
would correspond to a model Yi = f(t) + εi(t), Var(εi(t)) ∝ (w(t− ti))−1. It has
the property that as |t−ti| increases as t is moved away from the data, f̂(t) tends
to a constant that depends upon the particular kernel used and the data (Yi, ti).
For example, David Ruppert pointed out in a personal communication that if
t1 < t2 < · · · < tn and the kernel is Gaussian, then as t decreases, f̂(t) → Y1.

This rather strange behavior could be avoided by formulating a Gaussian
random effects model, f(t) ∼ N(0, τ2), leading to the estimate

E[f(t)|y1, · · · , yn] =
∑n

i=1 yiw(t− ti)
τ−2 +

∑n
i=1w(t− ti)

. (2)

The FDA community would recognize this as a ridge estimate, as proposed in
Seifert and Gasser (1998) to ameliorate fluctuations of local polynomial estimates
in regions of sparse data. This estimate extrapolates in a much more natural way
than does (1), tending to 0 (or to the prior mean) as t moves away from the ti.

In the LDA literature, smoothers and extrapolators typically arise from
stochastic, or random-effects, models, in particular from classical time-series
models, for example Jones (1993). An individual trajectory is modeled as a signal,
a Gaussian process Z(t) with mean µ(t) and covariance function K(s, t), which is
observed at times ti with noise, Y (ti) = Z(ti) + εi. The smoothed/extrapolated
estimate of Z(t) is then Ẑ(t) = E(Z(t)|Y ) which is a weighted linear average of
the observed data. A kernel, like that in (2), is thus implicitly determined. The
parameters of the kernel, most importantly the bandwidth, are determined as
maximum likelihood estimates of the parameters of the covariance function. In
practice, the covariance function is usually chosen for computational convenience
rather than on principled grounds, and depends upon a parameter governing the
correlation decay rate, i.e., a bandwidth parameter. Since according to the folk
wisdom of kernel estimation, the shape of the kernel matters far less than the
bandwidth, other aspects of the specification of the covariance function may not
be of primary importance. Rather than estimating the bandwidth by maximum
likelihood, FDA practioners are more likely to examine graphically the effects
of a variety of bandwidths, or to use a data-driven selection procedure such as
cross-validation.

The correspondence of smoothing and stochastic models was pointed out in
the case of smoothing splines in Kimeldorf and Wahba (1970) and the implicitly
determined kernel was studied in Silverman (1984). The relationship of smooth-
ing splines to stochastic random effects models was exploited in Brumback and
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Rice (1998) and Wang (1998) for the analysis of longitudinal data. There is of-
ten a useful formal correspondence between smoothing methods using a penalty
function and random effects (Bayesian) models.

2.2. Smoothing multiple curves

With a view of learning how an LDA approach may be suggestive when
viewed from an FDA perspective, let us now consider a simple model, involving
no covariates other than time, a mean function µ(t), depending upon linear pa-
rameters, individual random curves fi(t) depending on random linear parameters,
and a parametrized covariance function. The model is

Y (tij) = µ(tij) + fi(tij) + εij, (3)

where tij, i = 1, . . . , n, j = 1, . . . , ni is the time of the jth measurement of the ith
individual. Such models are common in the LDA literature. The EM algorithm
(Laird and Ware (1982)) proceeds iteratively. Given estimates at stage k,

1. f (k+1)
i (t) = weighted linear combination of {y(tij) − µ(k)(tij)},

2. µ(k+1)(t) = weighted linear combination of the averages of {y(tij)−f (k)
i (tij)},

3. Parameters of the covariance function are estimated by maximum likelihood
based on the expected values of the sufficient statistics.

This suggests an FDA analogue. As an illustration, I will use data on chil-
drens’ gaits (Olshen, Biden, Wyatt and Sutherland (1989) and Rice and Silver-
man (1991)), the angles formed by each child’s ankle during a single phase of a
gait cycle as shown in Figure 1.
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Figure 1.The angles formed by the ankles of 39 children during a single phase
of a gait cycle.
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Typical FDA practice would be to smooth each curve independently of the
others. The result of using a local linear smoother with a bandwidth equal to 0.2
is shown as the dashed line in Figure 2. I refer to this as a “one-pass” smooth.

