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Abstract: This paper introduces the method of simplicial intercept depth (SID)

for linear fitting. The SID method is invariant under rotations and reflections.

It is also robust against outliers, with its breakdown point bounded away from

zero. The paper also presents some comparisons, in terms of robustness, efficiency

and invariance, between the SID method and other regression methods such as

regression depth, orthogonal regression, L1 regression and least squares. Finally,

the paper introduces the simplicial fit plot as a new graphical tool for a visual

assessment of the goodness of a given linear fit. The area under the simplicial fit

plot of the proposed linear fit corresponds to its SID value. Hence the SID value

provides a goodness-of-fit measure for any given linear fit, and can be viewed as a

robust analog of the usual coefficient of determination arising from the least squares

method.
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1. Introduction

Linear fitting is one of the most commonly used statistical tools for studying
related variables. The goal of this paper is to introduce the simplicial intercept
depth (SID) for linear fitting, and the simplicial fit (S-fit) plot for visually as-
sessing the goodness-of-fit of a given linear fit. The SID is presented as a new
notion of depth for lines (or hyperplanes in general) as well as a new robust linear
fitting method which is invariant under rotations and reflections. These desir-
able invariance properties are not generally shared by other regression methods.
The reflection invariance property implies treating the input variable and the
output variable symmetrically, and it is particularly desirable in linear fitting in
case the choice of the input variable, between the variables under consideration,
is not evident. Simple examples are the crime rate and the median income of
a region, and the test scores in physics and mathematics of a student. Reflec-
tion invariance keeps the linear relationship between the two variables unaffected
when their roles as input and output variables are reversed; its desirability can be
viewed as one of the distinguishing features between linear fitting and regression.
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This point will be illustrated further in Section 3.1 which discusses the modeling
of verbal and mathematics test scores in the Scholastic Assessment Test (SAT).
The invariance of SID under orthonormal transformations (which include rota-
tions and reflections) is discussed in detail in Section 2.1. Comparisons of the
SID with the orthogonal regression and its L1 version, which are two obvious
reflection invariant methods, are presented throughout the paper.

The SID may be viewed as a generalization of the simplicial depth intro-
duced in Liu (1990), and can be described in the basic two-dimensional setting
as follows. In IR2, the depth of a line is simply the averaged length-ratio of the
line intercept within a triangle to its longest side, where the average runs over
all the triangles generated from the data. In essence, the depth here measures
how deep a line cuts through all the triangles formed by the data. The SID value
is 1 if all data points fall on a line, but it decreases as data points become more
scattered. The line with the highest SID value is considered the best fit. Note
that the SID value of this fitted line can actually serve as a robust analog of
the coefficient of determination defined in the least squares approach, since it
provides a measure of goodness-of-fit of the resulting fitted line. This measure is
further illustrated graphically as the area under the simplicial fit plot which is to
be discussed in Section 4.

Among existing linear fitting methods, the least squares method has been
used most extensively, for mathematical convenience as well as for its certain
optimality properties under normally distributed errors. However, it is less sat-
isfactory when error distributions are heavy-tailed or when outliers are present.
Many robust alternatives have been proposed for linear fitting of data and for
identifying possible outliers. For example, L1-regression is known to be robust
with respect to outliers along the direction of the output variable, but not with
respect to outliers along the direction of the input variable (also referred to
as leverage points). Many other robust regression methods exist in the liter-
ature. Examples include the median-type estimators in : the pairwise slopes
method in Theil (1950) and Sen (1968), the least median of squares regression in
Rousseeuw (1984), the remedian in Rousseeuw and Bassett (1990), the resistant
line method in Tukey (1970) and Johnstone and Velleman (1985); the M -method
in Maronna and Yohai (2000); the R-estimator method in : Jureckovà (1971),
Hettmansperger and McKean (1977) and Hossjer (1994); and the L-estimator
method in : Bickel (1973), Koenker and Bassett (1978), Ruppert and Carroll
(1980), Carroll and Ruppert (1985), Simpson, Ruppert and Carrol (1992) and
Stromberg, Hossjer and Hawkins (2000). Recently, there has been significant
progress made by Rousseeuw and Hubert (1999) in developing the concept of
depth for regression. They introduced the so-called regression depth and the
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corresponding regression depth method. The deepest fit is shown to be robust
against outliers, with a high breakdown point. Unlike the usual concept of depth
defined with respect to a multivariate data cloud, the regression depth requires
a new geometric perspective, since it measures the depth of hyperplanes rather
than that of finite-dimensional vectors. All the above regression methods offer
some robust and computationally feasible solutions, and they have all generated
much follow-up.

