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Abstract: One well-known use of kernel density estimates is in nonparametric dis-

criminant analysis, and its popularity is evident in its implementation in some

commonly used statistical softwares (e.g., SAS). In this paper, we make a critical

investigation into the influence of the value of the bandwidth on the behavior of the

average misclassification probability of a classifier that is based on kernel density es-

timates. In the course of this investigation, we have observed some counter-intuitive

results. For instance, the use of bandwidths that minimize mean integrated square

errors of kernel estimates of population densities may lead to rather poor average

misclassification rates. Further, the best choice of smoothing parameters in clas-

sification problems not only depends on the underlying true densities and sample

sizes but also on prior probabilities. In particular, if the prior probabilities are

all equal, the behavior of the average misclassification probability turns out to be

quite interesting when both the sample sizes and the bandwidths are large. Our

theoretical analysis provides some new insights into the problem of smoothing in

nonparametric discriminant analysis. We also observe that popular cross-validation

techniques (e.g., leave-one-out or V -fold) may not be very effective for selecting the

bandwidth in practice. As a by-product of our investigation, we present a method

for choosing appropriate values of the bandwidths when kernel density estimates

are fitted to the training sample in a classification problem. The performance of

the proposed method has been demonstrated using some simulation experiments

as well as analysis of benchmark data sets, and its asymptotic properties have been

studied under some regularity conditions.

Key words and phrases: Average misclassification probability, bandwidth selection,

Bayes’ risk, cross-validation techniques, location-shift models, scale space, spherical

symmetry.

1. Introduction

In a discriminant analysis problem, one uses a decision rule d(x) : Rd →
{1, . . . , J} for classifying a d-dimensional observation x into one of the J classes.
The optimal Bayes rule (see e.g., Rao (1973) and Anderson (1984)) assigns an
observation to the class with the largest posterior probability. It can be described
as

d(x) = arg max
j
p(j | x) = arg max

j
πjfj(x),
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where the πj ’s are the prior probabilities and the fj(x)’s are the probability den-
sity functions of the respective classes (j = 1, . . . , J). Throughout this paper, we
evaluate the performance of a discrimination rule by its average misclassification
probability

∆ =
J∑

j=1

πjP{d(x) �= j | x ∈ jth population}.

Density functions fj(x)’s are usually unknown in practice, and can be estimated
from the “training data set” either parametrically or nonparametrically. In para-
metric approaches (see e.g., Rao (1973), Mardia, Kent and Bibby (1979), An-
derson (1984), James (1985), Fukunaga (1990), McLachlan (1992) and Ripley
(1996)), the underlying population distributions are assumed to be known ex-
cept for some unknown parameters (e.g., mean vector, dispersion matrix). Con-
sequently, the performance of a parametric discrimination rule largely depends on
the validity of those parametric models. Nonparametric classification techniques
(see e.g., Breiman, Friedman, Olshen and Stone (1984), Loh and Vanichsetakul
(1988), Dasarathy (1991), Hastie, Tibshirani and Buja (1994), Hastie and Tib-
shirani (1996), Bose (1996), Kooperberg, Bose and Stone (1997), Loh and Shih
(1997) and Kim and Loh (2001)), however, are more flexible in nature and free
from such parametric model assumptions. Kernel density estimation (see e.g.,
Muller (1984), Silverman (1986), Scott (1992) and Wand and Jones (1995)) is a
well-known method for constructing nonparametric estimates of population den-
sities. The use of kernel density estimates in discriminant analysis is quite pop-
ular in the existing literature (see e.g., Hand (1982), Coomans and Broeckaert
(1986), Silverman (1986), Hall and Wand (1988), Scott (1992), Ripley (1996),
Duda, Hart and Stork (2000), Hastie, Tibshirani and Friedman (2001) and Bens-
mail and Bozdogan (2002)) and in many standard softwares (e.g., SAS).

If Xj1, . . . ,Xjnj are d-dimensional observations in the training sample from
the jth population, the kernel estimate of the density fj(x) is given by

f̂jh(x) = nj
−1h−d

nj∑
k=1

K
{
h−1(Xjk − x)

}
,

where the kernel function K(.) is a density function on the d-dimensional space,
and h > 0 is a smoothing parameter popularly known as the bandwidth. A
classification rule based on these kernel density estimates can be described as

d∗(x) = arg max
j
πj f̂jh(x).

For usual density estimation problems, the optimal bandwidth is generally
taken to be the one that minimizes the mean integrated square error (MISE =
E[
∫ {f̂jh(x) − fj(x)}2 dx], see e.g., Silverman (1986) and Scott (1992)). As the
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performance of a nonparametric classifier depends on the corresponding class
density estimates, the choice of the smoothing parameter does have an impor-
tant role in classification problems also. A question that naturally arises at this
point is: how good is the average misclassification rate when the bandwidth that
minimizes MISE for the density estimation problem is used for classification?

In an attempt to investigate this question, we begin by considering a very
simple two class problem with equal priors, where the classes are multivariate
normal with the same dispersion matrix Σ = I but different mean vectors µ1

and µ2. In this setting, the bandwidth that minimizes the MISE is the same
for both classes if one has equal numbers of data points from the two classes in
the training sample. Further, if we use normal kernel, it is possible to compute
the bandwidth that minimizes MISE analytically for normally distributed data.
For such a problem, the average misclassification probability (∆) can also be
evaluated and plotted as a function of the bandwidth (h). Since the kernel
density estimate is an average of i.i.d. random variables, one can conveniently use
a normal approximation for its distribution. The mean and the variance of this
normal approximation have nice analytic expressions when both the distribution
of the data and the kernel are normal. We have tried to evaluate ∆(h) for a given
value of h by two different procedures, one by using the normal approximation
(described above) and the other by a large scale Monte-Carlo simulation. There
was no visible difference in the plotted values of ∆(h) for these two different
approaches – it seems that our sample size (n1 = n2 = 50) was good enough for
a very high degree of accuracy in the normal approximation for the distribution
of kernel density estimates.

In Figure 1.1, ∆(h) has been plotted for varying choices of h and for dif-
ferent dimensions (d = 1, 2, 4, 6), where we have chosen µ1 = (0, . . . , 0) and
µ2 = (2, 0, . . . , 0), and the sample sizes are taken as 50 for both classes. This
figure clearly shows striking difference between the optimal bandwidth for the
usual density estimation problem and that for the classification problem. For dif-
ferent dimensions, optimal bandwidths for the classification problems (i.e., the
bandwidths leading to the lowest misclassification probabilities) are marked by
‘∗’ in the figure, and the bandwidths that minimize MISE are marked by ‘◦’.
This difference between the two bandwidths becomes larger as the dimension d
increases. For dimension d = 6, the best bandwidth for the classification problem
reduces the average misclassification rate by almost 32% when compared to the
error rate corresponding to the optimal bandwidth that minimizes the MISE in
the density estimation problem.

What is even more interesting and counter-intuitive in Figure 1.1 is the
behavior of ∆(h) for large values of h. It is well-known that for the density
estimation problem, the MISE turns out to be large for very small values of the
bandwidth (due to large variance) as well as for very large values of the bandwidth
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(due to large bias) (see e.g., Silverman (1986), Scott (1992) and Wand and Jones
(1995) for detailed discussion). However, in all the cases in Figure 1.1, ∆(h)
becomes almost flat after reaching its minimum value. Unlike what happens in
the case of usual density estimation, large bandwidths do not seem to be a bad
choice for the classification problems considered here. By changing µ1, µ2 and
Σ, we get different figures for ∆(h) but the basic pattern remains the same.
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Figure 1.1. True ∆-function and optimal bandwidths (equal prior cases).