A “two-pass” procedure was then used, mimicking the first two EM steps
above: (1) the individual curves were first smoothed, the average of the smooths
was found; (2) this average was subtracted from the individual data points of
each curve, and the results were smoothed again. (For a more elaborate related
procedure see Wu and Zhang (2002).) Again, a local linear smoother with a
fixed bandwidth equal to 0.2 was used. (No attempt to adaptively determine
the bandwidth was made. An analogue would be to use cross validation in place
of the maximum likelihood estimation above, but I have not investigated this
further.) The resulting estimate for a single child is shown as the dotted line
in Figure 2. Note how the traditional “one-pass” smoothing undershoots the
peaks and valleys much more substantially than does the “two-pass” procedure
derived from the LDA perspective. One usually thinks of borrowing strength
to reduce variance, but here by using all the curves in conjunction, the bias in
estimating individual curves is substantially decreased! It appears that rather
than smoothing each curve in isolation, practitioners of FDA would gain by using
all the curves. This point occurs again in the next section.
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Figure 2. Comparison of one-pass smoothing (dashed line) and two-pass
smoothing (dotted line) on ankle angle measurements (circles).

Other possibilities for smoothing functional data are suggested by represent-
ing the first two EM steps as

1. f̂ (k+1)
i = Smooth (Yi − µ̂(k)),

2. µ̂(k+1) = Smooth (Average{Yi − f̂
(k)
i }).
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The smoothing operator could be nonlinear, for example robust or constrained
to be monotone. It could be based on local likelihoods. Similarly, averaging
could be robust. The centering (subtraction of the mean) in the first step could
be with respect to a registration template (see Ramsay and Silverman (1997)
for a discussion of registration), with respect to a subset of the data such as a
set of nearest neighbors, or with respect to the conditional expectation given a
covariate. Looking ahead to the next section, the centering could be formed by
a projection of an average onto a set of basis functions.

3. Basis Function Methods

Both the FDA and LDA literature have a history of using expansions in basis
functions, but the points of view have been rather different. The typical FDA
approach is to fit each curve individually by ordinary least squares to data on a
regular grid as

fi(t) =
K∑

k=1

Ukiψk(t), (4)

where the functions {ψk(t)} form a basis and the Uki are the (random) coefficients
of curve i. As the dimension K of the subspace grows, increasingly oscillatory
functions are admitted. The measurements of the individual random curves are
thus represented as

Yi(tij) = fi(tij) + εi(tij). (5)

The εi(t) are composed of measurement errors and high frequency contributions
from the ψj(t), j > K. The choice of the truncation point is frequently made
by some sort of cross-validation procedure. This finite dimensional representa-
tion is avowedly an approximation and the basis functions are chosen for good
approximation properties.

In FDA, the covariance structure is of direct interest rather than viewed as a
nuisance parameter complicating inferences. It is usually estimated directly from
the observations Y (tij), if they are on a regular grid.

The basis formed by the eigenfunctions of the covariance function is stressed
in FDA (Rice and Silverman (1991)). The random curves can be expanded in
this basis and, because of well known extremal properties of the eigenfunctions
and eigenvalues, a truncated expansion is optimal in a mean square sense among
all expansions in a set of basis functions of the same order. The underlying no-
tion is that although the curves are evaluated at a large number of points, there
are not a large number of important “degrees of freedom,” or modes of variation,
in the ensemble. The eigenvalue-eigenfunction decomposition affords a compact
representation in which the leading functions often provide an interpretable de-
scription of the major modes of variation in the collection of curves and by which
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projections of individual curves onto the eigenfunctions assists in characterizing
homogeneity and patterns of variability among curves, and identifying unusual
ones.