In Section 2, we describe in detail the SID method, and study its invariance
and breakdown properties. We present in Section 3 some applications of the
SID method to both real and simulated datasets. The results show clearly that
the SID method is highly robust against outliers. (See Figure 4 for a visual
display of breakdown properties in linear fitting.) Moreover, we also present
some comparisons of the SID method in the aspects of robustness, efficiency, and
invariance to the methods of least squares, regression depth, L1 regression, and
orthogonal regression and its L1 version. In Section 4, the simplicial fit plot is
proposed as a new graphical tool for visually assessing the goodness of a given
linear fit. This assessment can be further summed up by the area under the
simplicial fit plot which is exactly the SID value achieved by the given linear fit.
Section 5 contains some concluding remarks and open problems.

2. The Simplicial Intercept Depth (SID) Method for Linear Fitting

Although the SID method applies to data of any dimension, for simplicity
we focus here mainly on the following two-dimensional linear model:

yi = β0 + β1xi + ei for i = 1, . . . ,n, (2.1)

where n is the sample size, xi is the i-th input variable or covariate, and yi is the
i-th response or output variable. The ei’s are independent error terms and are
usually assumed to have zero mean and unknown variance σ2. The parameters
β0 and β1 are the unknown intercept and slope which are to be estimated from

the given dataset Wn = {W1, . . . ,Wn}, where Wi =
(

xi

yi

)
.

Let ∆(Wi,Wj ,Wk) denote the triangle whose vertices are the data points Wi,
Wj and Wk. Let ∆ denote the collection of all these triangles, ∆ ≡ {∆1, . . . ∆K},
where K ≡ (n

3

)
.

Let y = b0(i, j) + b1(i, j)x denote the line which passes through the pair of
sample points (xi, yi) and (xj , yj). For simplicity, we denote y = b0(i, j)+b1(i, j)x
by Lij, and denote the pool of all

(n
2

)
lines by P ≡ {Lij : i, j = 1, . . . , n, i < j}.

Given a line Lij and a triangle ∆k, we can check if they intersect. If the line Lij

passes through ∆k, then there are two intersection points. Let �k(i, j) denote
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the distance between these two intersection points. We refer to �k(i, j) as the
“intercept of Lij within the triangle ∆k”. Clearly �k(i, j) = 0 if the line Lij does
not intersect with the triangle ∆k, or has only one intersection point.

Definition 2.1. For a given line Lij in P, the simplicial intercept depth (denoted
by SID) is

SID(Lij) =
1(n
3

)
(n
3)∑

k=1

{
�k(i, j)
m(∆k)

}
, (2.2)

where ∆k ∈ ∆, {i, j = 1, . . . , n, i < j}, and m(∆k) is the length of the longest
side of ∆k (it may be realized by more than one side).

In other words, the depth of the line Lij is the average of the ratios of its
intercept within each triangle to the length of the longest side of that triangle,
over all triangles in ∆. A larger SID value for Lij implies that the line Lij cuts
“deeper” into more triangles in ∆. Thus it gives a greater number of relatively
“longer” intercepts.

In degenerate cases, i.e., when two or all three vertices of the triangle coin-
cide, we can define the ratio �k(i, j)/m(∆k), separately, as in the following two
cases:

Case 1. Two vertices of the triangle are identical: In this case, the triangle
becomes a line. The ratio is defined to be 1 if the line Lij coincides with the line
representing the triangle, and 0 otherwise.

Case 2. All three vertices of the triangle are identical: the ratio is defined to be
1 if Lij passes through this common vertex, and 0 otherwise.