There are other popular methods for choosing the bandwidth in a classifica-
tion problem based on cross-validation techniques (see e.g., Breiman, Friedman,
Olshen and Stone (1984), Ripley (1996) and Duda, Hart and Stork (2000)). For
instance, V -fold cross-validation divides the whole training sample into V parts
of size as nearly equal as possible. Usually stratified random sampling is used
to form the folds, where observations belonging to different classes are used as
different strata. Then, taking one fold at a time as a test sample, one uses differ-
ent bandwidths to classify its members based on a training sample formed by all
the observations belonging to the other V − 1 folds. This procedure is repeated
over the V folds, and the overall proportion of misclassification is used to esti-
mate ∆(h). The bandwidth h, for which estimated value of ∆(h) is minimum, is



KERNEL DISCRIMINANT ANALYSIS 461

considered as the optimal bandwidth. When we have a total of N observations,
leave-one-out or N -fold cross-validation (see e.g., Mosteller and Wallace (1963),
Hills (1966) and Lachenbruch and Mickey (1968)) can be viewed as a special case
of this procedure, where each fold consists of a single observation.

As the observed proportions of misclassifications are used to estimate ∆(h),
the estimates are like step functions instead of being smooth curves even when
the true ∆(h) is a nice smooth function. Consequently, instead of a single unique
minimum, this procedure frequently leads to an interval or a union of some
intervals as the possible choices for smoothing parameter from which it is difficult
to choose a single optimum value.

In Figure 1.2, we demonstrate the limitations of cross-validation based tech-
niques. Here, we consider the same problem as in Figure 1.1 and generate samples
from the same normal populations. The true and estimated (by leave-one-out
and 10-fold cross-validations) average misclassification probabilities are plotted
simultaneously in Figure 1.2. The estimated curves not only behave like step
functions but also miss the proper locations of optimum bandwidths by wide
margins in some cases.

2. Behavior of ∆(h) as h varies

We know that for very large bandwidths, the MISE of a kernel density
estimate becomes large due to large bias, and we have observed in the examples in
the preceding section that ∆(h) reaches a minimum and then remains nearly flat
for a wide range of large values of h. We first try to explain such an apparently
anomalous behavior of ∆(h) in those examples. Throughout this section, we
assume that we have n observations in the training sample from each population,
and a common bandwidth h is used for different population density estimates
(which is justified in cases like location-shift population models).

For varying choices of the smoothing parameter h, following the ideas and
the terminology in Chaudhuri and Marron (1999, 2000), E{f̂h(x)} and f̂h(x) can
be viewed as the theoretical and the empirical scale space functions respectively.
Theoretical scale space functions E{f̂jh(x)} are the convolutions of the true
densities fj(x) with a kernel K with bandwidth h. We know that with growing
sample size, the variance of a kernel density estimate (which is an average of a
set of i.i.d. random variables) gets smaller and, as a consequence, for any fixed
bandwidth h the distribution of f̂h(x) tends to be almost degenerate at E{f̂h(x)}
when the sample size is large.
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Figure 1.2. Average misclassification probabilities (equal prior cases).

When the prior probabilities for different populations are all equal, for a
fixed value of h, as the sample size n tends to infinity the kernel density estimate
based classifier tends to classify an observation into the class which has the largest
value for the theoretical scale space function. When f and K both happen to
be spherically symmetric and strictly decreasing functions of the distance from
their centers of symmetry, the same holds for the convolution and, in that case
for all values of h, theoretical scale space functions preserve the ordering among
the original densities when they satisfy a location-shift model.
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Theorem 2.1. Suppose that f1, . . . , fJ and K are all spherically symmetric
densities and the fj’s satisfy the location-shift model i.e., fj(x) = g(x − µj) for
some common density g with zero mean and location parameter µj . Assume
also that the fj’s and K are strictly decreasing functions of the distance from
their centers of symmetry. Then, for any positive h as n → ∞, the average
misclassification probability of the kernel density estimate based classifier tends
to the optimal Bayes risk provided the prior probabilities are equal.

This theorem explains the reason behind the counter-intuitive behavior of
∆(h) observed in Figure 1.1. The next theorem throws some light on the behav-
ior of kernel density estimate based classifiers for large sample sizes and large
bandwidths when the population densities do not necessarily satisfy symmetry
condition.

Theorem 2.2. Suppose that fj(x)’s are density functions satisfying
∫ ‖x‖6

fj(x)dx < ∞ for all j = 1, . . . , J , and the kernel K is a density with a mode at
0 and bounded third derivatives. Then, if the priors are equal, as n, h → ∞ the
average misclassification probability of the kernel density estimate based classifier
tends to that of a linear classifier given by

dL(x) = arg min
j

[
x

′∇2K(0)Efj
(X) − (1/2)Efj

{X′∇2K(0)X}
]
.

Note that when the kernel K is spherically symmetric and a strictly decreas-
ing function of the norm of its argument, the limiting linear classifier obtained
in the preceding theorem for a large bandwidth and a large sample size is nearly
equivalent to the classifier that classifies an observation x into the class j0 that
maximizes x′Efj

(X)−(1/2)Efj
(XX′) or minimizes Efj

(‖x − X‖2) for 1 ≤ j ≤ J .
Interestingly, the behavior of the average misclassification probability turns

out to be quite different when the prior probabilities are different for different
populations. As an example, we consider the same distributions as discussed in
Figures 1.1 and 1.2 but now we set the priors at 0.6 and 0.4, respectively, for the
two populations. The results obtained are summarized in Figure 2.1. Once again,
in some of the cases, the bandwidth that minimizes ∆(h) (marked by ‘∗’) and
the bandwidth minimizing the MISE for the kernel density estimate (marked by
‘◦’) turn out to be quite different. However, more importantly, ∆(h) now shows
a completely different behavior as h varies. After reaching its minimum value,
∆(h) increases significantly before becoming flat. Large bandwidths do not seem
to be a good choice for the classification problem here. The following theorem
describes the behavior of the kernel density estimate based classifiers for large
training sample sizes and large bandwidths when the priors are not necessarily
equal.
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Figure 2.1. True ∆-function and optimal bandwidths (unequal prior cases).

Theorem 2.3. Suppose that the density functions f1, . . . , fJ and the kernel K
satisfy the conditions of Theorem 2.2. Assume further that the densities fj’s
satisfy the location-shift model in the sense that for all j = 1, . . . , J , fj(x) =
g(x − µj) for a common density g with zero mean and location parameter µj .
Then, as n, h → ∞ the average misclassification probability of kernel density
estimate based classifier behaves in the following way.
(a) If π1 = · · · = πJ , the average misclassification rate of the classifier tends to
that of a linear classifier given by

dl(x) = arg min
j

[
x′∇2K(0)µj − {µj

′∇2K(0)µj}/2
]
.

(b) If there exists a j0 such that πj0 > πj for all j �= j0, the average misclassi-
fication rate of the classifier tends to that of the trivial classifier which classifies
all observations to the population j0. (This also holds for finite n and h tending
to infinity.)
(c) If there exist m maxima among the prior probabilities, πj1 = · · · = πjm > πj

for all j /∈ {j1, . . . , jm}, the average misclassification probability of the classifier
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tends to that of a linear classifier for an m-class problem, where the classes are
those which have the maximum prior probability.

Thus, when the prior probabilities for different populations are not equal,
one needs to make a careful selection of the bandwidth in order to ensure good
performance of kernel density estimate based classifiers.
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Figure 2.2. Classification boundaries for kernel based and linear classifiers.

