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Abstract: Local linear kernel methods have been shown to dominate local constant

methods for the nonparametric estimation of regression functions. In this paper

we study the theoretical properties of cross-validated smoothing parameter selec-

tion for the local linear kernel estimator. We derive the rate of convergence of

the cross-validated smoothing parameters to their optimal benchmark values, and

we establish the asymptotic normality of the resulting nonparametric estimator.

We then generalize our result to the mixed categorical and continuous regressor

case which is frequently encountered in applied settings. Monte Carlo simulation

results are reported to examine the finite sample performance of the local-linear

based cross-validation smoothing parameter selector. We relate the theoretical and

simulation results to a corrected AIC method (termed AICc) proposed by Hur-

vich, Simonoff and Tsai (1998) and find that AICc has impressive finite-sample

properties.

Key words and phrases: Asymptotic normality, data-driven bandwidth selection,

discrete and continuous data, local polynomial regression.

1. Introduction

There exists a rich body of literature on the estimation of unknown regres-
sion functions using kernel weighted local linear methods; see Fan (1992, 1993),
Ruppert and Wand (1994), Fan and Gijbels (1995), among others. The local
linear estimator has many attractive properties including the fact that it is min-
imax efficient and is one of the best known approaches for boundary correction.
While practitioners often encounter a mix of discrete and continuous data types
in applied settings, existing local linear methods do not handle the presence of
discrete data in a satisfactory manner. In this paper we propose a new local lin-
ear estimator which smooths both the discrete and continuous regressors using
the method of kernels. Since it is widely appreciated that data-driven smoothing
parameter selection is a necessity in applied nonparametric settings, we propose
using least squares cross-validation (CV) for selecting smoothing parameters for
both types of regressors. In particular, we derive the rate of convergence of the
cross-validated smoothing parameters to their optimal benchmark values, and
we establish the asymptotic normality of the resulting nonparametric estimator.
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The results contained herein are new even when considering the case for which
there exist only continuous regressors.

The CV method is one of the most widely used bandwidth selectors for
kernel smoothing, despite the fact that the relative error of the cross-validated
bandwidths may be higher than that for some alternative selection methods, for
example, the plug-in method. In the presence of discrete regressors, however, the
CV method is particularly attractive because it has the ability to automatically
remove irrelevant discrete regressors by smoothing them out; see Hall, Racine and
Li (2004) for a more detailed discussion on this and related issues. In this paper
we explicitly address the case for which each regressor has a unique bandwidth
(i.e., the vector-valued smoothing parameter case). This leads to a set of con-
ditions that ensure that cross-validation will lead to optimal smoothing for the
local linear kernel estimator, and illustrates how plug-in methods may face some
practical problems because it can be difficult to select good initial smoothing
parameter values that are required by the plug-in method. We show via simula-
tions that the cross-validated local linear estimator is capable of out-performing
the local constant estimator in the presence of mixed data types. We also find
that the corrected AIC method proposed by Hurvich, Simonoff and Tsai (1998)
has impressive finite-sample properties. After the submission of this paper, a
work by Xia and Li (2002) was brought to our attention in which they study the
asymptotic behavior of cross-validated bandwidth selection for local polynomial
fitting in a time series regression model with a univariate continuous regressor;
our paper differs from Xia and Li’s in that (i) we consider multivariate regres-
sion models and (ii) we allow for the presence of mixed discrete and continuous
regressors.

2. Cross-Validation and the Local Linear Estimator: The Continuous
Regressor Case

Consider a nonparametric regression model

yj = g(xj) + uj , j = 1, . . . , n, (2.1)

where xj is a continuous random vector of dimension q. Define the derivative of

g(x): β(x)
def
= ∇g(x) ≡ ∂g(x)/∂x (∇g(·) is a q × 1 vector).

Define δ(x) = (g(x), β(x)′)′, so δ(x) is a (q + 1) × 1 vector-valued function
whose first component is g(x) and whose remaining q components are the first
derivatives of g(x). Taking a Taylor series expansion of g(xj) at xi, we get
g(xj) = g(xi)+ (xj −xi)′β(xi)+Rij , where Rij = g(xj)− g(xi)− (xj −xi)′β(xi).
We write (2.1) as

yj = g(xi) + (xj − xi)′∇g(xi) + Rij + uj

= (1, (xj − xi)′)δ(xi) + Rij + uj . (2.2)
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A leave-one-out local linear kernel estimator of δ(xi) is obtained by a kernel
weighted regression of yj on (1, (xj − xi)′) given by

δ̂−i(xi) =

(
ĝ−i(xi)
β̂−i(xi)

)

=


∑

j �=i

Wh,ij

(
1, (xj−xi)′

xj−xi, (xj−xi)(xj−xi)′

)
−1∑

j �=i

Wh,ij

(
1

xj−xi

)
yj, (2.3)

where Wh,ij =
∏q

s=1 h−1
s w((xjs − xis)/hs) is the product kernel function and

hs = hs(n) is the smoothing parameter associated with the sth component of x.
Define a (q + 1) × 1 vector e1 whose first element is one with all remaining

elements being zero. The leave-one-out kernel estimator of g(xi) is given by
ĝ−i(xi) = e′1δ̂−i(xi), and we choose h1, . . . , hq to minimize the least-squares cross-
validation function given by

CV (h1, . . . , hq) =
n∑

i=1

[yi − ĝ−i(xi)]2. (2.4)

We use ĥ = (ĥ1, . . . , ĥq) to denote the cross-validation choices of h1, . . . , hq

that minimize (2.4). Having computed ĥ we then estimate δ(x) by

δ̂(x) =

(
ĝ(x)
β̂(x)

)

=

[
n∑

i=1

Wĥ,ix

(
1, (xi − x)′

xi − x, (xi − x)(xi − x)′

)]−1 n∑
i=1

Wĥ,ix

(
1

xi − x

)
yi,

where Wĥ,ix =
∏q

s=1 ĥ−1
s w((xis−xs)/ĥs), and we estimate g(x) by ĝ(x) = e′1δ̂(x).

The following assumptions are used to establish the convergence of ĥ1, . . . , ĥq

to their optimal benchmark values and to establish the asymptotic normality of
ĝ(x).

(A1) (i) (xi, yi) are i.i.d. as (X,Y ); S, the support of X, is a compact
set; E(yi|xi) = g(xi) almost surely; ui = yi − g(xi) has finite 4th moments.
(ii) infx∈S f(x) ≥ ε > 0 for some (small) ε > 0. (iii) g(x), f(x) and σ2(x) =
E(u2

i |xi = x) are all fourth order differentiable in S. (iv) Letting gss(x) denote
the second order derivative of g with respect to xs, then

∫
gss(x)2f(x)dx > 0 for

all s = 1, . . . , q.
(A2) w(·) : R→R is a bounded symmetric density function with

∫
w(v)v4dv

< ∞, and is m times differentiable. Letting w(s)(·) denote the sth order derivative
of w(·), ∫ |w(s)(v)vs|dv < ∞ for all s = 1, . . . ,m, where m > max{2+4/q, 1+q/2}
is a positive integer.



488 QI LI AND JEFF RACINE

(A3) (ĥ1, . . . , ĥq) ∈ Hn = {(h1, . . . , hq)|(h1, . . . , hq) ∈ [0, η]q , and nĥ1 · · · ĥq

≥ tn}, where η = η(n) is a positive sequence that goes to zero slower than the
inverse of any polynomial in n, and tn is a sequence that diverges to +∞.

(A1) (iv) requires that g is not linear in any of its components. The assump-
tion that h1, . . . , hq lie in a shrinking set given in (A3) is not as restrictive as it
appears, since otherwise the kernel estimator will have a non-vanishing bias term
resulting in an inconsistent estimator when the model is nonlinear. We rule out
the case for which g(x) is linear in any of its components xs. The two conditions
on Hn in (A3) are similar to those used in Härdle and Marron (1985), and they
basically require that hs → 0 for all s, and nh1 · · ·hq → ∞ as n → ∞.

In Appendix A we show that the leading term of the cross-validation function
is given by

CVL(h1, . . . , hq) =
∫ [

κ2

2

q∑
s=1

gss(x)h2
s

]2

f(x)dx +
B0

nh1 · · · hq
, (2.5)

where gss(x) is the second order derivative of g with respect to xs, B0 = κq
∫

σ2(x)
dx, κ =

∫
w(v)2dv and κ2 =

∫
w(v)v2dv.

