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Abstract: Generalized linear mixed models (GLMM) are useful in a variety of ap-

plications. With surrogate covariate data, existing methods of inference for GLMM

are usually computationally intensive. We propose a two-step inference procedure

for GLMM with missing covariate data. It is shown that the proposed estimator

is consistent and asymptotically normal with covariance matrix that can be easily

estimated. Simulation studies show that the proposed method outperforms those

ignoring random effects or only using the validation data. We illustrate the pro-

posed method with a data set from an environmental epidemiology study on the

maternal serum DDE level in relationship to male birth defects.
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1. Introduction

Generalized linear mixed models (GLMM) are popular statistical models
for analyzing data collected from different clusters or from longitudinal studies.
They provide a flexible likelihood framework under which population character-
istics can be modeled as fixed effects and individual variations can be modeled as
random effects. The traditional likelihood approach to GLMM usually involves
high dimensional integrations which are computationally intensive. Alternative
methods for inference have been proposed. One such method is based on esti-
mation of the random effects via maximization of the joint density of the obser-
vations and random effects (McGilchrist (1994)). The idea can be traced back
to the best linear unbiased prediction (BLUP) approach of Henderson (1950) for
the linear mixed model, which is reviewed in Robinson (1991). Other approaches
similar in principle include the penalized quasi-likelihood approach of Breslow
and Clayton (1993), the approximate Bayes method of the Stiratelli, Laird and
Ware (1984), the algorithms proposed in Schall (1991), the pseudo likelihood
approach in Wolfinger and Connell (1993), the hierarchical likelihood of Lee and
Nelder (1996), and the simulated moments method of Jiang (1998).
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Auxiliary covariate problems arise frequently in biomedical studies when the
primary exposure variable is only assessed on a subset of the study subjects. Rea-
sons for observing the exposure variable partially may involve design or practical
issues. In many of these studies, however, subjects with no exposure measure-
ments do have some auxiliary information about the exposure variable. There
is an extensive literature dealing with nonparametric structure for missing data
in fixed effects models. Pepe and Fleming (1991) and Carroll and Wand (1991)
considered a semiparametric approach where they modeled the conditional dis-
tribution of the missing covariate nonparametrically from the validation sample.
This approach has been successfully used in the failure time regression anal-
ysis settings (Zhou and Pepe (1995) and Zhou and Wang (2000)); Reilly and
Pepe (1995) considered a mean-score method for dealing with the missing data
problem; Robins, Rotnitzky and Zhao (1994) proposed a general class of semi-
parametric estimators, based on a set of inverse selection probability weighted
estimating equations when the data are missing at random.

Generally, existing approaches with respect to random effects in the general-
ized linear model are parametric. Normality for the random effects is commonly
assumed, although the hierarchical generalized linear models (Lee and Nelder
(1996)) allow a broader class of parametric models for the random effects. Ver-
beke and Lesaffre (1996) show that misspecification of the random effects model
will cause it to be badly estimated. In this paper, we propose a two-step method
for a generalized linear mixed model with auxiliary covariate data. We do not
assume any parametric distribution for the random effects and allow the distri-
bution of the exposure variable conditional on the auxiliary covariates to vary
across centers.

The rest of the paper is organized as follows. In Section 2, we introduce the
model and propose a center-specific estimator for the regression coefficients based
on an estimated likelihood function. We then construct a two-step estimator
using an optimal weighted version of the first step estimators. The large sample
properties of the proposed two-step estimator are given in Section 3. We propose
a consistent estimator for the variance of the proposed estimator. In Section 4, we
present results from simulation studies comparing the proposed estimator with
alternatives. The method is demonstrated with a data set from the Collaborative
Perinatal Projects in Section 5. Final remarks are given in Section 6.