Figure 2.2 presents the class boundaries for a two class problem involving
spherically symmetric bivariate normal populations with unit variance and loca-
tion parameters (0, 0) and (2, 0) for the two classes. The dot-dash line gives the
class boundary for the usual linear discriminant analysis (LDA) and the continu-
ous solid line gives the boundary for kernel density estimate based classifier where
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the optimum bandwidth for classification (h∗) is used to estimate the densities
of the two populations. As the population distributions are spherically symmet-
ric and satisfy the location-shift model, LDA performs ideally but, in all these
examples, the kernel method also had decent performance. When the priors for
the two populations are different (0.7 and 0.3 respectively), the class boundaries
for the two methods seem to be quite different but, in equal prior cases, they
tend to be the same separating line with increasing sample size. We also know
that under this spherically symmetric set up, the misclassification rate for any
fixed bandwidth kernel classifier asymptotically converges to the optimal Bayes
risk (which is same as the error rate for the standard linear classifier in this case)
when the prior probabilities are equal. In Figure 2.3, we have plotted the class
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Figure 2.3. Classification boundaries for fixed bandwidth kernel classifiers
and linear classifiers.
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boundaries for two such classifiers (with h = 1 and h = 3) in the equal prior
case for the same data set discussed above. From this figure it is quite evident
that with growing sample size, the class boundaries for kernel-based classifiers
converge to the separating line obtained by usual linear discriminant analysis.

For the kernel density estimation problem, there are many different tech-
niques for choosing the bandwidth from the data (see e.g., Stone (1984), Silver-
man (1986), Hall, Sheather, Jones and Marron (1991), Sheather and Jones (1991)
and Wand and Jones (1995)). Some good reviews of bandwidth selection meth-
ods in kernel density estimation are available in Jones, Marron and Sheather
(1996a, 1996b). While those techniques are quite good for giving low MISE
for the density estimate, they may not be appropriate for handling classification
problems. We pointed out already that other popular techniques, such as the V -
fold cross-validation, also have some serious limitations. In Figure 2.4, we show
the performance of such cross validatory techniques for the normal population
problems with unequal priors (as in Figure 2.1). Estimated ∆-functions again
turn out to be step functions with multiple minima for leave-one-out as well as
for 10-fold cross-validation.

3. Data-Based Choice for Bandwidths in Kernel Discriminant Analysis

In this section, we propose and investigate a procedure for choosing band-
widths when a kernel density estimate based classifier is to be used. This proposal
has been motivated by our findings reported in the preceding sections. In a J-
class discrimination problem, if we use J different bandwidths h1, . . . , hJ for the
J populations, average misclassification probability is given by

∆(h1, . . . , hJ) =
J∑

j=1

πj

∫
P{πj f̂jhj

(x) ≤ πif̂ihi
(x) for some i �= j} fj(x)dx

= 1 −
J∑

j=1

πj

∫
P{πj f̂jhj

(x) > πif̂ihi
(x) for all i �= j} fj(x)dx

= 1 −
J∑

j=1

πj

∫ [ ∫ ∏
i�=j

P{πif̂ihi
(x) < u} gjhj

(u) du
]
fj(x)dx,

where gjhj
(·) is the p.d.f. of πj f̂jhj

(x). Here, the probability function P (·) does
not have a closed form expression. One possibility is to use resampling tech-
niques like bootstrap (see e.g., Efron (1982) and Efron and Tibshirani (1993))
to estimate this probability. But in that case, to compute the misclassification
probability at any data point a number of bootstrap samples have to be generated
by a leave-one-out method and, for different data points, one has to use differ-
ent bootstrap samples. As a result, the complexity of the algorithm increases
substantially, and this increment is linear in the number of bootstrap samples.



468 ANIL K. GHOSH AND PROBAL CHAUDHURI

0.1
00

00

11

11

22

22

33

33

44

44

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.4
0.4

0.4

0.4

0.50.5

0.15

0.15

0.15
0.15

0.25

0.25

0.25

0.25

0.35

0.35

0.35

0.35

0.450.45

0.45

BandwidthBandwidth

Bandwidth

Bandwidth

10-fold CV10-fold CV

10-fold CV10-fold CV

True functionTrue function

True functionTrue function

Proposed methodProposed method

Proposed methodProposed method

Leave-one out CVLeave-one out CV

Leave-one out CVLeave-one out CV

(a) d = 1, n = 50. (b) d = 2, n = 50.

(c) d = 4, n = 50. (d) d = 6, n = 50.

A
v
g
.
m

is
c
la

ss
ifi

c
a
ti

o
n

p
ro

b
.

A
v
g
.
m

is
c
la

ss
ifi

c
a
ti

o
n

p
ro

b
.

A
v
g
.
m

is
c
la

ss
ifi

c
a
ti

o
n

p
ro

b
.

A
v
g
.
m

is
c
la

ss
ifi

c
a
ti

o
n

p
ro

b
.

Figure 2.4. Average misclassification probabilities (unequal prior cases).

Generally, a large number of bootstrap samples is required to get a reliable esti-
mate for the probability function, which makes the use of bootstrap approxima-
tion in practice very difficult if at all possible.

For large and moderately large samples, we can use normal approximation to
the distribution of kernel density estimates and, since a kernel density estimate
is a simple average of i.i.d. random variables, there is not much loss of accuracy
in such approximation. Let µjhj

(x) and s2jhj
(x) be the mean and the variance

of f̂jhj
(x) (j = 1, . . . , J). Then the average misclassification probability can be
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approximated by

ψ(h1, . . . , hJ ) = 1 −
J∑

j=1

πj

∫ [ ∫ ∏
i�=j

Φ
{u− πiµihi

(x)
πisihi

(x)

}

×φ
{
u, πjµjhj

(x), πjsjhj
(x)
}
du
]
fj(x)dx,

where Φ(·) is the c.d.f. of standard normal distribution and φ(·, µ, s) is the p.d.f. of
a normal distribution with mean µ and standard deviation s.

Theorem 3.1. Suppose that n1, . . . , nJ (N =
∑
nj) are the training sample

sizes from the J populations, and hn1 , . . . , hnJ
are the bandwidths used in ker-

nel estimates of population densities f1, . . . , fJ , respectively. Further, assume
that the densities f1, . . . , fJ have bounded third derivatives, and the kernel K
is bounded and symmetric about 0 satisfying

∫ ‖y‖3K2(y)dy < ∞. For every
j ∈ {1, . . . , J}, as N → ∞ we assume that hnj → 0, hnj/hni → γji > 0 for
all i, njh

d
nj

→ ∞ and nj/N → λj such that 0 < λj < 1. Then as N → ∞,
|∆(h1n1

, . . . , hJnJ
) − ψ(h1n1

, . . . , hJnJ
)| → 0, and both ∆(h1n1

, . . . , hJnJ
) and

ψ(h1n1
, . . . , hJnJ

) tend to the optimal Bayes risk.

Thus, if one minimizes ψ(h1, . . . , hJ ) w.r.t. h1, . . . , hJ , one has a kernel den-
sity estimate based classification rule with asymptotic average misclassification
probability equal to the optimal Bayes risk, under suitable regularity conditions.