The value SID(Lij) defined in (2.2) provides a natural measure of goodness-
of-fit of the line Lij with respect to the given data set. Based on the SID, the
best linear fit for dataset Wn is the line in P with maximum SID value. We
denote the best fit by y = b∗0 + b∗1x.

The SID value of the fitted line is 1 if and only if all the data points are on the
line, and it decreases as the data points scatter away from the line. Therefore,
the value in the SID method plays a role similar to that of the coefficient of
determination in the least squares method. In other words, the SID value can
be used as an alternative measure of goodness-of-fit of a linear fit for a given
dataset. This point is discussed further, highlighted by graphs, at the end of
Section 4.

In theory, the pool of lines under consideration in Definition 2.1 can be the
set of all lines in the plane. However, it is impractical, if not impossible, to
search for the maximum SID among all possible lines. Therefore, we restrict
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ourselves only to the lines contained in P. Clearly, this restriction may lead to
some loss of efficiency. One way to make up for this loss of efficiency is to increase
the size of the pool P by including more viable line candidates. For example,
consider also the averages of each pair of the original observations, and include in
P the additional lines which pass through the averages or the combination of an
average and an original observation. The increase of efficiency, in this case, may
lead to a reduction of the robustness achieved by using only the restricted pool
P. However, if the sample size is not too small, the reduced robustness should
be insignificant.

2.1. Rotation and reflection invariance properties of the SID method

To show that the SID method is invariant under both rotation and reflection
transformations, it suffices to show that it is invariant under any orthonormal
transformation. Consider the simple linear model case at (2.1) with the data

Wn = {W1, . . . ,Wn}, where Wi =
(

xi

yi

)
. Let H be a 2 × 2 orthonormal matrix,

i.e., HtH = HHt = I, and consider the orthonormal transformation of the
original data, W̃n = {W̃1, . . . , W̃n}, where W̃i = HWi. Let L be a given line on
the plane, say, ax + by = c for some fixed constants a, b and c. Let L̃ denote the

line ãx + b̃y = c, where
(

ã

b̃

)
= H

(
a

b

)
.

Proposition 2.1. SIDWn(L) = SIDW̃n
(L̃), where SIDWn(L) denotes the SID

value of the line L w.r.t. the dataset Wn, and SIDW̃n
(L̃) the SID value of the

line L̃ w.r.t. the dataset W̃n.

Proof. Recall that under a orthonormal transformation, any geometric figure is
transformed into another figure which is exactly congruent to the original one,
i.e., the transformed object is identical to the original one except for a possible
orientation difference. The length, area, volume, etc. are unchanged. Thus the
ratio of the intercept to the longest side in each triangle used to define the SID
is also preserved.

As a corollary of the above proposition, if ax + by = c is the best fitting
line by the SID method for the dataset Wn, then the best fitting line by the SID
method for the transformed dataset W̃n is simply the corresponding ãx+ b̃y = c.

Consider the special case of the reflection transformation, i.e., H =
(

0 1
1 0

)
.

Then W̃i =
(

yi

xi

)
and

(
ã

b̃

)
=

(
b

a

)
. This implies that if the (x, y) variables re-

verse their roles, then the SID method preserves the original linear relationship
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between the two variables. This is a desirable property since, in many practi-
cal situations, it is often not clear which variable is more suitable as the input
variable, see the examples mentioned in the introduction and Section 3.1.

There is an intrinsic difference between the goals of regression and those of
linear fitting. Specifically, a regression method is generally designed to predict
the output variable on the basis of the input variable and hence it is crucial to
identify the input variable. On the other hand, the goal of the linear fitting is
simply to find the best linear relationship that exits between the variables. In
particular, a vertical line is always considered a nonfit in linear regression, but it
may very well be a fit in the linear fitting case.

We conclude this section with some remarks on invariance properties. The
regression depth described in Rousseeuw and Hubert (1999) is not invariant un-
der rotations and reflections, but it is invariant under monotone transformations
of the output variable. This last invariance is advantageous for eventual gener-
alizations to non-linear regression settings. Although the SID is invariant under
rotations and reflections, it is not invariant under monotone transformations of
the output variable.