In the LDA tradition the design points might well be sparse and perhaps
irregularly spaced. The data vector of subject i might be modeled as

Yi(tij) = µi(tij) +
K∑

k=1

Ukiψk(tij) + εi(tij). (6)

Here µi(t) is typically a parametric fixed-effects function, perhaps involving co-
variates (nonparametric estimates have been considered in Zhang, Lin, Raz and
Sowers (1998), for example). These fixed effects are of primary interest. The
functions ψk(t) are typically polynomials and K is small, so that perhaps only
linear or quadratic functions are included. The observation noise process εi(t)
is usually either specified to be white noise or a convenient continuous time
stationary process − the Ornstein-Uhlenbeck process is a popular choice. The
covariance structure of the random trajectories Yi(t) is thus determined by the
functions ψk(t), the covariance of the coefficients Uki and the covariance func-
tion of ε(t). This covariance structure is not of primary interest and is largely
specified a priori. Contrasting this to the FDA-style expansion, we see that the
high-frequency component, εi(t) in (6) corresponds to the higher order ψk(t) and
the white noise in (4) and (5).

The coefficients Uki in (6) and their covariance structure are estimated by
standard mixed-model technology. For linear, Gaussian models, the smoothed
observations are

Ŷi(t) = E[(µi(t) +
K∑

k=1

Ukiψk(tij))|Yi)] = WiYi, (7)

where Wi is a matrix of weights derived from the covariance structure and Yi

is the vector of observations on subject i. Dropping the Gaussian assumption,
the estimate is the best linear approximation to the Bayes estimate, the BLUP;
“best” given the model, of course.

It is interesting to contrast the estimates of the coefficients of individual
curves with respect to a given eigenfunction as they would be constructed by
FDA and LDA. The use of these coefficients is illustrated in Jones and Rice
(1992). For simplicity of notation, suppose that the data are on a regular grid.
Let Y be the observations of a curve, which are assumed to be corrupted by
white noise with variance σ2. The FDA-style estimate of the coefficient of the
kth eigenfunction ψk with eigenvalue λk would be Zk = 〈Y, ψk〉 whereas the
LDA-style estimate would be Zk = (λk/(λk + σ2))〈Y, ψk〉. The latter damps the
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contributions from the eigenfunctions with small eigenvalues, which are typically
rough, and hence smooths more. (Neither of these estimates takes explicitly into
account that the eigenfunctions and eigenvalues are in fact estimated from the
data.) This approach is explored in Yao, Müller, Clifford, Dueker, Follet, Lin,
Buchholz and Vogel (2003). Generally, the random effects models used in LDA
borrow strength across curves in estimating coefficients, resulting in shrunken
estimates, whereas this practice is not followed in FDA, which estimates the
coefficients corresponding to each curve in isolation.

A hybrid approach was proposed in Shi, Weiss and Taylor (1996) and Rice
and Wu (2001). Basis functions were used as an approximating set in the spirit
of FDA, but fit to the irregular and sparse data typical of LDA, using standard
algorithms for Gaussian mixed models. Both papers used splines, but other basis
functions could be used as well. Adaptive, data-driven methods were considered
for choosing the truncation point K. A smooth estimate of the covariance func-
tion of the underlying random curves was thus determined by the estimated co-
variance function of the random coefficients Uki and the basis functions ψk, from
which eigenfuntions could be estimated if desired. (An alternative approach of
estimating the eigenfunctions and eigenvalues directly from sparse irregular data
is given in James, Hastie and Sugar (2001).)

4. Interpolation and Extrapolation

Specification of the mean and covariance function, as in framework of the
previous section, allows the interpolation of data at unobserved time points via
(7). The covariance function can be estimated as in the previous section, or, al-
ternatively, can be estimated directly by smoothing scatterplots, Staniswalis and
Lee (1998) and Diggle and Verbyla (1998). It appears that there has been little
work on analyzing the consequences of the nature and degree of smoothing done
in estimating the covariance function on the properties of the estimated “BLUP.”
(The presence of the B and the U in this context is not really appropriate, nor is
the L, since the covariance function is estimated, leaving a rather uninformative
acronymn.)

