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Abstract: Single-index models are important in multivariate nonparametric regres-

sion. In a previous paper, we proposed a penalized spline approach to a partially

linear single-index model where the mean function has the form η0(α0
T x) + β0

T z.

This approach is computationally stable and efficient in practice. Furthermore, it
yields a root-n consistent estimate of the single-index parameter α and the partially

linear parameter β with a nontrivial smoothing parameter under the assumption

of a compact parameter space. In this paper, we relax the compactness assumption

and prove the existence and root-n consistency of the constrained penalized least

squares estimators. We expect our proof technique to be useful for establishing
asymptotic properties of the penalized spline approach to other model fitting.
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1. Introduction

Consider the partially linear single-index model

yi = η0(αT
0 xi) + βT

0 zi + εi, (1)

where
(i) yi ∈ R is the dependent variable, and xi ∈ Rd, zi ∈ Rdz are fixed observed

predictor vectors;
(ii) the unknown single-index parameter α0 is in Rd, ‖α0‖ = 1 and the first

nonzero element of α0 is positive (for identifiability); the unknown linear
parameter β0 is in Rdz , and η0 : R → R, is an unknown univariate function;

(iii){εi} is a mean zero independent error process with variance σ2
0.

In the recent literature there is voluminous research on fitting single-index
models using kernel, local linear, and average derivatives methods. We refer
readers to Yu and Ruppert (2002) for a more complete literature review. In
addition, Chong (1999) uses sliced inverse regression to obtain a single-index
parameter estimate first and then follows a partially linear model with a local
polynomial smoother.
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While all of these approaches to fitting single-index models have demon-
strated promise, there are some potential weaknesses (see Yu and Ruppert (2002)
for details). Yu and Ruppert (2002) have proposed a computationally expedient
penalized spline approach by modeling η0(·) as a spline. Here η0(·) = δT

0 B(·),
with a spline coefficient vector δ and some spline basis functions B(·). Then
model (1) can be written as

yi = δT
0 B
(
αT

0 xi

)
+ βT

0 zi + εi.

The penalized least squares estimator θ =

α

β

δ

 is obtained by minimizing the

constrained penalized sum of squared errors

n−1
n∑

i=1

{
yi −

{
δTB

(
αTxi

)
+ βTzi

}}2
+ λnδTDδ

with constraint ‖α‖ = 1, where D is an appropriate positive semi-definite sym-
metric matrix and λn ≥ 0 is a penalty parameter.

In Yu and Ruppert (2002), we have shown that this penalized spline approach
offers a number of computational advantages. Furthermore, assuming a fixed but
potentially large number of knots, we have shown the

√
n-consistency of estimates

of the single-index parameter α0, the partially linear coefficient β0, and the spline
coefficient vector δ0 with a nontrivial smoothing parameter under the assumption
of a compact parameter space Θ of θ.

The compactness (Assumption 1 in Yu and Ruppert (2002)) is rather re-
strictive, because it implicitly requires that there be known bounds on the true
parameter values of the partially linear coefficient β and the spline coefficient δ.
Neither of these assumptions is natural and it is desirable to investigate if the
boundedness assumptions can be relaxed.

Without a penalty, the penalized spline approach to partially linear single-
index models becomes a constrained nonlinear least squares problem with a finite
number of parameters to estimate. Past literature on existence and consistency
of nonlinear least squares estimates, e.g., Jennrich (1969), Malinvaud (1970) and
Wu (1981), all assume a compact parameter space. Malinvaud (1970) gives
counterexamples when the parameter space is not compact, while Newey and
McFadden (1994) comment that it is useful in practice to be able to drop the
compactness restriction.

In this paper, we relax the compactness assumption and obtain the existence
and root-n consistency of the constrained penalized least squares estimators. For
practical applications, refer to Yu and Ruppert (2002). We handle the constraint
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‖α‖ = 1 by reparametrization. The main ingredient in our proof is that the
constraint ‖α‖ = 1 restricts the reparametrized single-index parameter φ to be
in a compact subspace Φ. That is, only the compactness of Φ is needed and the
partially linear coefficients β and the spline coefficients δ can be handled sepa-
rately through linear ridge regression analysis. We expect some of the techniques
employed here to be useful for proving asymptotic properties for the penalized
spline approach to other model fitting. For instance, an immediate extension is
to the large sample theory for the penalized spline approach to multiple-index
models and generalized partially linear single-index models (Carroll, Fan, Gijbels
and Wand (1997)). In general, this proof technique can be useful when model
parameters can be expressed separately as linear regression coefficients and pa-
rameters of interest that are constrained in a unit ball due to identifiability.

We organize the remainder of the paper as follows. Section 2 contains the
main results of root-n consistency of our constrained penalized least squares
estimators, emphasizing differences in the assumptions with those in Yu and
Ruppert (2002). The proof is in Section 3.