2.2. Breakdown properties of the SID method

Let y = b0 + b1x be a fitted line for the given dataset of paired observations
Wn = {(xi, yi)t, i = 1, . . . , n}. The parameters b0 and b1 are allowed to be
infinity, in which case the above equation conventionally denotes a vertical line
with the form x = c, for some constant c.

We adopt the following definition of breakdown for a linear fit. It defines the
breakdown of a fitted line as the minimum of the breakdowns of it’s estimators
of the coefficient parameters, as shown in (2.5). This definition is, in essence,
equivalent to the one given in Chapter 1 of Rousseeuw and Leroy (1987).

Definition 2.2. Let m be the minimum number of new arbitrary pairs of
(xi, yi)’s needed to be added to the original dataset to bring at least one of
the two estimators for {β0, β1} arbitrarily close to any chosen value. Then the
linear fit is said to have the finite sample breakdown dn = m/(m + n) and the
limiting breakdown d∞ = limn→∞ dn, where n is the size of the original sample
Wn.

We establish below a non-zero lower bound for the breakdown of the SID fit,
and then show that the breakdown is zero for the least squares method, the L1

method, and both L2− and L1− versions of the orthogonal regression method,
denoted, respectively, OR-method and L1OR-method.
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For the given dataset Wn, let d be the maximum SID value attained by its
SID fit, i.e., d = supb0,b1 SID(b0, b1), where SID(b0, b1) is the SID value for the
line y = b0 + b1x w.r.t. the given dataset. To move the slope b1 to an arbitrary
value, we would need to have sufficient contamination in order to move the fitted
line to a line whose original SID value is d1, where d1 = infb1 supb0 SID(b0, b1).
Note that d− d1 > 0 if there exists a unique maximizer for the SID value for the
original data (cf. Remark 2.1).

Now, assume that we contaminate the original dataset by adding m points.
These m points generate T (m) ≡ (m

3

)
+

(m
2

)
n + m

(n
2

)
new triangles. The new

SID value for the original best SID fit will be at least d
(n
3

)
/
(n+m

3

)
, and the new

SID value for the line whose original SID value is d1 will be at most [d1
(n
3

)
+

T (m)]/
(n+m

3

)
. If, after the contamination, the line with original SID value d1

amasses higher new SID than the original best fit, then d
(n
3

) ≤ d1
(n
3

)
+ T (m) or,

equivalently, (d − d1)
(n
3

) ≤ T (m). If m = λn, then the above inequality can be
expressed as d − d1 ≤ λ3 + 3λ2 + 3λ + O(n−1).

Denote by dn(β1) the finite sample breakdown for the estimators of β1, i.e.,
dn(β1) = m/(m + n) = λ/(1 + λ). We observe the bound

d − d1 ≤ S3 + 3S2 + 3S + O(n−1) ≡ g(dn(β1)) + O(n−1),

where S = dn(β1)/(1 − dn(β1)). Since g is an increasing function of dn(β1), we
arrive at

dn(β1) ≥ g−1(d − d1), (2.3)

where g−1(a) > 0 if a > 0. Thus d∞(β1) > 0 as long as (d−d1) does not converge
to zero as n → ∞.

Similar arguments can be used to establish that

dn(β0) ≥ g−1(d − d0), (2.4)

where d0 = infb0 supb1 SID(b0, b1). Assume that (d − d0) > 0 for the original
data (cf. Remark 2.1). Then the outcomes in (2.3) and (2.4) lead to the nonzero
limiting lower bound for the SID fit

dn = min(dn(β0), dn(β1)) ≥ min{g−1(d − d0), g−1(d − d1)}. (2.5)

Remark 2.1. Both (d − d0) and (d − d1) are positive if there exists a unique
maximizer of the SID. The latter holds except for some pathological examples,
such as the case of spherically symmetric data.