3.1. Data analytic implementation

In practice, it is not possible to compute ψ as it involves unknown population
parameters. Instead, we first go to its sample analogue

ψN (h1, . . . , hJ ) = 1 −
J∑

j=1

πj

nj

nj∑
k=1

[ ∫ ∏
i�=j

Φ
{u− πiµihi

(Xjk)
πisihi

(Xjk)

}

×φ
{
u, πjµjhj

(Xjk), πjsjhj
(Xjk)

}
du
]
,

where Xjk is the kth observation of the jth class. Even the terms µjhj
(Xjk)

and s2jhj
(Xjk) that appear in the expression above can only be estimated from

the available data. In our investigation, we used estimates for them based on
kernel density estimates of the population densities, and such estimates were
found to yield very good results. For these kernel density estimates, we used
the simple least squares cross-validation method (see e.g., Hall (1983), Silverman
(1986), Hall and Marron (1987) and Scott (1992)) that looks to minimize MISE

for choosing the bandwidths. Since in our numerical study we have used normal
kernels, we got closed form expressions for the estimates µ∗jhj

(Xjk) and s∗2jhj
(Xjk)
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of µjhj
(Xjk) and s2jhj

(Xjk), respectively. This led to a further approximation of
ψN (h1, . . . , hJ ) by ψ∗

N (h1, . . . , hJ), where

ψ∗
N (h1, . . . , hJ ) = 1 −

J∑
j=1

πj

nj

nj∑
k=1

[ ∫ ∏
i�=j

Φ
{u− πiµ

∗
ihi

(Xjk)
πis∗ihi

(Xjk)

}

×φ
{
u, πjµ

∗
jhj

(Xjk), πjs
∗
jhj

(Xjk)
}
du
]
.

The integral appearing in the above expression can be evaluated numerically
without much difficulty and to a great degree of accuracy. For computing the es-
timates µ∗jhj

(Xjk) and s∗jhj
(Xjk), we used the leave-one-out strategy and did

not use the Xjk in the corresponding kernel density estimate. These estimates
are

µ∗jhj
(Xjk) =

1
nj − 1

nj∑
l=1
l�=k

φd

(
Xjk,Xjl, {h2

j + h2
◦j}Id

)
,

s∗2jhj
(Xjk) =

1
nj − 1

[( 1
4πh2

j

)d/2{ 1
nj − 1

nj∑
l=1
l�=k

φd

(
Xjk,Xjl, {0.5h2

j + h2
◦j}Id

)}

−µ∗2jhj
(Xjk)

]
,

where φd(x,µ,Σ) = (2π)−d/2|Σ|−1/2 exp{−(x − µ)
′
Σ−1(x − µ)/2}, and h◦j is

the bandwidth that minimizes estimated MISE of a kernel density estimate
of the jth population. For computing µ∗ihi

(Xjk) and s∗2ihi
(Xjk) (i �= j), almost

identical formulae are used except for the fact that the sum extends over all
1 ≤ l ≤ ni (i.e., no observation is left out), and the factor 1/(nj − 1) gets
replaced by 1/ni. Note that, unlike the step function obtained in V -fold cross-
validation, ψ∗

N (h1, . . . , hJ ) is a smooth function, and we propose to minimize it
over h1, . . . , hJ to find optimal bandwidths. In all the examples considered in
Figures 1.2 and 2.4, we plotted our ψ∗

N function for h1 = h2 together with the cor-
responding 10-fold and N -fold (leave-one-out) cross-validation functions as well
as the true average misclassification probability functions. Note that, since we
considered only normal distribution models where two different populations were
just location shifts of each other, a common choice of the bandwidth for different
populations was quite justified, and it reduced the computing time significantly.
It is quite transparent from the pictures that our proposed criterion function for
choosing the optimum bandwidth for classification does a fairly good job in all the
examples, and does visibly better than both 10-fold and N -fold cross-validation
criteria.
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3.2. Results from simulation experiments

In this section, we report some simulation studies that illustrate the per-
formance of our proposed method. To reduce computational complexities, we
used a common bandwidth for different populations and minimized ψ∗

N (h) over
the single parameter h. In general, this leads to a conservative evaluation of the
performance of our method because the use of different bandwidths for different
populations will lead to a lower average misclassification probability, at the cost
of increased complexity. Note also that if we have different population densities
satisfying location shift models (as we do in the simulations), using a common
bandwidth for different populations is quite justified if the training sample sizes
for different populations happen to be the same.

We start with some two-class problems with normally distributed popula-
tions that differ only in their location parameters. To make our examples simpler,
we take Σ1 = Σ2 = I and choose the location parameters µ1 and µ2 in such a
way that they differ only in their first co-ordinates. This difference (µ) is taken
to be 1, 2 and 3 in our experiments. For each of these examples, we generated
100 sets of observations taking samples of equal sizes (50 or 100) from both the
classes. Since the true underlying densities are known, it is possible to compute
the true optimum bandwidth minimizing the MISE (h◦) and that minimizing
the average misclassification probability (h∗). Both leave-one-out and 10-fold
cross-validation techniques suffer from the problem of having multiple minima
when estimating the ∆-function. This makes it difficult to select the optimum
bandwidth based on such criteria. In those cases, however, the bandwidth which
is largest among the minimizers can be considered, and we denote the band-
widths obtained from leave-one-out and 10-fold cross validation by h+ and h(10)

+ ,
respectively. Averages and standard errors of the corresponding true ∆ values
of those 100 simulation runs are reported in Tables 3.1 (3.1A and 3.1B) and 3.2
(3.2A and 3.2B). True ∆ values are reported for h◦ and h∗ as well. Optimal
Bayes errors are also given to facilitate comparison.

The results for normally distributed populations with equal priors for dimen-
sions 2, 4 and 6 are presented in Table 3.1A. In all these examples, the proposed
method showed an excellent performance and achieved nearly the true optimum
average misclassification rates. Cross validation based methods performed bet-
ter than h◦, but they could not match the performance of our proposed band-
width selection procedure. As far as average misclassification probabilities are
concerned, our proposed choice of bandwidth had a slight edge over the cross
validation based techniques, but in terms of consistency it substantially outper-
formed both h+ and h

(10)
+ . These cross validation based techniques were found

to have much higher standard errors as compared to the proposed bandwidth
selection procedure.
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Table 3.1A. Normal distributions with equal priors.

Bayes ∆ in percentage

µ risk d n h◦ h∗ h+ h
(10)
+ Proposed method

2 50 33.22 31.77 32.96 (0.242) 32.97 (0.256) 31.81 (0.009)
100 32.41 31.36 32.18 (0.150) 32.26 (0.148) 31.40 (0.008)

1.0 30.85 4 50 37.28 32.62 33.65 (0.198) 33.78 (0.263) 32.67 (0.009)
100 35.95 31.82 32.40 (0.137) 32.36 (0.107) 31.85 (0.006)

6 50 40.34 33.38 34.77 (0.321) 34.53 (0.280) 33.44 (0.018)
100 39.24 32.25 32.83 (0.147) 32.72 (0.088) 32.26 (0.003)

2 50 16.98 16.10 17.10 (0.265) 16.79 (0.213) 16.13 (0.005)
100 16.56 15.92 16.46 (0.149) 16.30 (0.098) 15.96 (0.009)

2.0 15.87 4 50 20.73 16.53 17.48 (0.253) 17.40 (0.300) 16.57 (0.009)
100 19.51 16.18 16.60 (0.091) 16.77 (0.193) 16.20 (0.006)

6 50 25.17 16.88 17.79 (0.275) 17.43 (0.139) 16.91 (0.005)
100 23.68 16.37 16.78 (0.076) 16.81 (0.099) 16.38 (0.003)

2 50 7.66 6.94 8.05 (0.325) 8.13 (0.324) 6.97 (0.010)
100 7.37 6.85 7.21 (0.180) 7.46 (0.202) 6.88 (0.008)

3.0 6.68 4 50 10.70 7.04 7.97 (0.258) 8.17 (0.339) 7.06 (0.004)
100 9.74 6.89 7.59 (0.226) 7.54 (0.274) 6.90 (0.004)

6 50 15.13 7.21 8.31 (0.405) 8.19 (0.385) 7.22 (0.002)
100 13.80 6.99 7.99 (0.311) 7.64 (0.141) 7.00 (0.002)

Table 3.1B. Double exponential distributions with equal priors.