2. Model and Main Results

2.1. Model and estimators

For the partially linear single-index models (1), the unknown univariate func-

tion η0(·) is estimated by penalized splines η0(·) = δT
0 B(·). Define vi =

(
xi

zi

)
,

the mean function m(vi;θ) = δTB
(
αTxi

)
+βTzi, and the average sum of squared

errors

Qn(θ) = n−1
n∑

i=1

{
yi − m(vi;θ)

}2
. (2)

The penalized least squares estimator of θ minimizes the penalized sum of squ-
ared errors

Qn,λn(θ) : = n−1
n∑

i=1

{
yi − m(vi;θ)

}2
+ λnδTDδ

= Qn(θ) + λnδTDδ, (3)

where λn ≥ 0 is a penalty parameter and D is some general positive semi-definite
symmetric matrix.

The constraint ‖α0‖ = 1 on the d-dimensional single-index parameter α is
handled by reparametrization. That is, let φ be a d − 1 dimensional parameter
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and α(φ) =



√
1 − (φ2

1 + · · · + φ2
d−1)

φ1
...

φd−1

 . The true parameter φ0 is assumed to

satisfy ‖φ0‖ < 1.

2.2. Main results

For the penalized spline approach to partially linear single-index models

yi = δ0
TB

(
αT (φ0)xi

)
+ βT

0 zi + εi, denote δz =

(
δ

β

)
and Bz(αT(φ)xi) =(

B
(
αT (φ)xi

)
zi

)
. Then the mean function of our model can be written as

m(vi;θ) = δz
TBz

(
αT (φ)xi

)
. (4)

We can show that our consistency results hold under Assumption 2′ below.
Here the compactness of the parameter space Θ of θ in Assumption 1 of Yu and
Ruppert (2002) is dropped. Continuity of the mean function holds in our spline
model. Conditions on mean functions in Assumption 2 of Yu and Ruppert (2002)
can be explicitly written in terms of basis functions in Assumption 2′, which may
be easier to check.

Assumption 2′ 1/n
∑n

i=1 Bz

(
αT (φ)xi

)
Bz

(
αT (φ∗)xi

)T
converges uniformly

in φ,φ∗ ∈ Φ, and the limit R(φ,φ) is positive definite for all φ ∈ Φ, where

R(φ,φ∗) = lim
n

1
n

n∑
i=1

Bz

(
αT (φ)xi

)
Bz

(
αT (φ∗)xi

)T
, (5)

P (φ) = R(φ0,φ0) − R(φ0,φ)R−1(φ,φ)R(φ,φ0) (6)

has a unique zero at φ = φ0.

Theorem 1′ Under Assumption 2′, if the smoothing parameter λn satisfies λn =
o(1), then a sequence of penalized least squares estimators (θ̂n,λn) minimizing (3)
exists and is a consistent estimator of θ0.

Root-n consistency and asymptotic normality as in Theorem 2 in Yu and
Ruppert (2002) are also established under the relaxed Assumption 2′ and As-
sumption 4 using the previously proved consistency. Assumption 3 of Yu and
Ruppert (2002) is dropped since ‖φ0‖ < 1 and the partially linear parameter β0

and spline coefficient vector δ0 lie in a general Euclidean space. The regularity
condition of the mean function in Assumption 4 obviously holds in our spline



ROOT-N CONSISTENCY OF PENALIZED SPLINE ESTIMATOR 453

model. The proof is essentially the same as that in Yu and Ruppert (2002) using
standard Taylor expansion techniques and is thus omitted.

Note that in Yu and Ruppert (2002) and this paper, we assume that {(xi, zi)}
are given observed constants as in many regression problems (e.g., Wu (1981)).
If a random design is desired instead, then the condition that {εi} is indepen-
dent of predictor variables {(xi, zi)} should be added in the model (1). Mode of
convergence (almost surely convergence) should be specified whenever the limits
involve design variables {(xi, zi)} (e.g., equations (5)). Proofs should similarly
follow (Jennrich (1969)). Also note that the assumption that x and z are in-
dependent is not necessary in the penalized spline approach to partially linear
single-index models.

3. Proof of Theorem 1′

(1) Proof of existence.
Without loss of generality, we consider the model yi = δ0

TB(αT (φ0)xi)+εi.
The same proof is valid for partially linear single-index models when we replace
B(αT (φ)xi) by Bz(αT (φ)xi) and δ by δz.

Penalized least squares estimators δ̂n and φ̂n minimize

Qn,λn(δ,φ) = n−1
n∑

i=1

{
yi − δTB

(
αT (φ)xi

)}2
+ λnδTDδ. (7)

Thus δ̂n solves the first order equations ∂Q/∂δ = 0, which gives explicit solution
to the penalized least squares estimators δ̂n in terms of φ:

δ̂n(φ)=

(
1
n

n∑
i=1

B
(
αT (φ)xi

)
B
(
αT (φ)xi

)T
+λnD

)−1
1
n

n∑
i=1

B
(
αT (φ)xi

)
yi.