Define as via hs = asn
−1/(q+4) for s = 1, . . . , q. Then we have CVL(h1, . . . , hq)

= n−4/(q+4)χ(a1, . . . , aq), where

χ(a1, . . . , aq) =
∫ [

κ2

2

q∑
s=1

gss(x)a2
s

]2

f(x)dx +
B0

a1 · · · aq
. (2.6)

Let a0
1, . . . , a

0
q denote values of a1, . . . , aq that minimize χ subject to being

non-negative. Note that if a0
s = 0 for some s, then we must have a0

t = ∞ for
some t �= s. Since we have assumed that g is not linear in any of its components,
we rule out the case for which a0

t = ∞ and assume that, for s = 1, . . . , q,

each a0
s is uniquely defined and is finite. (2.7)

It is easy to see that (2.7) requires that, for all s = 1, . . . , q, gss(x) does not
vanish almost everywhere (our assumption (A3)), for otherwise a0

s = ∞.
Below we provide a necessary and sufficient condition for (2.7). Let zs = a2

s

(s = 1, . . . , q), and let A denote a q × q positive semidefinite matrix having its
(t, s)th element given by At,s = (κ2/2)

∫
gtt(x)gss(x)f(x)dx. Then (2.6) can be

re-written as
χz(z1, . . . , zq) = z′Az +

B0√
z1 · · · zq

, (2.8)

where z = (z1, . . . , zq)′ is a q × 1 vector. Let z0
1 , . . . , z0

q denote the values of
z1, . . . , zq that minimize χz(z1, . . . , zq) subject to the requirement that each of
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them be non-negative. Then it is easy to see that each z0
s is uniquely defined and

is finite if and only if A is a positive definite matrix. A being positive definite
ensures that each z0

s is finite, for otherwise z′Az = ∞ (hence χz = ∞). Given
that each zs

0 is finite, we must have z0
s > 0 because otherwise B0/(z0

1 · · · z0
q )

1/2 =
∞. Thus, each z0

s must be positive and finite, which in turn implies that each
a0

s = (z0
s )1/2 is positive and finite. Thus, (2.7) holds true if and only if A is

positive definite.
This condition imposes some restrictions on the second order derivative func-

tions gss (s = 1, . . . , q), and is more intuitive than (2.7). For example, if q = 1, it
requires that g11(x1) is not a ‘zero function’ (i.e., cannot be equal to zero a.e.).
When q = 2, it assumes that gss(x) is not identically zero for s = 1, 2, and
that [

∫
g11(x)2dF (x)][

∫
g22(x)2dF (x)] > [

∫
g11(x)g22(x)dF (x)]2 (F is the distri-

bution function of X). This last condition is equivalent to the requirement that
g11(x) − c g22(x) is not identically zero for any constant c.

While it is easy to obtain a closed form solution for as
0 from (2.6) for q = 1, 2,

in the general multivariate q case there do not exist closed form solutions for
the a0

s’s (s = 1, . . . , q), even though they are well defined for any values of q.
Therefore, a plug-in method based on (2.6) does not possess closed form solutions,
and it seems difficult to obtain good initial values for the hs’s (s = 1, . . . , q) that
are required by the plug-in method.

We note here that it is important to explicitly allow for different values of
hs for the different components of xs (s = 1, . . . , q). If one were to use a scalar
h1 = · · · = hq = h, as is often done to simplify the theoretical derivations (e.g.,
Racine and Li (2003)), then one would not get the positive definiteness of A. To
see this, note that if one were to use h1 = · · · = hq = h, and a1 = · · · = aq = a,
then (2.6) becomes

χ(a) = a4
∫ [

κ2

2

q∑
s=1

gss(x)

]2

f(x)dx +
B0

aq
. (2.9)

Therefore, there exists a unique positive and finite a0 that minimizes χ(a) if∑q
s=1 gss(x) is not a zero function. But this condition clearly does not give

applied researchers correct guidance as it would assert that hs converges to zero
even if g(x) is linear in xs as long as g(x) is non-linear in some other component
such that

∑q
s=1 gss(x) is not a zero function. Since in practice one never forces

all hs’s to be the same, (2.9) fails to reveal the correct conditions that ensure
(2.7).

Let h0
1, . . . , h

0
q denote the values of h1, . . . , hq that minimize (2.5). We have

h0
s = a0

sn
−1/(q+4). Also, given the fact that CVL is the leading term of CV , one

can show that ĥs = h0
s + op(h0

s).
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Theorem 2.1. Under (A1) through (A3) and (2.7), we have, for all s = 1, . . . , q,

(ĥs − h0
s)/h

0
s = Op(n−ε/(4+q)) with ε = min{q/2, 2}, where h0

s = a0
sn

−1/(q+4).

For results on cross-validated local constant kernel regression, see Härdle,
Hall and Marron (1988, 1992), and see Chen (1996) on using extra information
for nonparametric smoothing in order to improve efficiency. With our result one
can establish the asymptotic normality of ĝ(x).

Theorem 2.2. Under assumptions (A1) through (A3), and assuming that f(x) >

0, then
√

nĥ1 · · · ĥq

[
ĝ(x) − g(x) − κ2

2

q∑
s=1

gss(x)ĥ2
s

]
→ N(0,Ωx) in distribution,

where Ωx = κqσ2(x)/f(x).

Under the assumption that g(·) is a smooth function with non-vanishing
second-order derivatives, Theorems 2.1 and 2.2 show that ĥs converges to zero at
the rate Op(n−1/(4+q)) and that ĝ(x) converges to g(x) at the rate Op(n−2/(4+q)).
In practice, some regression functions g(·) may have a linear regression functional
form or be linear in some of their components (a partially linear specification).
Our Theorem 2.1 does not cover such cases. However, it can be shown that
in the case for which g is linear in some of its components, say xs, then the
cross-validation smoothing parameter ĥs will tend to take large numerical values,
indicating that the model is partially linear. Note that our Theorem 2.1 does
not cover a partially linear model since for a partially linear model, gss(x) = 0
for some s ∈ {1, . . . , q}, and Assumption (A1) (iv) is violated. In Section 3, we
use simulations to investigate the distribution of ĥs in this case. Our results
explain how the use of cross-validated local linear kernel methods in empirical
settings may result in large smoothing parameters for some regressors and small
smoothing parameters for others, a feature often exhibited in applied settings.

Up to now, we have restricted attention to the use of least squares cross-
validation (CV) when selecting smoothing parameters. Härdle, Hall and Marron
(1988) have shown that, for the local-constant estimator, the CV smoothing pa-
rameter selectors are asymptotically equivalent to generalized CV (GCV) selec-
tors, which include Akaike’s (1974) information criterion, Shibata’s (1981) model
selector, and Rice’s (1984) T selector, among others. It can easily be shown that
the same conclusions hold true for the local linear method, that is, that the
local-linear based CV smoothing parameter selector is asymptotically equivalent
to the local-linear based GCV selector. This follows the exact same proof as in
Härdle, Hall and Marron (1988, p.95) as local-constant and local-linear estima-
tors have the same rate of convergence (when both use a second order kernel).
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Recently, Hurvich, Simonoff and Tsai (1998) suggested a corrected (improved)
AIC criterion (termed AICc) as a smoothing parameter selector, and their simula-
tions show that the AICc selector performs quite well compared with the plug-in
method (when it is available) and with a number of generalized CV methods.
While there is no theoretical result available for the AICc selector, we conjec-
ture that the AICc selector is asymptotically equivalent to the (generalized) CV
method, and simulation results are consistent with this conjecture. We find that,
for small samples, AICc tends to perform better than the CV method, while for
large samples there is no appreciable difference between the two methods.

Härdle, Hall and Marron (1988) also consider the intermediate benchmark
case of selecting hs’s by minimizing the average square error given by ASE =
n−1∑

i[ĝ(xi)−g(xi)]2 for the univariate x case. They use ĥ0 to denote the values
of h that minimize ASE, and they further show that ĥ − ĥ0 = Op(n−1/10ĥ0) =
Op(n−3/10). This is the same rate as for ĥ−h0 stated in our Theorem 2.1 for q = 1.
We conjecture that Theorem 2.1 holds true when one replaces h0

s by ĥ0
s. This

is because one can show that CV = ASE + Op(η3
2 + η1(h1 · · ·hq)1/2) = ASE +

Op(ASE)Op(η2 + (h1 · · ·hq)1/2), where η2 =
∑q

s=1 h2
s and η1 = (nh1 · · ·hq)−1.

From this we expect that ĥs = ĥ0
s + Op(ĥ0

s)Op((h0
s)

min{2,q/2}), or equivalently
that ĥs − ĥ0

s = Op(n−1/(q+4)n−min[2,q/2]/(q+4)). However, a rigorous proof of this
result lies beyond the scope of this paper.

3. Local Linear Cross Validation with Mixed Continuous and Discrete
Regressors

In this section we consider the case where a subset of regressors are categor-
ical and the remaining are continuous. Although it is well known that one can
use a nonparametric frequency method to handle the discrete regressors (theo-
retically), such an approach cannot be used in practice if the number of discrete
cells is large relative to the sample size, as is often the case with economic data
sets containing mixed data types. Borrowing from Aitchison and Aitken’s (1976)
approach, we elect to smooth the discrete regressors to circumvent this problem;
see Hall (1981), Grund and Hall (1993), and the monographs by Scott (1992)
and Simonoff (1996) for further discussion on the kernel smoothing of discrete
variables.