The apparent effectiveness of these linear methods is quite surprising given
that the data are sparse and irregular and perhaps quite non-Gaussian. A typical
task is to estimate E(Y (t0)) given Y (t1), Y (t2), Y (t3), say, and there may be no
instances of data for which Y is observed at these four points.

Multivariate normality, which conveniently only requires information on pairs
to construct a full joint distribution, must be a quite dubious model in many
longitudinal data sets. The presence of variable biological timing, for example
coupled phase shifts, in growth curves can give rise to non-Gaussianity. One
would think that in many applications the points on the random curves would
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be highly constrained in a nonlinear way and that the distributions would be
concentrated on non-linear manifolds. Indeed non-Gaussianity can be seen quite
dramatically in the gait data. To empirically examine the joint distribution of
the ankle trajectories, I interpolated the data linearly at 20 equispaced points
and then used, xgobi (http://www.research.att.com/areas/stat/xgobi/), an in-
teractive graphical tool for the exploration of multivariate data, to search for
non-Gaussian projections of the 39 20-vectors. Two interesting projections are
shown in Figure 3. (The precise effects of the linear interpolation are difficult to
understand, but I would imagine that this process would make the results more,
rather than less, Gaussian.)

Figure 3. Two highly non-Gaussian projections of ankle-angle trajectories
obtained by projection pursuit. Each point corresponds to an individual
curve.

Thus one would expect that modern nonparametric regression procedures
would be useful, but there has been little work on how to incorporate them in the
context of functional data analysis (for example, Ramsay and Silverman (1997)
is largely devoted to the extension of classical Gaussian multivariate analysis to
the functional setting). Perhaps the key to the effectiveness of the “BLUP” is
that the estimate is additive, i.e., that the estimate is a weighted average of sim-
ple univariate linear predictors, weights being given by the estimated covariance
function. It would be worthwhile to examine the feasibility of suitable nonpara-
metric additive models (Hastie and Tibshirani (1990)). More precisely, a family
of smoothly related additive models would be required to handle the various time
configurations of observed data and times at which interpolation was desired.

The results of a simple experiment illustrate the potential for using nonlinear
methods for interpolation and extrapolation. Data points with t < 0.3 were
deleted from an ankle-angle curve, a smooth curve was then fit to the remaining
points, and the seven nearest neighbors among the individually smoothed curves
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for the other subjects were found and averaged. This average alone would not be
a suitable estimate of the missing curve, because there would be a discontinuity
where it joined the observed curve. Continuity of the curve and its derivative was
enforced in the following way: to extrapolate at a point t < 0.3, a weighted linear
combination of the nearest neighbor average and a linear extrapolation from the
observed curve was computed, with the weights decaying linearly from w(0) = 1
to w(0.3) = 0. Since the point is to illustrate the plausibility of nonlinear methods
in general, and of a nearest-neighbor based method in particular, no attempt
was made to fine-tune the procedure; for example a weighted average of nearest
neighbors could be found, the number of neighbors varied, and the extrapolation
weights varied. Figure 4 shows the results of performing this on four randomly
selected curves, with varying degrees of success.
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Figure 4. Four examples of using nearest neighbors to fill in missing data
for t < 0.3. The original data are shown as points, the smooths using all the
data are solid lines, and the extrapolated values are shown by dashed lines.

5. Correlates of Curve Shape

Linear models for functional and scalar covariates have been developed in the
FDA literature, e.g., Ramsay and Silverman (1997). For the most part, though,
this nonparametric point of view has not permeated the LDA literature, and has
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not addressed common problems such as data sparsity, irregularity, censoring
and truncation. Within the framework of basis function modeling the individual
random curves are reduced to finite vectors of coefficients, making it possible to
examine the dependence of the curve shapes on covariates, via classical linear or
modern nonparametric techniques. Thus, if Z is a covariate,

E(Yi(t)|Z) =
K∑

k=1

E(Uki|Z)ψk(t), (8)

and studying the dependence of curve shapes on Z reduces to studying its re-
lationship to individual coefficients. Nonparametric methods of clustering and
classification can be based on the coefficients, e.g., James and Sugar (2003). One
of the main advantages of the basis function approach is that the reduction to a
finite dimensional representation allows subsequent use of a variety of standard
statistical tools.