Bayes ∆ in percentage

µ risk d n h◦ h∗ h+ h
(10)
+ Proposed method

2 50 34.94 33.08 34.42 (0.152) 34.31 (0.177) 33.36 (0.041)
100 33.62 31.78 32.71 (0.110) 32.66 (0.142) 31.96 (0.025)

1.0 30.33 4 50 40.78 36.38 37.98 (0.214) 37.86 (0.212) 36.70 (0.037)
100 39.41 34.43 35.34 (0.111) 35.25 (0.113) 34.70 (0.031)

6 50 43.58 38.10 39.86 (0.231) 39.90 (0.249) 38.59 (0.044)
100 42.72 35.91 37.25 (0.177) 37.36 (0.177) 36.28 (0.039)

2 50 21.35 18.90 20.13 (0.182) 20.14 (0.230) 19.01 (0.028)
100 20.58 18.47 19.16 (0.090) 19.15 (0.097) 18.64 (0.015)

2.0 18.39 4 50 27.73 20.46 22.08 (0.189) 22.15 (0.195) 20.68 (0.027)
100 26.28 19.46 20.35 (0.084) 20.37 (0.089) 19.58 (0.013)

6 50 32.46 21.46 23.67 (0.187) 23.69 (0.203) 21.88 (0.037)
100 31.28 19.89 21.18 (0.148) 21.11 (0.140) 20.17 (0.024)

2 50 14.44 11.82 12.94 (0.191) 12.73 (0.169) 12.02 (0.021)
100 13.85 11.69 12.34 (0.192) 12.34 (0.178) 11.78 (0.009)

3.0 11.16 4 50 20.10 12.02 13.62 (0.242) 13.15 (0.171) 12.14 (0.011)
100 18.92 11.80 12.52 (0.107) 12.68 (0.122) 11.87 (0.006)

6 50 24.99 12.17 13.90 (0.192) 14.03 (0.200) 12.38 (0.014)
100 24.06 11.92 12.87 (0.183) 12.67 (0.102) 12.03 (0.007)
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Table 3.1B gives the same picture when, instead of normal, we consider dou-
ble exponential distributions with independent component variables. Even in
this case, where the population distributions are not spherically symmetric, the
mean and the variance of the kernel density estimate have nice analytic expres-
sions when a normal kernel is used. In all these examples, the proposed method
performed quite well. Once again, cross validation based methods performed bet-
ter than h◦, but had slightly higher error rates and substantially worse standard
errors than our method.

Table 3.2A. Normal distributions with unequal priors.

Bayes ∆ in percentage

π1 risk d n h◦ h∗ h+ h
(10)
+ Proposed method

2 50 16.73 16.26 17.61 (0.239) 17.55 (0.238) 16.42 (0.030)
100 16.30 15.94 16.82 (0.148) 16.89 (0.197) 16.10 (0.034)

4 50 20.35 17.27 18.74 (0.252) 18.73 (0.259) 17.48 (0.027)
0.6 15.38 100 19.14 16.63 17.38 (0.098) 17.67 (0.152) 16.70 (0.010)

6 50 24.68 18.14 19.70 (0.331) 19.44 (0.186) 18.48 (0.033)
100 23.22 17.22 18.10 (0.155) 18.05 (0.121) 17.38 (0.020)

2 50 15.28 15.07 16.48 (0.244) 16.62 (0.295) 15.17 (0.019)
100 14.82 14.64 15.59 (0.143) 15.71 (0.191) 14.74 (0.020)

4 50 18.77 16.48 18.38 (0.289) 18.60 (0.377) 16.65 (0.023)
0.7 13.87 100 17.61 15.68 16.94 (0.212) 16.84 (0.196) 15.73 (0.006)

6 50 22.98 17.67 19.31 (0.305) 19.57 (0.380) 18.01 (0.034)
100 21.58 16.63 18.27 (0.299) 17.89 (0.241) 16.75 (0.015)

Table 3.2B. Double exponential distributions with unequal priors.

Bayes ∆ in percentage

π1 risk d n h◦ h∗ h+ h
(10)
+ Proposed method

2 50 21.29 19.72 20.57 (0.118) 20.66 (0.180) 19.90 (0.028)
100 20.50 19.04 19.74 (0.108) 19.78 (0.115) 19.24 (0.039)

0.6 18.02 4 50 27.39 22.31 23.60 (0.199) 23.89 (0.270) 22.56 (0.032)
100 25.95 20.98 22.04 (0.179) 21.93 (0.155) 21.12 (0.020)

6 50 32.27 24.51 27.15 (0.435) 26.83 (0.340) 25.26 (0.086)
100 31.14 22.88 23.90 (0.184) 24.09 (0.204) 23.11 (0.031)

2 50 20.50 19.56 20.88 (0.232) 20.56 (0.144) 20.04 (0.128)
100 19.59 18.58 19.30 (0.100) 19.23 (0.102) 18.71 (0.023)

0.7 16.86 4 50 26.31 22.65 24.47 (0.305) 24.45 (0.250) 23.15 (0.102)
100 24.99 21.38 22.69 (0.213) 22.56 (0.202) 21.61 (0.043)

6 50 30.89 24.62 27.92 (0.430) 27.31 (0.332) 25.22 (0.072)
100 29.94 23.46 24.66 (0.192) 24.61 (0.169) 23.78 (0.051)
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Bandwidth selection is more critical when priors are not equal. To evaluate
the performance of the proposed method in such situations, we considered the
same examples (as above) but set π1 = 0.6 and 0.7, respectively. For µ = 1, 2
and 3, we observed similar results and therefore, instead of reporting all of them,
we report the results for µ = 2 only (Tables 3.2A and 3.2B). These results again
show good performance of our method as a bandwidth selector for both normal
and double exponential populations.

3.3. Results from the analysis of benchmark data

We now demonstrate the performance of our method using two well known
data sets. In each of them, we first standardized the data by some appropriate
dispersion matrix before applying the kernel density estimation technique. For
each given data set, we divided it randomly 1,000 times into two parts to form
a training and a test sample. In all the examples and in each random split, we
took 40 observations from each of the classes to form the training sample, and
the remaining observations were used as the test set. The average of test set
misclassification errors over these 1,000 random splits is reported in all cases,
along with their corresponding standard errors. We have plotted 10-fold and
leave-one-out (N -fold) cross-validation estimates of the average misclassification
probability curves (as functions of the bandwidth) for all cases in Figures 3.1
and 3.2. As before, in all cases, the estimated curves are step functions with
multiple minima and are not of much help in guiding us in choosing the optimum
bandwidth for the classification problem. As in simulated examples, the largest
bandwidth that minimizes the estimated average misclassification probability can
be used.
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Figure 3.1. Average misclassification probabilities (Iris Data).
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Figure 3.2. Average misclassification probabilities (Wine Data).