Let xd
i denote a r × 1 vector of regressors that assume discrete values and

let xc
i ∈ Rq denote the remaining continuous regressors. It should be mentioned

that Ahmad and Cerrito (1994) and Bierens (1983, 1987) also consider the case
of estimating a regression function with mixed categorical and continuous re-
gressors, but they did not study the theoretical properties associated with us-
ing data-driven methods (cross-validation) when selecting smoothing parameters.
Furthermore, both works only consider the local constant kernel estimator.
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For a discrete regressor, we use a variation on Aitchison and Aitken’s (1976)
kernel function defined by

(xd
is, x

d
js) =

{
1, if xd

is = xd
js,

λs, otherwise.

The range of λs is [0,1]. Note that when λs = 0 the above kernel function becomes
an indicator function, and when λs = 1, it is a constant function. That is, the
xd

s regressor is removed (smoothed out) if λs = 1. Let 1(A) denote an indicator
function which assumes the value 1 if A holds true and 0 otherwise. Then the
product kernel function for a vector of discrete regressors is given by

L(xd
i , x

d
j , λ) =

[
r∏

s=1

λ
1−1(xd

is=xd
js)

s

]
.

Now define the partial derivative of g(x) = g(xc, xd) with respect to xc:

β(x)
def
= ∇g(x) ≡ ∂g(xc, xd)/∂xc, and define δ(x) = (g(x), β(x)′)′. Also, we

use the short-hand notation Kh,ij = Wh,ijLλ,ij, where Wh,ij =
∏q

s=1 h−1
s w((xc

is −
xc

js)/hs) and Lλ,ij =
∏r

s=1 l(xd
is, x

d
js, λs). Then the leave-one-out kernel estimator

of δ(xi) ≡ δ(xc
i , x

d
i ) is given by

δ̂−i(xi) =

(
ĝ−i(xi)
β̂−i(xi)

)

=


∑

j �=i

Kh,ij

(
1, (xc

j−xc
i )

′

xc
j−xc

i , (xc
j−xc

i)(x
c
j−xc

i)
′

)

−1∑

j �=i

Kh,ij

(
1

xc
j−xc

i

)
yj. (3.1)

Note that (3.1) treats the continuous regressor xc in a local linear fashion and
the discrete regressor xd in a local constant one. Again, ĝ−i(xi) = e′1δ̂−i(xi)
(e1 = (1, 0, . . . , 0)′), and we choose (h, λ) to minimize

CV (h1, . . . , hq, λ1, . . . , λr) =
1
n

n∑
i=1

[yi − ĝ−i(xi)]
2 . (3.2)

We use (ĥ1, . . . , ĥq, λ̂1, . . . , λ̂r) to denote values of (h1, . . . , hq, λ1, . . . , λr) that
minimize (3.2). We then estimate g(x) by ĝ(x) = e′1δ̂(x), where

δ̂(x) =

(
ĝ(x)
β̂(x)

)

=

[∑
i

Kĥ,ix

(
1, (xc

i−xc)′

xc
i−xc, (xc

i−xc)(xc
i −xc)′

)]−1∑
i

Kĥ,ix

(
1

xc
i−xc

)
yi,
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with Kĥ,ix =
∏q

s=1 ĥ−1
s w

(
(xc

is − xc
s)/ĥs

)∏r
s=1 l(xd

is, x
d
s , λ̂s).

In Appendix B we show that the leading term of the cross-validation function
is given by

CVL(h, λ) =
∑
xd

∫ {
κ2

2

q∑
s=1

gss(x)h2
s +

r∑
s=1

Ds(x)λs

}2

f(x)dxc +
B0

nh1 · · ·hq
,

(3.3)
where gss(x) is the second order derivative of g(x) with respect to xc

s, B0 =
κq ∑

xd

∫
σ2(x) dxc, Ds(x) =

∑
vd [1s(vd, xd) g(xc, vd) − g(x)] f(xc, vd) with

1s(xd, vd) = 1(xd
s �= vd

s )
∏

t�=s 1(xd
t = vd

t ), and 1s(xd, vd) = 1 if xd and vd dif-
fers only in the sth component, and is 0 otherwise.

Define a1, . . . , aq, b1, . . . , br via hs = asn
−1/(q+4) (s = 1, . . . , q) and λs =

bsn
−2/(q+4) (s = 1, . . . , r). Then we have CVL(h, λ) = χ(a, b), where

χ(a, b) =
∑
xd

∫ {
κ2

2

q∑
s=1

gss(x)a2
s +

r∑
s=1

Ds(x)bs

}2

f(x)dxc +
B0

h1 · · · hq
.

Letting (a0
1, . . . , aq, b

0
1, . . . , b

0
r) denote the values of (a1, . . . , aq, b1, . . . , br) that

minimize χ(a, b) subject to the restriction that they are non-negative, we fur-
ther assume that

each of the a0
s’s and b0

s’s is uniquely defined and is finite. (3.4)

Let h0
1, . . . , λ

0
r denote the values of h1, . . . , λr that minimize (3.3). Then

obviously we have n1/(q+4)h0
s ∼ a0

s for s = 1, . . . , q, and n2/(q+4)λ0
s ∼ b0

s for s =
1, . . . , r. In Appendix B we show that ĥs = h0

s + op(h0
s) for s = 1, . . . , q, and that

λ̂s = λ0
s + op(λ0

s) for s = 1, . . . , r.

Theorem 3.1. Under (B1) and (B2) given in Appendix B, and (3.4), we have
(ĥs − h0

s)/h0
s = Op(n−ε1/(4+q)) for s = 1, . . . , q, and λ̂s − λ0

s = Op(n−ε2) for
s = 1, . . . , r, where ε1 = min{q/2, 2}, ε2 = min{1/2, 4/(4 + q)}.

Combining Theorem 3.1’s rate of convergence result with a Taylor expansion
argument, it is easy to establish the asymptotic normal distribution of ĝ(x) as
the next theorem shows. The argument is sketched in Appendix B.

Theorem 3.2. Under the conditions of Theorem 3.1, we have

√
nĥ1 · · · ĥq

(
ĝ(x) − g(x) −

2∑
s=1

(κ2/2)gss(x)ĥ2
s −

r∑
s=1

λ̂sDs(x)

)
→ N(0,Ωx)

in distribution,
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where Ds(x) =
∑

vd [1s(vd, xd)g(xc, vd) − g(x)]f(xc, vd), Ωx = κqσ2(x)/f(x).

From the discussion found in Section 2 we know that when g(x) is linear
in xc

s, ĥs will not converge to zero, rather, ĥs will tend to take large values.
Similarly, if g(x) turns out to be unrelated to xd

s (xd
s is an irrelevant regressor), it

can be shown that λ̂s will not converge to zero, rather, it will tend to the upper
bound value of 1. The theoretical results presented in this section do not cover
these cases. We rely on some simulation exercises to examine the finite sample
behavior of ĥs and λ̂s when g(x) is linear in xc

s and/or is unrelated to xd
s .

The Ordered Categorical Regressor Case

Up to now we have only considered the case for which xd is unordered. If xd
s

is an ordered regressor, we use the following kernel function:

l(xd
is, x

d
js, λs) =




1, if xd
is = xd

js,

λ
|xd

is−xd
js|

s , if xd
is �= xd

js.

The range of λs is [0, 1]. Again when λs = 0, (lxd
is, x

d
js, λs = 0) becomes an

indicator function, and when λs = 1, l(xd
is, x

d
js, λs = 1) = 1 is a uniform weight

function.
It is easy to show that the results of Theorems 3.1 and 3.2 remain valid

provided we redefine 1s(vd, xd) by 1s(vd, xd) = 1(|xd
s − vd

s | = 1)
∏

t�=s 1(xd
t = vd

t )
when xd

s is an ordered regressor.

4. Monte Carlo Results

In this section we examine the finite-sample behavior of cross-validated local
linear regression in the presence of mixed data types. In particular, we consider
three data generating processes (DGPs), one that is nonlinear in the continuous
regressors, one that is linear, and one that lies in-between (i.e., is partially linear).
These are given by

DGP1: yi = 1 + zi1 + zi2 + xi1xi2 + sin(2πxi1) + sin(2πxi2) + ui,

DGP2: yi = 1 + zi1 + zi2 + xi1 + xi2 + xi1xi2 + 2 sin(2xi2) + ui,

DGP3: yi = 1 + zi1 + zi2 + xi1 + xi2 + ui,

where X1 ∼ N(0, 1), X2 ∼ N(0, 1), Z1 ∈ {0, 1} with Pr[Z1 = 1] = 0.4,
Z2 ∈ {0, 1} with Pr[Z2 = 1] = 0.6, and U ∼ N(0, σ2) with σ = 1.0. We
compare the performance of six estimators: LIN: OLS assuming linearity and no
interaction; DGP: OLS based upon the correct DGP; LL(CV): Cross-validated
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local linear regression; LL(AICc): AICc local linear regression; LC(CV): Cross-
validated local constant regression; LC(AICc): AICc local constant regression.