2. Estimation Method

2.1. The model

Suppose there are K independent centers in a study and each center has
nk subjects, where k = 1, . . . ,K. The total sample size is n =

∑K
k=1 nk. For a
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given center k, let (XT
ki, Z

T
ki)

T be the covariate vector of length p, where Xki is
the exposure variable that may be missing, while Zki is always observed. Let
Wki denote an auxiliary measurement for Xki. We further assume that there is a
random effect uk in each center, where uk, k = 1, . . . ,K, are independent random
variables with mean zero and a finite variance σ2

k. The conditional density of Yki

given the random effects uk and the covariates {Xki, Zki} is assumed to belong
to a canonical exponential family, i.e.,

f(Yki|Xki, Zki,Wki, uk) = exp{[Ykiηki − b(ηki)]/a(φ) + c(Yki, φ)}, (1)

where a(·), b(·) and c(·, ·) are known functions, φ is a dispersion parameter and
ηki is related to the random effects by

ηki = α + βT
x Xki + βT

z Zki + uk. (2)

Let θ = (α, βT
x , βT

z )T ≡ (α, βT )T be the regression parameter vector to be esti-
mated. Note that (1) and (2) imply that, given {Xki, Zki}, Wki provides no extra
information about the regression model.

For a given center k, we assume that there is a simple random validation
sample with size nVk

, denoted by Vk, such that individuals belonging to Vk will
have their {X,Z,W} measured. Similarly, we let V̄k denote the remaining indi-
viduals in center k, the non-validation set, and assume that individuals in V̄k will
only have their {Z,W} measured. Note that nV̄k

= nk−nVk
. Hence the observed

data structure for individual i in center k is {Yki, Zki,Wki,Xki} if i ∈ Vk, and
{Yki, Zki,Wki}, if i ∈ V̄k, where k = 1, . . . ,K and i = 1, . . . , nk.

2.2. Center-specific estimates

Mimicking the idea of stratified analysis in fixed effects generalized linear
models for a given center, we treat the random effect uk as an unknown parameter
which needs to be estimated. Thus, the conditional density of Yki|uk, for k =
1, . . . ,K, can be written as

fθ(k)(Yki|Xki, Zki) = exp{[Ykiηki(θ(k)) − b(ηki(θ(k)))]/a(φ) + c(Yki, φ)}, (3)

where ηki(θ(k)) = αuk
+βT

x Xki +βT
z Zki, with θ(k) = (αuk

, βT )T and αuk
= uk +α.

Conditional on the random effects uk, we can write the joint density function
of {Yki, i = 1, . . . , nk} as a function of θ(k) = (αuk

, βT )T ,

Lk(θ(k)) =
∏

i∈Vk

fθ(k)(Yki|Xki, Zki)
∏

j∈V̄k

fθ(k)(Ykj|Zkj,Wkj). (4)

The contribution from a nonvalidation set member is given by

fθ(k)(Ykj|Zkj,Wkj) =
∫

fθ(k)(Ykj|x,Zkj ,Wkj)dP (x|Zkj ,Wkj),



364 JIANWEI CHEN, JIANWEN CAI AND HAIBO ZHOU

which involves an unspecified distribution function P (X|Zkj ,Wkj). Hence (4) is
not directly computable without some assumption on P (X|Zkj ,Wkj).

Following Pepe and Fleming (1991) and Zhou and Wang (2000), we propose
to estimate fθ(k)(Ykj|Zkj,Wkj) empirically from observations in the validation
set and then to estimate θ(k) from the resulting estimated likelihood function.
Specifically, we assume that P (Xkj |Zkj,Wkj) ≡ P (Xkj |Wkj), i.e., the relationship
between the auxiliary variable Wkj and the corresponding covariate Xkj does not
depend on the covariate Zkj. In other words, given the auxiliary information Wkj,
Zkj provides no extra information on Xkj. Denote by P̂ (Xkj |Wkj) the empirical
density function of P (Xkj |Wkj) based on observations from the validation set
in the kth center. We estimate fθ(k)(Ykj|Zkj,Wkj) for a nonvalidation sample
member in the kth center as follows:

f̂θ(k)(Ykj |Zkj,Wkj) =

∑
i∈Vk

fθ(k)(Ykj|Xki, Zkj)I[Wki=Wkj ]∑
i∈Vk

I[Wki=Wkj ]
, (5)

where I[.] is an indicator function. Note that f̂θ(k)(Ykj|Zkj,Wkj) is an unbiased
estimator for the conditional distribution fθ(k)(Y |Z,W ). The center-specific es-
timator of θ(k) is therefore defined as the maximizer of the following estimated
likelihood function,

ELk(θ(k)) =
∏
i∈Vk

fθ(k)(Yki|Xki, Zki)
∏

j∈V̄k

f̂θ(k)(Ykj|Zkj ,Wkj), (6)

for k = 1, . . . ,K. Let θ̂(k) = (α̂uk
, β̂(k)T

)T be the center-specific estimator of θ(k)

from the kth center, where k = 1, . . . ,K. It can be computed by implementing
the Newton-Raphson iterative procedure.