(8)
We need to show that penalized least squares estimators δ̂n and φ̂n exist.

Formally, we need to show that there exists φ̂n from Y to Φ such that, for all y

in Y, Qn(φ̂n) = infφ∈Φ Qn(φ), where

Qn(φ) = n−1
n∑

i=1

{
yi − δ̂

T
n(φ)B

(
αT (φ)xi

)}2
. (9)

Note that the penalty term λnδTDδ in (7) is dropped in (9) since the penalty is
on the spline coefficients δ only. The penalty term is implicit in δ̂n(φ), which is
given at (8). Here φ ∈ Φ is compact. The existence of a sequence of least squares
estimators φ̂n is guaranteed by Lemma 1 in Jennrich (1969). Then δ̂n(φ̂n) given
at (8) is the penalized least squares estimates.
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(2) Proof of consistency.
To prove the consistency of the penalized least squares estimators φ̂n and

δ̂n, we go through two steps: (i) show φ̂n → φ0 in probability, where Qn(φ̂n) =
infφ∈Φ Qn(φ) is defined at (9), and Φ is compact; (ii) show δ̂n(φ̂n) → δ0 in
probability, when (i) holds.

Proof. (i) The least squares estimators φ̂n minimize Qn(φ), which can be ex-
panded as

Qn(φ) = n−1
n∑

i=1

{
yi − δ̂

T
n(φ)B

(
αT (φ)xi

)}2

=
1
n

n∑
i=1

εi
2 +

2
n

n∑
i=1

{
δ0

TB
(
αT (φ0)xi

)
− δ̂

T

n(φ)B
(
αT (φ)xi

)}
εi

+
1
n

n∑
i=1

{
δ0

TB
(
αT (φ0)xi

)
− δ̂

T

n(φ)B
(
αT (φ)xi

)}2

= C1 + C2 + C3.

The following limits are taken when n → ∞ unless otherwise stated. Similar to
the proof of Theorem 1 in Yu and Ruppert (2002), C1 → σ2

0 for almost every
ε > 0. We then show that for almost every ε, C2 → 0 uniformly for all φ in Φ.
Lastly, we prove that C3 converges almost surely to a limit that has a unique
zero at φ = φ0. The rest of proof is similar to the proof of Theorem 1 of Yu and
Ruppert (2002).

Term C2 can be further expanded as

C2 = 2δ0
T
{1

n

n∑
i=1

B
(
αT (φ0)xi

)
εi

}
− 2δ̂

T

n(φ)
{ 1

n

n∑
i=1

B
(
αT (φ)xi

)
εi

}
= C21 + C22.

We show that under Assumption 2′, (1/n)
∑n

i=1 B
(
αT (φ)xi

)
εi → 0 uniformly

almost surely over Φ, using a proof similar to Theorem 4 in Jennrich (1969). Note
that an important fact used is that φ is a finite dimensional vector. We refer
interested readers to a technical report Yu and Ruppert (2003) for a detailed
proof.

Next, using a standard expansion, we have for the smoothing parameter
λn = o(1), δ̂n(φ) → R−1(φ,φ)R(φ,φ0)δ0 uniformly almost surely in φ, where
R(φ,φ∗) is defined in (5). Thus, C22 → 0 and C2 → 0 uniformly for all φ in Φ.

Term C3 can be further expanded. Again by Assumption 2′, we have C3 →
δ0

TP (φ)δ0 almost surely, where P (φ) = R(φ0,φ0)−R(φ0,φ)R−1(φ,φ)R(φ,φ0)
has a unique zero at φ = φ0 by assumed positive definiteness of R. The rest of
proof is similar to the proof of Theorem 1.
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(ii) We now show that δ̂n(φ̂n) → δ0 in probability, using the consistency re-
sults obtained in (i). We can write δ̂n(φ̂n)−δ0 = [δ̂n(φ̂n)−δ̂n(φ0)]+[δ̂n(φ0)−δ0].
Term δ̂n(φ0)−δ0 reduces to the linear ridge regression case when the single-index
parameter φ0 is known. By Lemma 1 in Yu and Ruppert (2002) of the consistent
results for linear ridge regression, δ̂n(φ0) − δ0 → 0 in probability. {δ̂n(φ)} is
equicontinuous on Φ since {δ̂n(φ)} converges uniformly to a continuous function
on Φ. By the consistency result of φ̂n obtained from (i) that φ̂n − φ0 → 0 in
probability and the equicontinuity of {δ̂n(φ)}, we have δ̂n(φ̂n) − δ̂n(φ0) → 0.
Consequently, δ̂n(φ̂n) → δ0 in probability.
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