For the nonparametric LL and LC estimators we employ both the proposed
cross-validation method and the corrected AIC method proposed by Hurvich,
Simonoff and Tsai (1998) to select the smoothing parameters. We conduct five
restarts of the multidimensional numerical search algorithm, each time beginning
from different random initial bandwidth values, retaining those bandwidths that
resulted in a minimum over the five restarts in an attempt to avoid local minima.
A second-order Gaussian kernel is used for the continuous regressors.

For each DGP, 1,000 Monte Carlo replications having estimation samples of
size n1 = (100, 200, 400) and independent evaluation samples of size n2 = 1, 000
are drawn. For each Monte Carlo replication, the models are estimated on n1

observations drawn from a given DGP, and then predictions (ĝ(xi)) are generated
based upon the regressors in the evaluation sample of size n2. The mean square
estimation error is computed as MSEE = (1/n2)

∑n2
i=1 (g(xi) − ĝ(xi))

2, where
g(xi) is the systematic component of the true DGP.

We consider two cases, one for which all regressors are relevant, and one for
which the discrete regressor Z2 is in fact irrelevant (we remove Z2 from the DGP).
The median MSEEs for each estimated model taken over the 1,000 Monte Carlo
replications are tabulated along with their interquartile ranges. The parametric
model based on the true DGP is, of course, expected to perform the best (it
serves as a benchmark), and we focus attention upon the relative performance of
the remaining methods.

4.1. Out-of-sample MSEE results: all regressors relevant

Tables 1 through 3 present the median MSEEs for each estimated model
along with their interquartile ranges. An examination of these tables reveals the
consistent nature of the cross-validated nonparametric estimators via a reduction
in their medians and interquartile ranges for MSEE as the sample size increases.

Note that DGP1 is the ‘most nonlinear’ one, DGP2 is partially linear, while
DGP3 is fully linear. An examination of Table 1 reveals that, for DGP1 (the
most nonlinear DGP), the local linear AICc estimator performs the best in small
samples, but for larger samples (n > 200), the cross-validated local constant es-
timator outperforms all others. As expected, the misspecified linear model per-
forms worst overall. Table 2 reveals that, for the partially linear DGP2 (nonlinear
in X2), the local linear estimators outperform the local constant estimators, the
local linear AICc estimator performs the best while, as the sample size increases,
the performance of the cross-validated local linear estimator and the local linear
AICc estimator become indistinguishable from one another. For both of these
DGPs, the misspecified parametric model is inconsistent.
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Table 1. DGP1 median MSEE results, all regressors relevant (interquartile
range in parentheses).

Nonparametric Parametric
n1 LL(CV) LL(AICc) LC(CV) LC(AICc) Linear
100 1.82 1.63 1.79 1.75 2.17

(1.57,2.43) (1.49,1.87) (1.61,1.98) (1.61,1.93) (2.06,2.31)
200 1.38 1.32 1.34 1.39 2.08

(1.20,1.81) (1.16,1.74) (1.24,1.46) (1.29,1.52) (2.00,2.17)
400 1.06 0.98 0.94 1.09 2.05

(0.92,1.35) (0.88,1.24) (0.87,1.03) (1.03,1.17) (1.97,2.13)

Table 2. DGP2 median MSEE results, all regressors relevant (interquartile
range in parentheses).

Nonparametric Parametric
n1 LL(CV) LL(AICc) LC(CV) LC(AICc) Linear
100 0.84 0.66 1.01 0.99 2.95

(0.63,1.27) (0.52,0.87) (0.86,1.20) (0.86,1.17) (2.79,3.11)
200 0.44 0.37 0.64 0.65 2.82

(0.34,0.61) (0.30,0.48) (0.56,0.74) (0.57,0.74) (2.70,2.96)
400 0.23 0.20 0.41 0.42 2.76

(0.19,0.33) (0.17,0.27) (0.37,0.47) (0.37,0.48) (2.65,2.88)

Table 3. DGP3 median MSEE results, all regressors relevant (interquartile
range in parentheses).

Nonparametric Parametric
n1 LL(CV) LL(AICc) LC(CV) LC(AICc) Linear
100 0.15 0.13 0.44 0.42 0.04

(0.11,0.23) (0.09,0.17) (0.35,0.54) (0.34,0.52) (0.03,0.07)
200 0.07 0.06 0.27 0.27 0.02

(0.05,0.09) (0.05,0.08) (0.23,0.32) (0.23,0.32) (0.01,0.03)
400 0.03 0.03 0.17 0.17 0.01

(0.02,0.05) (0.02,0.04) (0.15,0.20) (0.15,0.20) (0.01,0.02)

From Table 3 we see that, for the linear DGP, DGP3, the local linear es-
timators outperform the local constant estimators to a greater extent than was
the case for DGP2. Also, the relative performance of the cross-validated and the
AICc local linear methods become indistinguishable from one another as n gets
large.

The cross-validated and the AICc local linear estimators perform quite well
for partially linear and linear specifications even in these small-sample settings.
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Next we turn to the case when there exist irrelevant regressors.

4.2. Out-of-sample MSEE results: Z2 irrelevant

We now consider the case where one of the discrete regressors, Z2, is in
fact irrelevant. In this case, both the cross-validation and the AICc methods
can automatically remove such regressors by assigning them a large value of λ̂2,
the associated bandwidth. We base this simulation upon the same DGPs given
above. However, now Z2 is, in fact, irrelevant and is removed from the DGP
when we generate Y . Furthermore, we do not assume that this information is
known a priori. Therefore, Z2 is still used for estimating the conditional mean
of Y . MSEE results are presented in Tables 4 through 6.

Tables 4 through 6 illustrate that, in the presence of an irrelevant discrete
regressor, the cross-validated local linear (constant) estimator and the AICc local
linear (constant) estimator display behavior similar to the case for which all
regressors are relevant. The cross-validated local constant estimator outperforms
the cross-validated and AICc local linear estimators for the nonlinear DGP1 for
n > 200, while Tables 5 and 6 reveal that, for the partially linear DGP2 (nonlinear
in X2) and the linear DGP3, the local linear estimators outperform the local
constant estimators.

Table 4. DGP1 median MSEE results, Z2 irrelevant (interquartile range in
parentheses).

Nonparametric Parametric
n1 LL(CV) LL(AICc) LC(CV) LC(AICc) Linear
100 1.66 1.49 1.57 1.57 2.17

(1.40,2.27) (1.33,1.84) (1.43,1.78) (1.42,1.73) (2.06,2.29)
200 1.24 1.16 1.17 1.21 2.09

(1.06,1.71) (0.99,1.60) (1.07,1.28) (1.12,1.33) (2.00,2.19)
400 0.96 0.88 0.77 0.90 2.04

(0.81,1.31) (0.78,1.14) (0.70,0.84) (0.80,1.00) (1.96,2.13)

Table 5. DGP2 median MSEE results, Z2 irrelevant (interquartile range in
parentheses).

Nonparametric Parametric
n1 LL(CV) LL(AICc) LC(CV) LC(AICc) Linear
100 0.68 0.50 0.82 0.79 2.94

(0.47,1.03) (0.37,0.72) (0.69,1.00) (0.67,0.95) (2.77,3.10)
200 0.34 0.26 0.51 0.49 2.81

(0.24,0.51) (0.20,0.39) (0.44,0.61) (0.42,0.58) (2.68,2.95)
400 0.17 0.14 0.32 0.32 2.77

(0.13,0.26) (0.11,0.20) (0.28,0.38) (0.27,0.37) (2.64,2.88)
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Table 6. DGP3 median MSEE results, Z2 irrelevant (interquartile range in
parentheses).

Nonparametric Parametric
n1 LL(CV) LL(AICc) LC(CV) LC(AICc) Linear
100 0.10 0.07 0.33 0.30 0.05

(0.06,0.17) (0.05,0.11) (0.26,0.42) (0.24,0.37) (0.03,0.07)
200 0.04 0.04 0.20 0.19 0.02

(0.03,0.07) (0.02,0.05) (0.17,0.25) (0.16,0.23) (0.01,0.03)
400 0.02 0.02 0.13 0.12 0.01

(0.01,0.03) (0.01,0.03) (0.11,0.15) (0.10,0.14) (0.01,0.02)

Next we consider the behavior of the cross-validated bandwidths. We expect
that the local linear cross-validation method will tend to select a large band-
width when the underlying DGP is in fact linear in a given continuous regressor,
while the local constant estimator will display no such tendencies. For the cross-
validated bandwidths for the irrelevant regressor Z2, we have postulated that
both the local linear and local constant cross-validation methods will tend to
select a large bandwidth for an irrelevant discrete regressor, i.e., choose λ̂2 that
tends toward its upper bound value of 1.