We now proceed to show the zero breakdown for the linear fit obtained by
orthogonal regression (OR). Similar arguments holds for its L1 version (L1OR),
and for the usual L1 and least squares methods.
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Recall that the best fitted line with the OR method is obtained by minimizing
the sum of the squared orthogonal distances of the sample points to the candidate
line. Replacing the squared distance above with the absolute distance (i.e., the
squared root of the squared distance) yields the best fitted line for the L1OR
method. It can be shown that the sample OR best fitted line for the given model
in (2.1) is y = β∗

0 + β∗
1x with β∗

0 = ȳ − β∗
1 x̄, when β∗

1 is the minimizer of
∑

(yi − ȳ + β∗
1 x̄ − β∗

1xi)2/[1 + (β∗
1)2].

Suppose we want to move the slope β∗
1 of the best OR fitted line y = β∗

0 +β∗
1x

to be arbitrarily close to a chosen value β̃1. Choose a point (x∗, y∗) on the line
y = β∗

0 + β̃1x. Consider contaminating the given dataset by adding (x∗, y∗), and
let (x∗, y∗) → (∞,∞) along the line y = β∗

0 + β̃1x. If β∗
1 �= β̃1, as (x∗, y∗) →

(∞,∞), the orthogonal distance from (x∗, y∗) to y = β∗
0 + β∗

1x grows to ∞.
Therefore, the total squared orthogonal distance of the new dataset for the line
y = β∗

0 + β∗
1x also grows to ∞. Since one can keep the total orthogonal distance

bounded by choosing a line passing through (x∗, y∗), the slope of the fitted line
for the contaminated dataset is forced to converge to β̃1. This shows that a single
point contamination is sufficient to cause the breakdown of the slope of the OR
fit, and thus the breakdown for the OR method is zero.

Remark 2.2. It is worth noting that the breakdown of the intercept is 1/2
for the usual L1 regression and the L1OR method. The L1OR is clearly more
robust than the OR method, just as the L1 regression is more robust than the
LS method.

3. Examples and Empirical Comparisons

The SID method is applied to three datasets. The first dataset consists
of 1994 SAT averages for verbal and math scores for the 50 states in the USA
(Kitchens, (1998, pp.346-347)); the second is the Hertzprung-Russell diagram
of a star cluster in the direction of Cygnus (from Rousseeuw and Leroy (1987,
p.27)); the third (from Rousseeuw and Leroy (1987, p.26)) records the number
of international telephone calls from Belgium in the years 1950-1973. The last
two datasets have been studied extensively in Rousseeuw and Hubert (1999). We
apply to these three datasets the following linear fitting methods: least squares
(LS), L1, OR, L1OR, SID and regression depth (RD).

3.1. Invariance comparison

Based on the scatterplot (in Figure 1) and the physical meanings of the SAT
scores, it is unclear whether the verbal or the math score should be the input
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variable. Since SID, OR and L1OR methods are reflection invariant, we present
only their linear fits with math score as the output variable. The equations listed
next to LS and LS’ are the LS fits obtained by using, respectively, verbal and
math score as the input variable. The last LS’ simply inverts the two variables
in the previous LS. Clearly, LS’ and LS are different. This difference illustrates
that the LS method is not reflection invariant.

SID : Math = −8.2828 + 1.1414Verbal,

OR : Math = 8.2377 + 1.1029Verbal,

L1OR : Math = 3.7778 + 1.1111Verbal,

LS : Math = 34.7676 + 1.0436Verbal,

LS′ : Verbal = 12.8299 + .8662Math,

LS′ : Math = −19.8117 + 1.1545Verbal.

Figure 1. SAT scores data.

3.2. Robustness comparison

Figure 2 contains the fitted lines for the star data from five methods. To avoid
crowding, the fitted lines are presented in two separate plots. The respective
equations for the fitted lines are:

LS : ŷ = 6.7935 − 0.4133x,

L1 : ˆ̂y = 8.1492 − 0.6922x,
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SID : y∗ = −15.8164 + 4.7273x,

RD : y∗∗ = −7.3258 + 2.7875x,

OR : ỹ = 35.42935 + −7.05736x.