We begin with Fisher’s (1936) Iris data, where four measurements are taken
on each observation coming from one of the three classes: ‘Setosa’, ‘Virginica’
and ‘Versicolor’. There are 150 observations equally distributed in those three
classes. Therefore, it is reasonable to consider it as a problem where the priors
are equal. The data points were standardized using the pooled dispersion matrix.
Of course, it is possible to use other methods of standardization (see e.g., Coolie
and MacEachern (1998)). The traditional linear discriminant analysis is known to
perform well in this data set. It led to an error rate of 3.12% with a standard error
of 0.09%. This example nicely demonstrates the importance of proper choice of
the bandwidth parameter for kernel density estimate based discriminant analysis.
When bandwidths for different population densities were estimated by the usual
leave-one-out least squares cross-validation technique (see e.g., Silverman (1986)
and Scott (1992)) that tries to minimize the estimated MISE for the kernel
density estimate, the estimated average misclassification rate turned out to be
5.36% (std. error = 0.11%). Interestingly, this error rate is much higher than
that for simple linear discriminant analysis. However, for both cross validation
methods with the largest minimizer of error rate estimates, and for our proposed
procedure of choosing the bandwidth, we obtained much better performance.
Leave one out and 10-fold cross validation techniques could achieve error rates
of 3.27% (std. error = 0.11%) and 3.25% (std. error = 0.11%), respectively. Our
method of bandwidth selection could further reduce the error rate. The estimate
of average misclassification rate turned out to be 3.01% (std. error = 0.09%).
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The other data set that we have analyzed is known as ‘Wine data’. It con-
tains the results of a chemical analysis of wines grown in the same region in
Italy but derived from three different cultivars. Chemical analysis determined
the quantities of 13 constituents found in each of the three types of wines. Ae-
berhard, Coomans and de Vel (1994) used this data set to compare the per-
formance of different classifiers in high dimension, and it can be obtained from
http://www.uci.ics.edu. This data set contains different number of observations
(59, 71 and 48 respectively) in different classes, which justifies the use of un-
equal priors for different populations. Proportions of observations (belonging to
different classes) in the dataset were used to estimate these prior probabilities.
Classical linear discriminant analysis misclassified 2.01% of the test set observa-
tions (std. error = 0.05%) but the performance of the kernel density estimate
based classifier was much better. When the least squares cross-validation tech-
nique that minimizes MISE was used to choose the optimum bandwidths, it led
to an error rate of 0.85% (std error = 0.03%). Both cross validation methods
reduced this error rate to 0.60% (std. error = 0.05%). Our proposed method
brought the error rate to 0.48% with a standard error of 0.04%.
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Appendix: Proofs

Proof of Theorem 2.1. For all j ∈ {1, . . . , J}, f̂jh(x) = n−1h−d∑n
i=1K{(x −

Xji)/h} is an average of n i.i.d. random variables with finite means and variances.
Therefore, for every x and h > 0, as n→ ∞, V {f̂jh(x)} → 0, and the distribution
of f̂jh(x) tends to be degenerate at E{f̂jh(x)}. Consequently, the asymptotic
average misclassification probability of the classification rule based on kernel
density estimates will be same as that of the classification rule based on the
theoretical scale space functionsE{f̂1h(x)}, E{f̂2h(x)}, . . . , E{f̂Jh(x)} associated
with population densities f1(x), . . . , fJ(x) and the kernel K with bandwidth h.

Note that E{f̂jh(x)} is a convolution of spherically symmetric density fj and
a spherically symmetric kernel K with bandwidth h. Hence, E{f̂jh(x)} is also a
spherically symmetric density with µj as the center of symmetry.

Now, choose x1 and x2 such that ‖x1 − µj‖ < ‖x2 − µj‖ (i.e., fj(x1) >
fj(x2)). Consider the hyperplane ‖x − x1‖ = ‖x − x2‖. It divides the d-
dimensional space into two half-spaces (H+ and H−). It is clear that x1 and
µj belong to the same half-space (let us denote it by H+) and x2 to the other.
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For every point y ∈ H−, take y∗ ∈ H+, to be the image of y obtained by re-
flecting it along the hyperplane. Then fj(y∗) > fj(y) and for all h > 0, we have
K {(x1 − y∗)/h} − K {(x2 − y∗)/h} = K {(x2 − y)/h} − K {(x1 − y)/h} > 0.
Therefore, whatever may be the value of h,

h−d
∫
y∗∈H+

fj(y∗) [K {(x1 − y∗)/h} −K {(x2 − y∗)/h}] dy∗

> h−d
∫
y∈H−

fj(y) [K {(x2 − y)/h} −K {(x1 − y)/h}] dy.

⇒ h−d
∫
y∈H+

fj(y) [K {(x1 − y)/h} −K {(x2 − y)/h}] dy

+h−d
∫
y∈H−

fj(y) [K {(x1 − y)/h} −K {(x2 − y)/h}] dy > 0.

⇒ E{f̂jh
(x1)} − E{f̂jh

(x2)}
= h−d

∫
y∈Rd

fj(y) [K {(x1 − y)/h} −K {(x2 − y)/h}] dy > 0.

So the convolution is also a decreasing function of the distance from its center
of symmetry. Now, fi(x) > fj(x) ⇔ ‖(x − µi)‖2 < ‖(x − µj)‖2 ⇔ E{f̂ih(x)} >
E{f̂jh

(x)} since the distribution satisfies the location shift model. Hence, for
all h > 0, theoretical scale space functions preserve the ordering of the original
density functions, and the corresponding classifier based on theoretical scale space
functions is the optimal Bayes classifier.

Proposition 2.1. Suppose that f(x) is such that
∫ ‖x‖6f(x)dx < ∞ and K

is a density with a mode at 0 and bounded third derivatives. Then as h → ∞,
E{f̂h(x)} = h−d[K(0) + (1/2h2)Ef{(x − X)

′∇2K(0)(x − X)} + O(h−3)] and
Var {f̂h(x)} = (4nh2d+4)−1[Varf{(x − X)

′∇2K(0)(x − X)} +O(h−1)].

Proof of Proposition 2.1. The expectation and the variance of f̂h(x) can
be written as E{f̂h(x)} = h−dE [K{(x − X1)/h}] and Var {f̂h(x)} = n−1h−2d

Varf [K{(x − X)/h}]. Using a Taylor expansion about 0, K{(x − X1)/h} can
be expressed as

K{(x − X1)/h} =K(0) + (1/2h2){(x − X1)
′∇2K(0)(x − X1)}

+(1/6h3)
∑
i,j,k

Yi,j,k, (since ∇K(0) = 0),

where Yi,j,k = (xi − Xi)(xj − Xj)(xk − Xk)
∂3K(t)

∂ti∂tj∂tk
|t=ξ for some intermediate
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vector ξ between 0 and (x − X)/h. Therefore

Ef [K{(x − X)/h)}] =K(0) + (1/2h2)Ef{(x − X)
′∇2K(0)(x − X)}

+O(h−3),
Varf [K{(x − X)/h)}] = Varf

[
(1/2h2){(x − X)

′∇2K(0)(x − X)}
+(1/6h3)

∑
i,j,k

Yi,j,k

]
= (1/4h4)Varf{(x −X)

′∇2K(0)(x − X)} +O(h−5),

using the fact that K has bounded third derivatives and
∫ ‖x‖6f(x)dx <∞.

Lemma 2.1. Suppose that f1 and f2 are two density functions and f̂1h and f̂2h

are their corresponding kernel density estimates. Further assume that f1, f2 and
K satisfy the conditions of Proposition 2.1. Then, for any given x, f̂1h(x) and
f̂2h(x) have the following properties.
(a) If π1 = π2 = 1/2 as n, h → ∞, we have P{f̂1h(x) < f̂2h(x)} → 0 or 1
depending on whether

x′∇2K(0) {Ef2(X) − Ef1(X)}
> or < (1/2)

[
Ef2

{
X

′∇2K(0)X
}
− Ef1

{
X

′∇2K(0)X
}]
.

(b) If π1 > π2, we have P{f̂1h(x) < f̂2h(x)} → 0 as h→ ∞.

Proof of Lemma 2.1. Take Yh(x) = π1f̂1h(x) − π2f̂2h(x), µh(x) = E{Yh(x)}
and s2h(x) = Var {Yh(x)}. When π1 = π2 = 1/2, it is evident from Proposition 2.1
that (i) as h→ ∞, the sign of µh(x) and the sign of x′∇2K(0){Ef2(X)−Ef1(X)}
−(1/2)[Ef2{X

′∇2K(0)X}−Ef1{X
′∇2K(0)X}] will eventually be the same, and

(ii) s2h(x)/µ2
h(x) → 0 as n, h→ ∞.