To illustrate some possibilities for going beyond classical methods, and using
nonparametric smoothing techniques for exploratory data analysis, I will use
some data kindly provided by Hans Müller and Jane-Ling Wang on daily fertility
of a cohort of 1,000 medflies (Carey, Liedo, Müller, Wang and Vaupel (1998a) and
Carey, Liedo, Müller, Wang and Chiou (1998b)). Some examples of individual
fertility curves are shown in Figure 5. There are large daily fluctuations for each
fly and large variation from fly to fly.
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Figure 5. Fertility curves of nine medflies. Number of eggs produced is
shown on the vertical axis and time in days is shown on the horizontal axis.
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This fascinating data set has been used in a variety of studies on aging. One
important aim in the study of aging is to investigate how patterns of reproductive
activity relate to longevity. There is a large literature on the concept of a “cost
of reproduction.” The papers cited above contain further references and point to
the influence of remaining reproductive potential on mortality.

In what follows, I will illustrate the potential for smoothing methods to
elucidate relationships between longevity and reproduction curves in a model-
free manner. Let Yi(t) denote the number of eggs laid on day t by fly i and let Li

denote its lifetime. We wish to examine the relationship between lifetime and the
function Y (t) (one noteworthy point is that Y (t) is only defined for 1 ≤ t ≤ L).
This endeavor is a component of “joint modeling” in the LDA literature Wulfsohn
and Tsiatis (1997), Wang and Taylor (2001), Henderson, Diggle and Dobson
(2000) and Tsiatis and Davidian (2003)). Parametric survival models, such as
Cox proportional hazard, play a central role in these approaches; in contrast,
and in the FDA spirit, smoothing can be used in an exploratory way to help
characterize the relationship between a longitudinal process and time to death.

The raw data are shown in Figure 6, in which the egglaying profiles are
ordered by longevity (a similar plot appears in Carey, Liedo, Müller, Wang and
Vaupel (1998a)). Even if the Figure is interactively viewed from many angles,
and with the aid of color, the large variability makes it very hard to get a sense
of underlying patterns.

Figure 6. Egg laying profiles ordered by lifetime.
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We thus consider smoothing, to form a nonparametric estimate of E(Y (t)|L),
for t = 1, . . . , L. We construct this estimate in two stages. (1) An initial estimate
of E(Y (t)|L) is constructed as follows: for each fixed t, consider all the values
Yi(t) for flies which have lived at least t days, ordered by lifetimes Li, and smooth
them with respect to L by a local polynomial smoother. The results of this are
shown in the left panel of Figure 7. (2) Fixing L = �, the function E(Y (t)|L = �)
is estimated by smoothing the previous result with respect to t, yielding the
results shown in the right panel of the figure. In the second stage smoothing, I
preserved the initial run of 0’s for small t that was produced in the first stage.
There is an interesting tradeoff between smoothing with respect to L and with
respect to t; in this case it seems advantageous to smooth with respect to L first,
since the subsequent smoothing with respect to t, if needed, can be quite light.

Figure 7. Left panel: smoothing with respect to lifetime. Right panel:
smoothing the results shown in the left panel with respect to time.

The figures show that the initial period of latency, or immaturity, increases
with the lifetime of the fly. The contours slope gradually away from the vertical
axis and the time of peak egg laying (10−20 days) shifts later in time with in-
creased lifetimes in the range of about 10 to 60 days, as if those flies were running
on progressively slower “clocks.” Reproductive activity after this peak tapers off
more gradually with increased lifetime. The peak disappears, or broadens sub-
stantially, for flies living 60-90 days. The longest lived flies exhibit additional
fertility peaks at about 35 and 65 days. Although these phenomena can be dis-
cerned by careful study of Figure 6, they are brought into vivid focus by this
simple smoothing procedure.