Note that the small cluster of four giant stars on the upper left corner in
Figure 2 are quite far away from the rest of the data. They are generally viewed
as outliers. Clearly, the LS and the L1 lines are unduly influenced by the outliers.
The OR line provides a slight improvement, but it still does not capture the linear
structure of the majority of the data. The SID and RD lines practically ignore the
cluster of outliers, and go through the bulk of the major cluster. Furthermore,
the SID line appears to be insensitive even to the points sitting between the
major cluster and the cluster of the four outliers.

Figure 2. Stars data.
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Figure 3, again in two separate plots, contains the five fitted lines for the
telephone calls data. The respective equations for the fitted lines are:

LS : ŷ = −26.0059 + 0.5041x,

L1 : ˆ̂y = −7.519 + 0.153x,

SID : y∗ = −5.1632 + 0.1105x,

RD : y∗∗ = −7.8623 + 0.1575x,

OR : ỹ = −48.4934 + 0.8698x.

Figure 3. Telephone calls data.

In this case, the six points which curve up in the middle of the scatter plot
are viewed as outliers. Here, the LS line is affected the most by the outliers.
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The L1 line and the RD line almost coincide with each other, and they show a
substantial improvement over the LS line. The SID line lies at the bottom of the
plot, and appears to be completely unaffected by the outliers.

3.3. Efficiency comparison

Asymptotic relative efficiency (ARE) is a standard measure for comparing
two estimators. It provides a ratio of the sample sizes needed for the two esti-
mators to achieve the same level of mean square error (mse). It is usually the
limiting ratio of the mse’s achieved by the two estimators. We present here a
comparison in terms of the relative efficiency of the SID method to the LS, the
OR, and the L1OR methods, in three simulated examples. All three examples
are simulated from a normal model, with the last being contaminated by one
standard Cauchy error variable. Note that, since the LS method is known to be
optimal in the normal model, it should be expected that the relative efficiency
of the SID to the LS method be less than 1. Recall that the relative efficiency
is defined as σ2

n,LS/σ2
n,SID, where σ2

n,LS and σ2
n,SID are respectively the mse’s of

the estimators derived from the LS method and the SID method with the sample
size n. We set n = 20 in our simulation examples, and omit n in all notations.
This simulation study is repeated for the OR and the L1OR methods.

Example 3.1. Consider the model y = 2 + βx + ε, where ε is N(0, σ2). The
value of σ is chosen to be 0.01, 0.1, 1, or 2. The sample size n is 20. The
independent variable x is assigned values which are equally spaced from 0 to 19.
For each sample, the estimates for the intercept and the slope are calculated.
This simulation is run 1,000 times for each value of σ.

Respectively for β = 3 and β = 100, Tables 3.1 and 3.2 list the relative
efficiency σ2

LS/σ2
SID of the SID method compared to the LS method in estimating

the intercept and the slope under each value of σ. The relative efficiency is about
40% to 55%, comparable to the L1OR and L1 methods in the same setting. The
OR method, having a squared objective function similar to that of the regular
LS method, retains high efficiency. Drawing from the efficiency study between
regression depth and L1 methods in Rousseeuw and Hubert (1999), we conclude
that the SID and the regression depth methods have similar levels of efficiency
loss when they are compared with the LS method. Note that the efficiency
comparison here tends to be conservative for the SID fit, and as discussed in
Section 5.

Example 3.2. Consider the model y = 2+βx+ ε, where ε is N(0, 1). The same
simulation procedure as in Example 3.1 is repeated, except for that each sample
now contains 19 observations generated from the model, and one contaminated
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observation generated from the standard Cauchy error variable (with center 0
and scale 1).

Table 3.1. Model: y = 2 + 3x + ε.

σ2
LS/σ2

SID σ2
LS/σ2

OR σ2
LS/σ2

L1OR

σ Intercept Slope Intercept Slope Intercept Slope

0.01 0.4943 0.476232 0.999922 0.999874 0.650103 0.627649
0.1 0.523508 0.510057 0.998869 0.999137 0.634658 0.613791
1 0.445502 0.437643 0.989462 0.990643 0.637411 0.638469
2 0.447891 0.409257 0.991620 0.982825 0.663385 0.649616

Table 3.2. Model: y = 2 + 100x + ε.