Now, by Chebychev’s inequality P{Yh(x) ≤ 0} ≥ µ2
h(x)/{µ2

h(x) + s2h(x)}
when µh(x) ≤ 0 and P{Yh(x) ≤ 0} ≤ s2h(x)/{µ2

h(x) + s2h(x)} when µh(x) > 0.
As n, h → ∞, the right side tends to 1 and 0, respectively, in the first and the
second cases. Therefore, P{Yh(x) ≤ 0} also tends to 1 and 0 in the respective
cases. On the other hand, when π1 > π2, as h→ ∞, µh(x) remains positive and
s2h(x)/µ2

h(x) → 0. Therefore, by above inequality, limh→∞ P{Yh(x) ≤ 0} = 0.

Proof of Theorem 2.2. For 1 ≤ i �= j ≤ J , let Ah
ij be the event that

f̂ih(x) − f̂jh(x) > 0. Clearly, P (Ah
ij) + P (Ah

ji) = 1 and
∑

j: j �=iP (Ah
ij) − (J −

2) ≤ P{⋂j: j �=iA
h
ij} ≤ minj �=i P (Ah

ij). Now, it is easy to see that, for any i,
P{⋂j: j �=iA

h
ij} → 1 iff P (Ah

ij) → 1 for all j �= i. The proof of the theorem then
follows from the first part of Lemma 2.1.

Proof of Theorem 2.3. Since the population densities satisfy the location
shift model (with location parameter µj for the jth class), for i �= j, Efi

(X) −
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Efj
(X) = µi −µj and Efi

{X′∇2K(0)X}−Efj
{X′∇2K(0)X} = µ

′
i∇2K(0)µi −

µ
′
j∇2K(0)µj. The proof of (a) is now immediate from Theorem 2.2. Proofs of (b)

and (c) follow from Lemma 2.1, using the same logic as in the proof of Theorem
2.2.

Lemma 3.1. Assume that the density function f has bounded third derivatives
and the kernel K is symmetric about 0 with

∫ ‖y‖3K2(y)dy < ∞. Then, as
h → 0, E{f̂h(x)} = f(x) + O(h2) and Var {f̂h(x)} = (nhd)−1{βf(x) + O(h2)},
where β =

∫
K2(y)dy.

Proof of Lemma 3.1.

E{fh(x)} = h−d
∫
K{(x − X)/h} f(X) dX

=
∫
K(y) f(x− hy) dy

=
∫
K(y)

[
f(x)−h{y′∇f(x)}+

h2

2
{y′∇2f(x)y}+

h3

3!

∑
i,j,k

Zi,j,k

]
dy,

where Zi,j,k = yiyjyk
∂3f(t)

∂ti∂tj∂tk
|t=ξ for some intermediate vector ξ between x and

x− hy. Therefore,

E{f̂h(x)} = f(x) +
h2

2

∫
{y′∇2f(x)y} dy + o(h2) = f(x) +O(h2).

Similarly,

E
[
h−2dK2{(x − X)/h)}

]
= h−d

∫
K2(y) [f(x) − h{y′∇f(x)}

+(h2/2){y′∇2f(x)y} + (h3/3)
∑
i,j,k

Zi,j,k] dy

= h−d[βf(x) +O(h2)], where β =
∫
K2(y)dy.

⇒ Var {f̂h(x)} = n−1Var {h−dK((x − X)/h)} = n−1h−d{βf(x) +O(h2)}.

Lemma 3.2. Suppose that n1, . . . , nJ (N =
∑
nj) are the training sample

sizes from J competing populations and hn1 , . . . , hnJ
are the bandwidths used in

kernel estimates of population densities f1, . . . , fj , respectively. Further, assume
that the densities f1, . . . , fj and the kernel K satisfy the conditions of Lemma
3.1. For every j ∈ {1, . . . , J} and N → ∞, we also assume that hnj → 0,
hnj/hni → γji > 0 for all i, njh

d
nj

→ ∞ and nj/N → λj such that 0 < λj < 1.
For x ∈ Rd, take X1, . . . ,XJ as independently distributed normal variates with
E(Xi) = πimihni

= E{πif̂ihni
(x)} and Var (Xi) = π2

i s
2
ihni

= Var {πif̂ihni
(x)}.
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Then, whatever be x, we have

lim
N→∞

∣∣∣∣∣∣ P (X1 > Xi, for all i �= 1) −
∏
i�=1

Φ

(
π1m1hn1

− πimihni

πisihni

)∣∣∣∣∣∣ = 0.

Proof of Lemma 3.2.

P{Xi < X1 for all i �=1} =
∫
P {Xi < x for all i �= 1} g(x) dx

[ g(·) being the p.d.f. of X1]

=
∫ ∏

i�=1

Φ

(
x− πimihni

πisihni

)
g(x)dx

= Eg



∏
i�=1

Φ

(
x− πimihni

πisihni

)
 .

Let θN(x) =
∏

i�=1 Φ[(x− πimihni
)/(πisihni

)]. Using a Taylor expansion about
π1m1hn1

, θN (x) can be expressed as θN (x) = θN (π1m1hn1
)+(x−π1m1hn1

) θ
′
N (ξ)

for some value ξ that lies between π1m1hn1
and x. We have (x−π1m1hn1

)θ
′
N (ξ) =∑J

j=2[(x−π1m1hn1
)/(πjsjhnj

)]βjhnj
(ξ), where βjhnj

(ξ)=φ[(ξ−πjmjhnj
)/(πjsjhnj

)]∏
k:k �=1,jΦ[(ξ − πkmkhnk

)/(πkskhnk
)]. Then

E

(∣∣∣∣∣x− π1m1hn1

πjsjhn1

βjhnj
(ξ)

∣∣∣∣∣
)

≤ E

{∣∣∣∣∣
x− π1m1hn1

πjsjhnj

φ

(
ξ − πjmjhnj

πjsjhnj

)∣∣∣∣∣
}

(since |Φ(·)| ≤ 1)

≤ E1/2

(
x− π1m1hn1

πjsjhnj

)2

E1/2

{
φ2

(
ξ − πjmjhnj

πjsjhnj

)}

= (π2
1/π

2
j )(s

2
1hn1

/s2jhnj
)E1/2

{
φ2

(
ξ − πjmjhnj

πjsjhnj

)}
.

As N → ∞, under the given conditions, both s21hn1
and s2jhnj

tend to 0 (from

Lemma 3.1) but s21hn1
/s2jhnj

tends to a constant c1j > 0. Therefore, as N → ∞,

φ2[(ξ − πjmjhnj
)/(πjsjhnj

)] → 0 which implies E{φ2[(ξ − πjmjhnj
)/(πjsjhnj

)]}
→ 0 (by the Dominated Convergence Theorem). This, in turn, implies that
E|(x− π1m1hn1

) θ
′
N(ξ)| → 0.

Proof of Theorem 3.1. For a J-class problem, ψ(hn1 , . . . , hnJ
) is given by

ψ(hn1 , . . . , hnJ
) = 1 −

J∑
j=1

πj

∫ [ ∫ ∏
i�=j

Φ
{u− πimihni

(x)
πisihni

(x)

}
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×φ
{
u, πjmjhnj

(x), πjsjhnj
(x)
}
du
]
fj(x)dx,

where πjmjhnj
(x) and π2

j s
2
jhnj

(x) are the mean and the variance of πj f̂ihni
(x).

Lemma 3.2 implies that, as N → ∞, for all j∣∣∣∣∣∣
∫ ∏

i�=j

Φ

{
u− πimihni

(x)
πisihni

(x)

}
φ
{
u, πjmjhnj

(x), πjsjhnj
(x)
} du

−
∏
i�=j

Φ

{
πjmjhnj

(x) − πimihni
(x)

πisihni
(x)

}∣∣∣∣∣∣→ 0.