In an attempt to verify the above conjectures, we plot histograms of the cross-
validated bandwidths for X1 (h1), X2 (h2), Z1 (λ1) and Z2 (λ2) for n1 = 200
for DGP2. The results are presented in Figures 1 and 2, while Figures 3 and 4
present comparable numbers for the AICc approach.

The histogram on the upper left of each figure summarizes the bandwidths for
X1, the one on the upper right summarizes those for X2, the one on the lower left
summarizes those for Z1, while that on the lower right summarizes those for Z2.
The uppermost histograms in Figure 1 (the partially linear DGP2) reveal how the
local linear cross-validation method chooses much larger smoothing parameters
for a continuous regressor that enters linearly (X1) than for one that enters
nonlinearly (X2). In contrast, Figure 2 shows that the local constant cross-
validation choices of ĥ1 and ĥ2 both assume (relatively) small values. Similar
results hold when bandwidth choice is conducted via the AICc approach.

While both the local linear and local constant cross-validation methods select
small values of λ̂1, Figures 1 and 2 show that their choices of λ̂2 tend to assume
large values close to their upper bound value of 1, thereby effectively removing
the irrelevant regressor Z2 from the nonparametric estimate. This ‘automatic
removal of irrelevant discrete variables’ property is an appealing feature of the
cross-validation method in applied settings. Similar results hold when bandwidth
choice is conducted via the AICc approach.
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Figure 1. Histograms of LL(CV) smoothing parameters for DGP2, n = 200,
Z2 irrelevant.
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Figure 2. Histograms of LC(CV) smoothing parameters for DGP2, n = 200,
Z2 irrelevant.
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Figure 3. Histograms of LL(AICc) smoothing parameters for DGP2, n =
200, Z2 irrelevant.
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Figure 4. Histograms of LC(AICc) smoothing parameters for DGP2, n =
200, Z2 irrelevant.
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Here we only report simulation results for the two-continuous regressor case.
Simulations not repeated here also show that, for a model with more than one
regressor entering the model linearly or being close to linear, the local linear
cross-validation method provides even larger relative efficiency gains over the
local constant method.

As noted in Section 2, Härdle, Hall and Marron (1988) demonstrated that,
for the local constant estimator, CV smoothing parameter selectors are asymp-
totically equivalent to GCV selectors. We have included results based on the
Hurvich, Simonoff and Tsai’s (1998) AICc bandwidth selection criterion in Tables
1 through 6 which reveal that this approach indeed appears to be asymptotically
equivalent to the CV method, and has excellent finite sample performance. We
leave theoretical investigations of the AICc method (such as verifying our con-
jecture that AICc is asymptotically equivalent to the CV method) as a topic for
future research.

5. Concluding Remarks

In this paper we present theoretical and simulation-based evidence in support
of using data-driven methods such as cross-validation and AICc when choosing
smoothing parameters for the local linear kernel estimator in the presence of
mixed discrete and continuous data types. We find that the AICc approach
has impressive finite-sample properties. We demonstrate that efficiency gains
relative to the local constant estimator are not only theoretically possible but
can be readily attained in finite-sample settings. The results presented in this
paper also explain the observations of Li and Racine (2001) who found that
nonparametric estimators with smoothing parameters chosen via cross-validation
can yield superior predictions relative to commonly used parametric methods for
U.S. patent application data, Spanish consumption data and U.S. and Swedish
labor force participation data.
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A. Proofs of Theorem 2.1 and 2.2

We will use the notation An ∼ Bn to denote that An has the same probability
order as Bn. To simplify the proof, we first re-write (2.3) in an equivalent form.
Define D−2

h , a q × q diagonal matrix with its sth diagonal element given by h−2
s ,

i.e., D−2
h = diag(h−2

s ). Inserting the identity matrix Iq+1 = G−1
n Gn into the

middle of (2.3), where Gn =
(1, 0
0, D−2

h

)
, we get

δ̂−i(xi) =
[∑

j �=i

Wh,ijGn

(
1

xj − xi

)
(1, (xj − xi)′)

]−1∑
j �=i

Wh,ijGn

(
1

xj − xi

)
yj

=
[∑

j �=i

Wh,ij

(
1

D−2
h (xj − xi)

)
(1, (xj − xi)′)

]−1

×
∑
j �=i

Wh,ij

(
1

D−2
h (xj − xi)

)
yj. (A.1)

The advantage of using (A.1) in the proof is that (1/n)
∑

j �=i Wh,ij( 1
D−2

h (xj−xi)

)
(1, (xj − xi)′) converges in probability to a non-singular matrix.

Hence, we can analyze the denominator and numerator of (A.1) separately and
thus simplify the derivations.

Substituting the Taylor expansion (2.2) into (A.1), we have

δ̂−i(xi) = δ(xi) +


1

n

∑
j �=i

Wh,ij

(
1, (xj − xi)′

D−2
h (xj − xi), D−2

h (xj − xi)(xj − xi)′

)
−1

×
{1

n

∑
i

Wh,ij

(
1

D−2
h (xj − xi)

)
[Rij + uj]

}

≡ δ(xi) + A−1
2i A1i,

A1i =
1
n

∑
j �=i

Wh,ij

(
1

D−2
h (xj − xi)

)
[Rij + uj],

A2i =

(
f̂i, B′

1i

D−2
h B1i, D−2

h B2i

)
,

where f̂i = n−1 ∑
j �=i Wh,ij, B1i = n−1 ∑

j �=i Wh,ij(xj − xi), and B2i =
n−1∑

j �=i Wh,ij(xj − xi)(xj − xi)′. It is easy to show B1i = Op(η2) and B2i =
Op(η2) (η2 =

∑q
s=1 h2

s). Thus D−2
h B1i and D−2

h B2i are both Op(1) random vari-
ables.
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Recall that e1 is a (q + 1) column vector whose first element is one with all
other elements being zero. Using the partitioned inverse, we have e′1{A2i}−1 =
( f̂−1

i + C1i, −C2i ), where C1i = f̂−2
i B′

1i[D
−2
h (B2i − B1iB

′
1if̂

−1
i )]−1B1i, and C2i

= f̂−1
i B′

1i[D
−2
h (B2i − B1iB

′
1if̂

−1
i )]−1. Note that both C1i and C2i are Op(η2)

random variables. Then

ĝ−i(xi) = e′1δ̂−i(xi) = g(xi) + e′1[A2i ]−1{A1i} = g(xi) + (f̂−1
i + C1i,−C2i)A1i

= g(xi) +
1
n

∑
j �=i

Wh,ij[Rij + uj]/f̂i

+
1
n

∑
j �=i

Wh,ij[Rij + uj][C1i − C2iD
−2
h (xj − xi)]

≡ g(xi) +
1
n

∑
j �=i

Wh,ij[Rij + uj]/f̂i + Mn,

where Mn = n−1∑
j �=i Wh,ij[Rij +uj][C1i −C2iD

−2
h (xj −xi)], which has an order

smaller than n−1∑
j �=i Wh,ij[Rij + uj]/f̂i (smaller by a factor of η2 =

∑q
s=1 h2

s

since both C1i and C2i are Op(η2)).
Define Di = n−1∑

j �=i Wh,ij[Rij +uj ]/f̂i. Then we have ĝ(xi) = g(xi)+Di +
Mn ≡ g̃(xi) + Mn, where g̃(xi) = g(xi) + Di.

We use the short-hand notation gi = g(xi), ĝi = ĝ(xi), g̃i = g̃(xi). Define
CV0(h) in the same manner as CV (h) but with ĝi being replaced by g̃i. Then

CV0(h)
def
=
∑

i

(yi − g̃i)2 =
∑

i

(gi + ui − g̃i)2 =
∑

i

[ui −Di]2

=
∑

i

D2
i − 2

∑
i

uiDi +
∑

i

u2
i ≡ CV1(h) + n−1

∑
i

u2
i , (A.2)

CV1(h) =
∑

i

D2
i − 2

∑
i

uiDi

= n−3
∑

i

∑
j �=i

∑
l �=i

[RijRil + ujul + 2ujRil]Wh,ijWh,il/f̂
2
i

−2n−2
∑

i

∑
j �=i

ui[Rij + uj]Wh,ij/f̂i. (A.3)

Note that minimizing CV0(h) over h1, . . . , hq is equivalent to minimizing CV1(h)
because n−1∑

i u
2
i is not related to h1, . . . , hq.

A technical difficulty in handling (A.3) arises from the presence of the random
denominator f̂i, but

1
f̂i

=
1
fi

+
(fi − f̂i)

f2
i

+
(fi − f̂i)2

f2
i f̂i

. (A.4)
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Define CV2(h) by replacing the random denominator f̂i in CV1(h) by fi.