σ2
LS/σ2

SID σ2
LS/σ2

OR σ2
LS/σ2

L1OR

σ Intercept Slope Intercept Slope Intercept Slope

0.01 0.552381 0.502035 0.9999996 0.9999996 0.6630726 0.6560074
0.1 0.456335 0.448066 0.9999818 0.9999820 0.6826832 0.6741967
1 0.491115 0.460199 0.9997263 0.9997879 0.6412567 0.6318704
2 0.528545 0.512687 0.9996104 0.9996723 0.6466665 0.6422692

Table 3.3. Contamination with one Cauchy error variable.

σ2
LS/σ2

SID

model Intercept Slope
y = 2 + 3x + ε 3079.849 7618.124

y = 2 + 100x + ε 227.4719 613.0168

Even with only one Cauchy outlier (an equivalence of 5% contamination), it
is evident from Table 3.3 that the SID method is of much greater efficiency than
the LS method. Scanning through the results from our 1,000 runs, we notice that
the SID estimates are generally quite stable and close to the true values, while
the LS estimates often fluctuate widely. We show some of the extreme cases in
the following table.

Table 3.4. Some extreme cases from the LS method.
run InterceptSID SlopeSID InterceptLS SlopeLS

386 1.29955061 3.07375115 64.45405029 -5.923531292
396 1.57862889 3.05072018 1078.798626 -150.812325
496 1.99894466 2.99129005 -28.77564588 7.38242724
623 1.36140617 3.05386946 25.50574458 -0.409166007
854 2.37564413 2.95549022 16.39880004 0.977085454
878 3.10025679 2.93226526 13.58867624 1.451392556
978 1.95624724 3.03040365 123.9870806 -14.41739117
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3.4. A Visual display of breakdown in linear fitting

Figure 4 contains 1,000 lines obtained by the methods of LS, SID, L1OR
and OR for the 1,000 simulated samples from the setting in Example 3.2 for the
target line y = 2+3x+ε. The 1,000 lines under SID are tightly bundled together
which shows the relatively small effect from the Cauchy contamination. The plot
under L1OR is the next best, with several lines turning vertical. The lines under
OR are more spread out than those under L1OR but they lie within the first
and third quadrants. Finally, the lines under LS are spread out in all directions.
These four graphs suggest that SID is far more robust than the others.

Figure 4. 1,000 simulated lines from Example 3.2.

4. Simplicial Fit Plot

In most regression methods, the residual plot is used as a tool to visually
determine the goodness of the proposed fit. However, since the residuals do not
have a standardized scale it can be difficult to comprehend the magnitude of the
residuals. In this section, we propose a goodness-of-fit plot in a standardized
scale, which provides the “depth” of “cut” through each triangle by the fitted
line. We shall call this plot the simplicial fit plot (S-fit plot).
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Recall that ∆ ≡ {∆1, . . . ∆(n
3)
} denotes the collection of all

(n
3

)
triangles

generated from the sample of size n, and that the SID is the average of intercept
ratios, {rk = �k/m(∆k), k = 1, . . . ,

(n
3

)}, (see (2.2)). The S-fit plot of a line L

is the quantile plot of {rk : k = 1, . . . ,
(n
3

)} As t grows from 0% to 100%, q(t)
indicates the corresponding tth quantile of {rk : k = 1, . . . ,

(n
3

)}. If the line cuts
deeply into more triangles, q(t) assumes higher values early on and tends to stay
higher throughout. Figure 5 shows four S-fit plots for the fitted lines obtained
in Section 3.2 for the stars data. There, the S-fit plots of the RD and the SID
lines rise above zero sooner than those of the LS and the L1 lines. The one for
the SID line stays considerably higher compared to the others.