The conditional expectation of Y (t), 1 ≤ t ≤ 100, given total egg production,∑
s Y (s), was estimated in a similar way. The biological interest is that total egg

production can be viewed as a measure of “success,” and there are various possible
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strategies for how to optimize this by spacing production through time. The
results are shown in Figure 8. In the left panel, there is little sign of the rotation
of the contours seen in Figure 7, although a hint of second peak production period
appears for the most prolific flies. The right panel shows the result of normalizing
each egg laying profile by the total number of eggs laid. With the exception of
some deviation for small times and some broadening as production increases, the
curves exhibit little change with increasing total fertility. This is consistent with
the multiplicative effects model of Chiou, Müller and Wang (2002), which used
functional principal components and covariates.

Figure 8. Left panel: smoothing with respect to total egg production. Right
panel: normalization by total egg production.

Figure 7 suggests that lifetimes may be somewhat predictable from the egg
production profiles, although the figure shows the conditional expectation of
the latter given the former, rather than visa-versa. To explore this possibility,
I conducted a simple illustrative experiment. The egg laying profiles for the
first 30 days of medflies which lived that long were used to attempt to predict
the corresponding lifetimes. There were 667 such. The individual profiles were
smoothed with a local linear smoother, k(x) ∝ (1 − x2)2 with a bandwidth of
15 days. The lifetime of an individual medfly was then predicted as the mean
lifetime of its 25 nearest neighbors, using the l1 norm as a distance between
profiles. The resulting correlation was 0.27, so there was some, but not much,
predictability by this method. (In general, correlations are small in these data,
for example the correlation between lifetime and cumulative production for the
first 15 days is 0.18 and the correlation between the total number of eggs in the
first 30 days and the lifetime beyond 30 days is less than 0.1). Modest exploration
of the effects of modifying the weights in the norm and the weighting of nearest
neighbors made little appreciable difference. The point of this example is to
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illustrate the possibility of using nonparametric regression techniques in such
contexts, not to find the optimal such; for example, it would be natural to try
tree-based regression methods based on features of the curves, such as the latency
time noted above. An analysis of a very different spirit, based on a Cox model
using curve features as predictors, is presented in Müller, Carey, Wu, Liedo and
Vaupel (2001).

6. Final Remarks

One of the themes of this paper is that there are opportunities for a larger
role to be played by FDA-style methods in LDA and that the approaches taken in
LDA, in particular borrowing strength between curves as in mixed and random-
effects modeling, could be profitably considered by the FDA community.

A second theme is that there may be interesting opportunities for devel-
oping methods that go beyond linear/Gaussian approaches (Zhang (1997) is an
interesting example). I have illustrated possibilities by using nearest neighbor
methods. These may not ultimately be the most effective, but they do have the
advantage of applicability in non-linear, non-Gaussian situations; if the curves
do tend to lie on low dimensional manifolds, this structure is tracked implicitly
by nearest neighbor methods without the necessity of explicit construction.

Survival analysis, one of the key concerns of the LDA community, has been
largely ignored by the FDA community, which to-date has had little to say about
curves defined on variable domains (lifetimes), the problems posed by joint mod-
eling, and the difficulties of missing data of various kinds (e.g., informative and
non-informative drop-out). I would hope that the techniques and the exploratory
spirit of FDA would have something to offer here. I offer a modest contribution
in Section 5.

This paper has not addressed problems of inference, which are of central
importance to the LDA community. Inference is often addressed in that litera-
ture by likelihood analysis of rather elaborate (and frequently dubious) models.
Inference has not been a central interest in the FDA community, which typically
prefers to avoid parametric models of stochastic processes and rely on simple
techniques such as the bootstrap and permutation tests as needed. (However,
see Fan and Lin (1998)).
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