CV2(h) def=
{
n−3

∑
i

∑
j �=i

∑
l �=i

RijRilWh,ijWh,il/f
2
i

}

+
{
n−3

∑
i

∑
j �=i

∑
l �=i

ujulWh,ijWh,il/f
2
i − 2n−2

∑
i

∑
j �=i

uiujWh,ij/fi

}

+2
{
n−3

∑
i

∑
j �=i

∑
l �=i

ujRilWh,ijWh,il/f
2
i − n−2

∑
i

∑
j �=i

uiRijWh,ij/fi

}

≡ {S1} + {S2} + 2{S3},
where the definition of Sj (j = 1, 2, 3) should be apparent.

Define η1 = (nh1 · · ·hq)−1 and η2 =
∑q

s=1 h2
s. Lemmas A.1 to A.3 below show

that S1 =
∫
[(κ2/2)

∑q
s=1 gss(x)h2

s ]2f(x)dx + O(η3
2 + η1(h1 · · ·hq)1/2 + n−1/2η2

2),
S2 = B0(nh1 · · ·hq)−1 + O(η1(η2 + (h1 · · ·hq)1/2 + n−1/2) and S3 = O(n−1/2η2

2),
where B0 = κq

∫
σ2(x)dx. Therefore,

CV2(h) = S1 + S2 + 2S3 =
∫ [κ2

2

q∑
s=1

gss(x)h2
s

]2
f(x)dx +

B0

nh1 · · ·hq

+O
(
η3
2 + η1(η2 + (h1 · · ·hq)−1 + n−1/2)

)
.

Let CVL(h) =
∫
[(κ2/2)

∑q
s=1 gss(x)h2

s ]2f(x)dx+B0(nh1 · · · hq)−1 denote the
leading term of CV2(h).

Letting h0
1, . . . , h

0
q denote the values of h1, . . . , hq that minimize CVL(h),

then obviously we have h0
s = n−1/(q+4)a0

s = O(n−1/(q+4)) for s = 1, . . . , q,
where a′0s are defined below (2.6). Recall that ĥ1, . . . , ĥq are the values of
h1, . . . , hq that minimize CV (h). Based on the fact that CV (h) = CVL(h) +
O(η3

2 + η1η2 + η1(h1 · · ·hq)1/2)+ terms not related to h1, . . . , hq, we know that
ĥs = h0

s + op(h0
s) = Op(n−1/(q+4)) for s = 1, . . . , q.

From CV1(h) = CVL(h) + O(η3
2 + η1η2 + η1(h1 · · · hq)1/2 + n−1/2η2

2) and
hs ∼ n−1/(q+4), we obtain CV1(h) = CVL(h) + O(η1(h1 · · ·hq)1/2) if q ≤ 3, and
CV1(h) = CVL(h) + O(η3

2) if q ≥ 4. Using these results one can show that
ĥs = h0

s + Op(h0
sn

−q/[2(q+4)]) if q ≤ 3, and ĥs = h0
s + Op(h0

sn
−2/(q+4)) if q ≥ 4.

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. Define ḡ(x) in the same manner as ĝ(x), but with the
ĥs’s in ĝ(x) being replaced by h0

s’s. Then it is well established that (nh0
1 · · · h0

q)1/2

(ḡ(x)−∑q
s=1(h

0
s)2µs(x)) → N(0,Ωx) in distribution. Using the result of Theorem

2.1 and a standard Taylor expansion argument (e.g., Racine and Li (2004)), it is
easy to check that ĝ(x) − ḡ(x) = op(

∑q
s=1(h

0
s)2 + (nh0

1 · · ·h0
q)−1/2). Then using

ĥs = h0
s + Op(h0

sn
−ε/(4+q)), one has Theorem 2.2.
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Below we present some lemmas that are used in the proof of Theorem 2.1.
We write An = Bn + (s.o.) to denote the fact that Bn is the leading order term
of An, while (s.o.) denotes terms of smaller order than Bn.

Lemma A.1. S1 =
∫
[(κ2/2)

∑q
s=1 gss(x)h2

s ]
2f(x)dx + O(η3

2 + η1(h1 · · · hq)1/2 +
n−1/2η2

2).

Proof. S1 = n−3∑∑∑
i�=j �=l RijRilWh,ijWh,il/f

2
i + n−3∑∑

j �=i R
2
ijW

2
h,ij/f

2
i ≡

S1a + S1b. Here S1a = [n−3∑∑∑
i�=j �=l H1a(xi, xj , xl)], where H1a(xi, xj , xl) is

a symmetrized version of RijRilWh,ijWh,il/f
2
i given by H1a(xi, xj , xl) = (1/3)

{RijRilWh,ijWh,il/f
2
i + RjiRjlWh,ijWh,jl/f

2
j + RljRliWh,ljWh,il/f

2
l }.

We first compute E[RijWh,ijf
−1
i |xi]. By the assumption that g(.) is a four-

time continuously differentiable function we have, uniformly in i,

E[RijWh,ijf
−1
i |xi] = E{ [ gj − gi − (xj − xi)′∇gi ]Wh,ijf

−1
i |xi }

= (κ2/2)
q∑

s=1

gss(xi)h2
s + O(η3

2), (A.5)

where κ2 =
∫

w(v)v2dv, gss(xi) = [∂2g(x)/∂x2
s ]|x=Xi . Using (A.5) we have

E[H1a(xi, xj , xl)] = E{E[RijWh,ijf
−1
i |xi]}2

= E
{[κ2

2

q∑
s=1

gss(xi)h2
s

]2}
+ O

(
η3
2

)

=
∫ [κ2

2

2∑
s=1

q∑
s=1

gss(x)h2
s

]2
f(x)dx + O

(
η3
2

)
, (A.6)

E[H1a(xi, xj, xl)|xi] ∼ E[RijRilWh,ijWh,il/f
2
i |xi]

= E[RijWh,ij|xi]E[RilWh,il|xi]/f2
i = {E[RijWh,ij|xi]/fi}2

=
[κ2

2

q∑
s=1

gss(xi)h2
s

]2
+ O

(
η3
2

)
. (A.7)

By (A.5), (A.6), (A.7), and the U-statistic H-decomposition, we have

S1a = E[H1a(xi, xj , xl)] +
3
n

∑
i

{E[H1a(xi, xj , xl)|Xi]−E[H1a(xi, xj , xl)]}+(s.o.)

= E[H1a(xi, xj , xl)] + n−1/2O
(
η2
2

)
+ O

(
η1(h1 · · ·hq)1/2

)

=
[κ2

2

q∑
s=1

gss(x)h2
s

]2
f(x)dx + O

(
η3
2 + η1(h1 · · ·hq)1/2 + n−1/2η2

2

)
. (A.8)

Note that in applying the U-statistic H-decomposition, we write the last term
as (s.o.) because the last term in the decomposition is a degenerate U-statistic,
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(the U-statistic (2/n(n − 1))
∑

i

∑
j>i Hn(zi, zj) is said to be a degenerate U-

statistic if E[Hn(zi, zj)|zi] = 0), and it can be easily shown that it has an order
of O(η1/2

2 η1(h1 · · ·hq)1/2) = o(η1(h1 · · · hq)1/2), so we write it as (s.o.). The
η

1/2
2 factor comes from Rij, and O(η1(h1 · · ·hq)1/2) comes from the standard

degenerate U-statistic result.

Next, we consider S1b. Defining H1b(xi, xj) = R2
ijW

2
h,ij(1/f

2
i +1/f2

j )/2, then
S1b = n−1[n−2∑

i

∑
j �=i H1b(xi, xj)], and it is easy to see that E[H1b(xi, xj)] =

E[R2
ijW

2
h,ij/f

2
i ] = O

(
η2(h1 · · ·hq)−1

)
.

Similarly, one can easily show that E[H1b(xi, xj)|xi] = O
(
η2(h1 · · ·hq)−1

)
.

Thus, by the H-decomposition,

S1b =
1
n

{
E[H1b(xi, xj)] + 2n−1

∑
i

(E[H1b(xi, xj)|xi]−E[H1b(xi, xj)]) + (s.o.)
}

= O (η2η1) . (A.9)

The lemma follows from (A.8) and (A.9).

Lemma A.2. S2 = B0(nh1 · · ·hq)−1 + O
(
η1(η2 + n−1/2 + (h1 · · · hq)1/2)

)
,

where B0 = κq
∫

σ2(x)dx, with η1 = (nh1 · · ·hq)−1 and η2 =
∑q

s=1 h2
s.

Proof. S2 = n−3∑
i

∑
j �=i

∑
l �=i ujulWh,ijWh,il/f

2
i − 2n−2∑

i

∑
j �=i uiujWh,ij/fi

= n−3 ∑
i

∑
j �=i u2

j W 2
h,ij / f2

i + n−3 ∑ ∑ ∑
i�=j �=l uj ul Wh,ij Wh,il − 2n−2∑

i

∑
j �=i uiujWh,ij/fi ≡ S2a + S2b − 2S2c.