Also, from Lemma 3.1, for every j, as N → ∞,

∏
i�=j

Φ

{
πjmjhnj

(x) − πimihni
(x)

πisihni
(x)

}
→
{

1, if πjfj(x) > πifi(x) for all i �= j,

0, otherwise.

and this means ψ(hn1 , . . . , hnJ
) → 1 −∑J

j=1 πj
∫
fj>fi ∀i�=j fj(x)dx (by the Dom-

inated Convergence Theorem), which is the optimal Bayes risk.
In view of the asymptotic orders of E{f̂jhnj

(x)} and Var {f̂jhnj
(x)} obtained

in Lemma 3.1, Lindeberg’s condition for the Multivariate Central Limit The-
orem holds for

{ f̂1hn1
(x) −m1hn1

(x)
s1hn1

(x)
,
f̂2hn2

(x) −m2hn2
(x)

s2hn2
(x)

, . . . ,
f̂JhnJ

(x) −mJhnJ
(x)

sJhnJ
(x)

}

as N → ∞, for every given x. This implies that∣∣∣ P{πj f̂jhj
(x) > πif̂ihi

(x) for all i �= j}

−
∫ ∏

i�=j

Φ
{u− πimihni

(x)
πisihni

(x)

}
φ
{
u, πjmjhnj

(x), πjsjhnj
(x)
}
du
∣∣∣→ 0

as N → ∞ using the results in Bhattacharya and Ranga Rao (1976, pp.6-23,
Section 2) on uniform convergence to multivariate normal probabilities for convex
sets with boundaries having zero Lebesgue measure. Finally, by the Dominated
Convergence Theorem, we have |∆(hn1 , . . . , hnJ

)−ψ(hn1 , . . . , hnJ
)| → 0 as N →

∞.

References

Aeberhard, S., Coomans, D. and de Vel, O. (1994). Comparative analysis of statistical pattern

recognition methods in high dimensional settings. Pattern Recognition 27, 1065-1077.

Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis. Wiley, New York.



482 ANIL K. GHOSH AND PROBAL CHAUDHURI

Bensmail, H. and Bozdogan, H. (2002). Model-Based Kernel Discriminant Analysis with Opti-

mal Scaling. In press for The Institute of Statistical Mathematics (ISM) in Japan, Springer-

Verlag, Tokyo.

Bhattacharya, R. N. and Ranga Rao, R. (1976). Normal Approximation and Asymptotic Ex-

pansions. Wiley, New York.

Bose, S. (1996). Classification using splines. Comput. Statist. Data Anal. 22, 505-525.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and Regres-

sion Trees. Wadsworth and Brooks, Monterrey, California.

Chaudhuri, P. and Marron, J. S. (1999). SiZer for exploration of structures in curves. J. Amer.

Statist. Assoc. 94, 807-823.

Chaudhuri, P. and Marron, J. S. (2000). Scale space view of curve estimation. Ann. Statist.

28, 408-428.

Cooley, C. A. and MacEachern, S. N. (1998). Classification via kernel product estimators.

Biometrika 85, 823-833.

Coomans, D. and Broeckaert, I. (1986). Potential Pattern Recognition in Chemical and Medical

Decision Making. Research Studies Press, Letchworth.

Dasarathy, B. V. (1991). Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques.

IEEE Computer Society, Washington.

Duda, R., Hart, P. and Stork, D. G. (2000). Pattern Classification. Wiley, New York.

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. SIAM, Philadel-

phia.

Efron, B. and Tibshirani, R. (1993). An Introduction to Bootstrap. Chapman and Hall, New

York.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugenics

7, 179-188.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Academic Press, New

York.

Hall, P. (1983). Large sample optimality of least squares cross-validations in density estimation.

Ann. Statist. 11, 1156-1174.

Hall, P. and Marron, J. S. (1987). Extent to which least squares cross validation minimizes

integrated square error in nonparametric density estimation. Probab. Theory Related

Fields 74, 567-581.

Hall, P. and Wand, M. P. (1988). On nonparametric discrimination using density differences.

Biometrika 75, 541-547.

Hall, P., Sheather, S. J., Jones, M. C. and Marron, J. S. (1991). On optimal data-based

bandwidth selection in kernel density estimation. Biometrika 78, 263-270.

Hand, D. J. (1982). Kernel Discriminant Analysis. Wiley, Chichester.

Hastie, T., Tibshirani, R. and Buja, A. (1994). Flexible discriminant analysis. J. Amer. Statist.

Assoc. 89, 1255-1270.

Hastie, T. and Tibshirani, R. (1996). Discriminant adaptive nearest neighbor classification.

IEEE Trans. Pattern Anal. Mach. Intell. 18, 607-616.

Hastie, T., Tibshirani, R. and Friedman, J. H. (2001). The Elements of Statistical Learning:

Data Mining, Inference and Prediction. Springer-Verlag, New York.

Hills, M. (1966). Allocation rules and their error rates (with discussion). J. Roy. Statist. Soc.

Ser. B 28, 1-31.

James, M. (1985). Classification Algorithms. Wiley, New York.

Jones, M. C., Marron, J. S. and Sheather, S. J. (1996a). Progress in data-based bandwidth

selection for kernel density estimation. Comput. Statist. 11, 337-381.



KERNEL DISCRIMINANT ANALYSIS 483

Jones, M. C., Marron, J. S. and Sheather, S. J. (1996b). A brief summary of bandwidth selection

for density estimation. J. Amer. Statist. Assoc. 91, 401-407.

Kim, H. and Loh, W.-Y. (2001). Classification trees with unbiased multiway splits. J. Amer.

Statist. Assoc. 96, 589-604.

Kooperberg, C., Bose, S. and Stone, C. J. (1997). Polychotomous regression. J. Amer. Statist.

Assoc. 92, 117-127.

Lachenbruch, P. A. and Mickey, M. R. (1968). Estimation of error rates in discriminant analysis.

Technometrics 10, 1-11.

Loh, W.-Y. and Vanichsetakul, N. (1988). Tree-structured classification via generalized dis-

criminant analysis (with discussion). J. Amer. Statist. Assoc. 83, 715-728.

Loh, W.-Y. and Shih, Y.-S. (1997). Split selection methods for classification trees. Statist.

Sinica 7, 815-840.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. Academic Press,

London.

McLachlan. G. J. (1992). Discriminant Analysis and Statistical Pattern Recognition. Wiley,

New York.

Mosteller, F. and Wallace, D. L. (1963). Inference in an authorship problem. J. Amer. Statist.

Assoc. 58, 275-309.

Muller, H. G. (1984). Smooth optimum kernel estimators of densities, regression curves and

modes. Ann. Statist. 12, 766-774.

Rao, C. R. (1973). Linear Statistical Inference. Wiley, New York.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press,

Cambridge.

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice and Visualization.

Wiley, New York.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for

kernel density estimation. J. Roy. Statist. Soc. Ser. B 53, 683-690.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and

Hall, London.

Stone, C. J. (1984). An asymptotically optimal window selection rule in kernel density estimates.

Ann. Statist. 12, 1285-1297.

Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall, London.

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, 203, B. T. Road,

Calcutta-700108, India.

E-mail: res9812@isical.ac.in

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, 203, B. T. Road,

Calcutta-700108, India.

E-mail: probal@isical.ac.in

(Received September 2002; accepted July 2003)


	1. Introduction
	2. Behavior of Delta (h) as h varies

	3. Data-Based Choice for Bandwidths in Kernel Discriminant Analysis
	3.1. Data analytic implementation
	3.2. Results from simulation experiments

	Appendix: Proofs