For a given fit, it is worth noting that the area under its S-fit plot is exactly
its SID value. The perfect fit has the SID value 1, which corresponds to the area
under its S-fit plot with q(t) = 1, ∀ t ∈ [0, 1]. Smaller SID values correspond
to slower rising S-fit curves. The S-fit plot, together with its corresponding SID
value, can be a convenient graphical tool for a quick visual assessment of a given
linear fit.

Figure 5. Simplicial fit plots for star data.

5. Concluding Remarks and Open Problems

In this article we have introduced the SID method for linear fitting by ex-
tending the ideas behind the simplicial depth described in Liu (1990). We show
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that the SID method is both rotation and reflection invariant. We also provide
a nonzero lower bound for the breakdown of the SID fit. Some comparisons in
reflection invariance, robustness and efficiency to other regression methods are
presented. The SID fit appears to be quite robust on the real and simulated data.

The SID value quantifies the goodness-of-fit of a proposed linear fit, and
it can be viewed as a robust analog of the coefficient of determination in the
framework of the least squares method. A linear fit with a higher SID value is
considered a better fit. The SID is 1 if and only if all the sample points are on
the line, and it becomes smaller as the sample points are farther away from the
line. It decreases to zero if the line falls completely outside of the data cloud.
To illustrate how the SID characterizes the goodness-of-fit, the simplicial fit plot
(S-fit plot) is proposed as a companion graph showing how the linear fit performs
with respect to each triplet of the given sample. For a perfect fit, namely the SID
is 1, the S-fit plot attains the value 1 throughout. The slower the S-fit plot curves
up, the worse fit of the line is. The area under the curve is exactly the SID value.
The SID value and the S-fit plot together provide a quick visual assessment of
the goodness of a linear fit for a give dataset.

It seems natural to conjecture that if the underlying distribution of the sam-
ple points is elliptical, namely x and y jointly follow an elliptical distribution,
then the population version of the SID is maximized along the major axis (or the
principle component). We have established this claim under the assumption that
the maximizer of the SID is unique. Although the general proof has eluded us,
preliminary empirical simulations appear to support the claim. We also believe
that as long as the distribution has a mirror symmetry and is elongated along a
specific line, that line is the population version of the SID fit. This should hold
for the orthogonal regression method, both the L1 and the L2 versions. Need-
less to say, the population version of the LS regression line does not necessarily
coincide with the major axis. For example, if x and y follow a bivariate normal,
then the LS line is E(y|x) = µy + (σx,y/σ

2
x)(x − µx). This line is different from

the major axis.
It is worth pointing out that the efficiency comparison presented in Section

3.3 is a conservative one for the SID method. The assumed models in Examples
3.1 and 3.2 are regression models. The lines being estimated are the target lines
for LS and L1 methods. This may not be the case for the SID fit, in light of
the discussion in the paragraph above. Consequently, in addition to the increase
in variance, there is a bias factor in the σ2

SID presented in Tables 3.1 and 3.2.
This bias factor contributes to some of the loss of efficiency in the SID fit. This
explains why the σ2

SID in both Tables should be viewed as the mean squared
error and not just as the variance alone.

The asymptotics of the SID method (such as consistency and asymptotic
distribution) are yet to be investigated. They are needed for making inferences
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with the SID method. They are also needed for a comparison with RD using the
asymptotics of the RD established in Bai and He (1999) and He and Portnoy
(1998). As for the breakdown properties, what we have provided in Section 2
is only a lower bound. It would be valuable to determine an exact, or a more
precise, breakdown value.

Although it is conceptually straightforward to generalize the SID method
to the higher dimensional case, developing a usable algorithm seems nontrivial.
For example, in the linear fitting of the three dimensional case, the fit under
consideration is a plane, and the SID measures how “deep” the plane “cuts”
through the simplices (tetrahedrons in this case) generated by the sample points.
Specifically, the SID here is the averaged ratio of the area of the intercept (the
intersection of the plane inside the simplex) to the area of the largest face of the
simplex formed by any four observations. The search for efficient algorithms for
computing various notions of depth has generated much research interest in the
computer science community (see, for example, Langerman and Steiger (2000)),
and the prospects for fast computing algorithms for higher dimensional depth
appear quite real.
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