Define H2a(zi, zj) = (1/2) (u2
i / f2

i + u2
j / f2

j )W 2
h,ij , then S2a = n−1 [n−2∑∑

i�=j H2a(zi, zj)]. Then E[H2a(zi, zj)] = E[u2
i W

2
h,ij/f

2
i ] = E[σ2(xi)W 2

h,ij/f
2
i ]

= (h1 · · ·hq)−1[B0 + O(η2)], where B0 = κq
∫

σ2(x)dx (κ =
∫

w(v)2dv).
Next, we see that

E[H2a(zi, zj)|zi] = (1/2){(u2
i /f

2
i )E[W 2

h,ij |zi] + E[(σ2(xj)/f2
j )W 2

h,ij|zi]}
= (1/2)u2

i f
−2
i {E[W 2

h,ij|xi] + (1/2)E[σ2(xj)W 2
h,ij/f

2
j |xi]

= (1/2)(h1 · · ·hq)−1f−1
i {κq[u2

i + σ2(xi)] + O(η2)}
= B0i(h1 · · ·hq)−1 + Op(η2(h1 · · ·hq)−1),

where B0i = (κq/2)f−1
i [u2

i +σ2(xi)]. It is easy to check that B0 = E[B0i]. Hence,
by the H-decomposition we have

S2a = n−1
{
E[H2a(zi, zj)]+2n−1

∑
i

(E[H2a(zi, zj)|zi]−E[H2a(zi, zj)])+(s.o.)
}

= (nh1 · · ·hq)−1[B0 + O(η2)] + Op(n−1/2η1),

where the Op(n−1/2η1) term comes from the second term of the H-decomposition.
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Next, S2b can be written as a third-order U-statistic. S2b = [n−3∑∑∑
i�=j �=l

H2b(zi, zj , zl)], where H2b(zi, zj , zl) is a symmetrized version of ujulWh,ijWh,il/f
2
i

given by

H2b(zi, zj , zl) = (1/3)[ujulWh,ijWh,il/f
2
i + uiulWh,ijWh,jl/f

2
j

+ujuiWh,ljWh,il/f
2
l ].

Note that E[H2b(zi, zj , zl)|zj ] = 0 because E(ul|zj) = 0. Hence, the leading
term of S2b is a second-order degenerate U-statistic: E[H2b(zi, zj , zl)|zi, zj ] =
(1/3)uiujE[Wh,ljWh,il/f

2
l |xi, xj ].

Straightforward calculation shows that E[Wh,ljWh,il/f
2
l |xi, xj ] = W

(2)
h,ij/fi +

O(η2), where W
(2)
h,ij =

∏q
s=1 h−1

s w(2)((xis −xjs)/hs), and w(2)(v) def=
∫

w(u)w(v +
u)du is the two-fold convolution kernel derived from w(·). Hence,

S2b = 3
{
n−2

∑∑
j �=i

E[H2b(zi, zj , zl)|zi, zj ] + (s.o)
}

=
{
n−2

∑∑
j �=i

uiujE[Wh,ljWh,il/f
2
l |zi, zj ] + (s.o.)

}

=
[
n−2(h1 · · ·hq)

∑∑
j �=i

uiujW
(2)
h,ij/fi + (s.o.)

]

= (n(h1 · · · hq)1/2)−1Z2b,n + (s.o.),

where Z2b,n = (n(h1 · · ·hq)1/2){n−2∑∑
j �=i uiujW

(2)
h,ij/fi} is a zero mean Op(1)

random variable.
Finally, S2c = n−2∑

i

∑
j �=i uiujWh,ij/fi = (n(h1 · · ·hq)1/2)−1Z2c,n, where

Z2c,n = (n(h1 · · · hq)1/2)[n−2∑
i

∑
j �=i uiujWh,ij/fi] is a zero mean Op(1) random

variable. The lemma follows.

Lemma A.3. S3 = Op(η2n
−1/2).

Proof. S3 = n−2 ∑
i

∑
j �=i ui Rij Wh,ij / fi − n−3 ∑

i

∑
j �=i

∑
l �=i Rij ul Wh,ij

Wh,il/f
2
i = n−2 ∑

i

∑
j �=i ui Rij Wh,ij / fi − n−3 ∑

i

∑
j �=i Rij uj W 2

h,ij / f2
i −

n−3∑∑∑
i�=j �=l RijulWh,ijWh,il/f

2
i ≡ S3a − S3b − S3c.

S3a = n−2∑
i

∑
j �=i H3a(zi, zj), where H3a(zi, zj) = (1/2)[uiRij/fi+ujRji/fj]

Wh,ij.
We first compute [H3a(zi, zj)|zi]. [H3a(zi, zj)|zi] = (1/2)(ui/fi)E[RijWh,ij|xi],

and E[RijWh,ij|xi] = (κ2/2)
∑q

s=1 gss(xi)h2
s + Op(η2

2). Thus, we have

[H3a(zi, zj)|zi] = (κ2/4)(ui/fi)
{ q∑

s=1

gss(xi)h2
s + Op(η

3/2
2 )

}
≡

q∑
s=1

B3ih
2
s + (s.o.),

where B3i,s = (κ2/4)(ui/fi)gss(xi).
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Using H-decomposition and noting that E[H3a(zi, zj)] = 0, we have S3a =
2n−1∑

i E[H3a(zi, zj)|zi] + (s.o.) = 2n−1∑
i

∑q
s=1 B3i,sh

2
s + (s.o.) ≡ Op(n−1/2η2),

because n−1/2∑
i B3i,s is a zero mean Op(1) random variable.

Next, for S3b it is easy to see that S3b = (nh1 · · · hq)−1Op(S3a) = Op((nh1 · · ·
hq)−1η2n

−1/2)) = op(n−1/2η2).
Finally we consider S3c. It can be written as a third-order U-statistic

S3c = n−3∑∑∑
i�=j �=l H3c(zi, zj , zl), where H3c(zi, zj , zl) is a symmetrized ver-

sion of ulRijWh,ijWh,il/f
2
i . Obviously E[H3c,(i)(zi, zj , zl)] = 0 and it can eas-

ily be verified that E[H3c,(i)(zi, zj , zl)|zi] = (1/3)ui
∑q

s=1 D3i,s, where D3i,s =
(κ2/2)gss(xi) + O(η2). Therefore, by H-decomposition we have

S3c =
3
n

∑
i

E[H3c(zi, zj , zl)|zi] + (s.o.) = n−1/2
[ q∑

s=1

n−1/2
∑

i

uiD3i,sh
2
s

]
+ (s.o.)

≡ Op(η2n
−1/2),

because n−1/2∑
i uiD3i,s is a Op(1) random variable. The lemma follows.

B. Proof of Theorems 3.1 and 3.2

We first list the assumptions that will be used to prove Theorems 3.1 and
3.2.

Let Gα
µ denote the class of functions introduced in Robinson (1988) for α > 0,

and µ a positive integer: m ∈ Gα
µ , if m(xc) is µ times differentiable, and m(xc)

and its partial derivatives (up to order µ) are all bounded by functions that have
finite αth moment.
(B1) (i) We restrict (ĥ1, . . . , ĥq, λ̂1, . . . , λ̂r) ∈ [0, η]q+r to lie in a shrinking set,
and nh1 · · ·hq ≥ tn (tn → ∞ as n → ∞). (ii) The kernel function w(·) satisfies
(A2). (iii) f(x) is bounded below by a positive constant on S × Sd, the support
of X = (Xc,Xd).
(B2) (i) {Xi, Yi}n

i=1 are independent and identically distributed as (X,Y ), ui =
Yi−g(Xi) has finite fourth moment. (ii) Defining σ2(x) = E[u2

i |Xi = x], σ2(·, xd),
g(·, xd) and f(·, xd) all belong to G4

2 for all xd ∈ Sd. (iii) Define, with the Ds(x)’s
defined in (3.3),

∫ {κ2

2

q∑
s=1

gss(x)a2
s +

r∑
s=1

Ds(x)bs

}2
f(x)dx +

B0

h1 · · ·hq

is uniquely minimized at (a0
1, . . . , a

0
q , λ

0
1, . . . , λ

0
r), and each a0

s and b0
s is finite.

Proof of Theorem 3.1. We first prove some intermediate results. Let xi =
(xc

i , x
d
i ), and define β(xi) = [∂g(xc, xd

i )/∂xc]|xc=xc
i
. Now define Rij = g(xj) −
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g(xi)−β(xi)′(xc
j−xc

i), which is equivalent to g(xj) = g(xi)+β(xi)′(xc
j−xc

i)+Rij.
Therefore, we have

yj = g(xj)+uj = g(xi)+(xc
j−xc

i )
′β(xi)+Rij +uj = (1, (xc

j−xc
i)

′)δ(xi)+Rij +uj,
(B.1)

where δ(xi) = (g(xi), β(xi)′)′.
We observe that (B.1) has a form similar to (2.2) for the continuous-regressor-

only case. Therefore, by following the same arguments as in Appendix A, one
can introduce CV0(h, λ), CV2(h, λ) and CV2(h, λ) in a manner analogous to the
continuous-regressor-only case presented in Appendix A. By also using (A.4) with
f̂i = n−1∑

j �=i Kh,ij, and noting that supx∈S |f̂(x) − f(x)| = o(1), one can show
that

CV (h, λ) = CV2(h, λ) + Op(η3 + η
−1/2
1 )Op(CV2(h, λ)) +

1
n

∑
i

u2
i , (B.4)

where η3 =
∑q

s=1 h2
s +

∑r
s=1 λs, and

CV2(h, λ) = {n−3
∑

i

∑
j �=i

∑
l �=i

RijRilKh,ijKh,il/f
2
i }

+{n−3
∑

i

∑
j �=i

∑
l �=i

ujulKh,ijKh,il/f
2
i − 2n−2

∑
i

∑
j �=i

uiujKh,ij/fi}

+2{n−3
∑

i

∑
j �=i

∑
l �=i

ujRilKh,ijKh,il/f
2
i −

∑
i

∑
j �=i

uiRijKh,ij/fi}

≡ {S1} + {S2} + 2{S3}, (B.5)

where the definition of Sj (j = 1, 2, 3) should be apparent.
By lemmas B.1 through B.3 we know that

S1 =
∑
xd

∫ {κ2

2

q∑
s=1

gss(x)h2
s +

r∑
s=1

Ds(x)λs

}2

+Op(η3
3 + η1(h1 · · ·hq)1/2 + n−1/2η2

3),
S2 = B0(nh1 · · · hq)−1 + Op(η1(η3 + n−1/2 + (h1 · · ·hq)1/2)) + (s.o.),
S3 = Op(n−1/2η3). (B.6)

Note that the above results are almost the same as the continuous-regressor
case except that η2 =

∑q
s=1 h2

s is replaced by η3 =
∑q

s=1 h2
s +

∑r
s=1 λs, i.e., the

bias term needs to be modified to include terms of order O(λs) (s = 1, . . . , r).
The variance term remains unchanged.

Combining (B.4), (B.5) and (B.6), and also dropping n−1∑
i u2

i , since it is
independent of (h, λ), we get

CV2 =
∑
xd

∫ {κ2

2

q∑
s=1

gss(x)h2
s+

r∑
s=1

Ds(x)λs

}2
f(x)dxc+

B0

nh1 · · ·hq
+(s.o.). (B.7)
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Define a1, . . . , aq, b1, . . . , br via hs = asn
−1/(q+4) (s = 1, . . . , q) and hs =

bsn
−2/(q+4) (s = 1, . . . , r). If CVL(h, λ) denotes the leading term of CV2 at

(B.7), then CVL(h, λ) = χ(a, b), where

χ(a, b) =
∫ ∑

xd

{κ2

2

q∑
s=1

gss(x)a2
s +

r∑
s=1

Ds(x)bs

}2
dxc +

B0

h1 · · ·hq
.

Let (a0
1, . . . , b

0
r) denote the values of (a1, . . . , br) that minimize χ(a, b). By

(3.4) we know that each of the a0
s’s and b0

s’s is uniquely defined and is finite.
Letting (h0

1, . . . , λ
0
r) denote the values of (h1, . . . , λr) that minimize CVL, then

obviously n1/(q+q)h0
s ∼ a0

s for s = 1, . . . , q, and n2/(q+4)λ0
s ∼ b0

s for s = 1, . . . , q.
By arguments similar to those found in the proof of Theorem 2.1 of Racine

and Li (2004), it can be shown that CV = CVL + Op((h1 · · ·hq)1/2)Op(CVL) if
q ≤ 3, and CV = CVL+Op(

∑q
s=1 h2

s)Op(CVL) if q ≥ 4. Using h0
s = O

(
n−1/(q+4)

)
we get ĥs = h0

s + Op(h0
sn

−q/[2(q+4)]), λ̂s = λ0
s + Op(n−1/2), if q ≤ 3; ĥs =

h0
s + Op(h0

sn
−2/(q+4)), λ̂s = λ0

s + Op(n−4/(q+4)), if q ≥ 4, where s = 1, . . . , q for
ĥs, and s = 1, . . . , r for λ̂s. This completes the proof of Theorem 3.1.

Proof of Theorem 3.2. Define ḡ(x) in the same manner as ĝ(x) but with h0
s’s

and λ0
s’s replacing ĥs’ and λ̂s’s. Then it is easy to see that (nh0

1 · · ·h0
q)1/2(ḡ(x)−

g(x) − (κ2/2)
∑q

s=1 gss(x)(h0
s)2 −

∑r
s=1 Ds(x)λ0

s) → N(0,Ω(x)) in distribution.
Next, using the results of Theorem 3.1 and a Taylor expansion argument, it

is easy to show that (ĝ(x)− ḡ(x)) = op(n−2/(q+4)), also ĥ2
s = (h0

s)2+op(n−2/(q+4))
and λ̂s = λ0

s + op(n−2/(q+4)). Theorem 3.2 follows from these results.

Lemma B.1. S1 =
∫ {(κ2/2)

∑q
s=1 gss(x)h2

s +
∑r

s=1 Ds(x)λ2
s}2f(x)dx + Op(η3

3 +
η1(h1 · · ·hq)1/2 + n−1/2η2

3), where the Djs(x)’s are some functions defined in the
proof of Theorem 3.2.

Lemma B.2. S2 = B0(nh1 · · ·hq)−1 + Op(η1(η3 + n−1/2 + (h1 · · ·hq)1/2)), where
B0 = κq ∑

xd

∫
σ2(x)dxc.

Lemma B.3. S3 = Op(n−1/2η3).

The proofs of Lemmas B.1 through B.3 proceed along the lines of the proofs
of Lemmas A.1 through A.3. Below we provide outlines of proofs for Lemmas
B.1 and B.2.

Proof of Lemma B.1. We have S1 = n−3∑∑∑
i�=j �=l RijRilKh,ijKh,il/f

2
i +

n−3∑∑
j �=i R

2
ijK

2
h,ij/f

2
i ≡ S1a+S1b. The term S1a can be written as a third order

U-statistic whose leading term is E[RijRilKh,ijKh,il/f
2
i ]=E{E[RijKh,ij/fi|xi]2}.

Now

E[RijKh,ijf
−1
i |xi] = E{ [ gj − gi − (xc

j − xc
i )

′∇gi ]Kh,ijf
−1
i |xi }
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=
κ2

2

q∑
s=1

gi,ssh
2
s +

q∑
s=1

λs

∑
vd

[1s(xd
i , v

d)g(xc
i , v

d) − g(xi)] + O
(
η2
3

)
,

where gi,ss = [∂2/∂(xc
s)2g(x)]|x=Xi is the second partial derivative of g with

respect to xc
s evaluated at xi. Therefore,

E{E[RijKh,ij/fi|xi]2}

= E
{κ2

2

q∑
s=1

gss(xi)h2
s +

q∑
s=1

λs

∑
vd

[1s(xd
i , v

d)g(xc
i , v

d) − g(xi)]
}2

+ O
(
η3
3

)

≡
∑
xd

∫ {κ2

2

q∑
s=1

gss(x)h2
s +

∑
s=1

λsDs(x)
}2

f(x)dxc + O
(
η3
3

)
,

where Ds(x) =
∑

vd [1s(xd, vd)g(xc, vd) − g(x)]f(xc, vd).
Similar to the arguments used in the proof of Lemma A.1, one can show that

S1 = E{E[RijKh,ij/fi|xi]2}+Op(η3
3 +η1(h1 · · ·hq)1/2 +n−1/2η2

3). This completes
the proof.

Proof of Lemma B.2. S2 =n−3∑
i

∑
j �=i

∑
l �=i ujulKh,ijKh,il/f

2
i −2n−2∑

i

∑
j �=i

uiujKh,ij/fi = n−3 ∑
i

∑
j �=i u

2
jK

2
h,ij/f

2
i + n−3∑∑∑

i�=j �=l ujulKh,ijKh,il − 2n−2∑
i

∑
j �=i uiujKh,ij/fi ≡ S2a + S2b − 2S2c.

Along the lines of the proof of Lemma A.2, it can be shown that S2 =
E(S2a)+ O(E(S2a)

(
η3 + n−1/2 + (h1 · · ·hq)1/2

)
. The leading term of S2, E[S2a]

is

E[S2a] = n−1E[u2
i K

2
h,ij/f

2
i ] = n−1E[σ2(xi)K2

h,ij/f
2
i ]

= (nh1 · · ·hq)−1[B0 + O(η3)],

where B0 = κqE[σ2(xi)/f(xi)], κ =
∫

w(v)2dv. Thus, we have

S2 = E[S2a] + O
(
E(S2a)(η3 + n−1/2 + (h1 · · ·hq)1/2)

)
=

B0

nh1 · · ·hq
+ O

(
η1(η3 + n−1/2 + (h1 · · ·hq)1/2)

)
.

This completes the proof of Lemma B.2.
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