2.3. A two-step weighted estimation

Clearly, the center-specific estimates from step one depend on the random
effects in each center. They are inefficient since they only use information from
their corresponding centers. We propose a more efficient refined estimator θ̂ =
(α̂, β̂)T , a weighted average of the center-specific estimators, where

θ̂ =
K∑

k=1

wkθ̂
(k), (7)

and
∑K

k=1 wk = 1. We call the θ̂ a two-step estimator of θ. To accommodate
different center sizes, a simple way to assign weight is to let it be proportional
to the center size nk, k = 1, . . . ,K, wk = nk/n with n =

∑K
k=1 nk. We propose
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to use optimal weights in our estimator, optimality in the sense that weights
minimize the variance of the estimated parameters. Using the Lagrange principle,
we solve for the optimal weights by minimizing:

M(w1, . . . , wK ;λ)

= E
[
(θ̂ − Eθ̂)T (θ̂ − Eθ̂)

]
− λ

(
1 −

K∑
k=1

wk

)

= E

 K∑
k=1

wk(θ̂(k) − Eθ̂(k))T
K∑

j=1

wj(θ̂(j) − Eθ̂(j))

− λ

(
1 −

K∑
k=1

wk

)
,

where λ is the Lagrange multiplier. After some simple calculation, the weights
wk, k = 1, . . . ,K, can be determined by the equations

∂M

∂wk
= 2

K∑
j=1

wjE
[
(θ̂(k) − Eθ̂(k))T (θ̂(j) − Eθ̂(j))

]
+ λ = 0.

Note that (θ̂(k) − θ) are independent for k = 1, . . . ,K. By using the constraint∑K
k=1 wk = 1, we derive the expressions of the weight as

wk =
1/E

[
(θ̂(k) − Eθ̂(k))T (θ̂(k) − Eθ̂(k))

]
K∑

j=1

(
1/E

[
(θ̂(j) − Eθ̂(j))T (θ̂(j) − Eθ̂(j))

]) , (8)

for k = 1, . . . ,K. These weights correspond to the contribution of each center-
specific estimator to the proposed two-step estimator. Obviously the proposed
estimator has the smallest variance among the class of estimators that are linear
combinations of the center-specific estimators. Formula (8) reveals the fact that
when the variance of a center-specific estimator is large, i.e., when a center-
specific estimator does not fit the data well, the assigned weight for that center-
specific estimator will be small. We also note that the proposed estimator is
more efficient than any of the first step estimators. This can be seen from the
fact that if the weights are taken to be wi = 1 and wk = 0, k �= i, then the refined
estimator θ̂ will reduce to the center-specific estimator θ̂(i).

3. Asymptotic Properties

We explore the asymptotic properties of the two-step estimator and propose
a consistent variance estimator. For convenience of expression, we introduce the
following notation. For k = 1, . . . ,K, let ρv

k = lim
nk→∞nvk

/nk,

Ik(θ(k)) = ρv
kEθ̂(k)|uk

[
− d2

dθ(k)2
log fθ(k)(Y |X,Z)

]
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+(1 − ρv
k)Eθ̂(k)|uk

[
− d2

dθ(k)2
log fθ(k)(Y |Z,W )

]
,

Σk(θ(k)) = Var
θ̂(k)|uk

{
E

[
d

dθ(k)
log fθ(k)(Y |Z)|X,W

]}
,

Σ∗
k(θ

(k)) = I−1
k (θ(k)) +

(1 − ρv
k)

2

ρv
k

I−1
k (θ(k))Σk(θ(k))I−1

k (θ(k)),

SXki,Wki
(θ(k)) =

∑
j∈V̄k

[
dfθ(k)(Ykj |Xki, Zkj)/dθ(k)

fθ(k)(Ykj|Zkj,Wkj)
− dfθ(k)(Ykj|Zkj ,Wkj)/dθ(k)

(fθ(k)(Ykj|Zkj ,Wkj))2

×fθ(k)(Ykj|Xki, Zkj)
] I[Wkj=Wki]∑

l∈V̄k

I[Wkl=Wki]
.

To obtain asymptotic properties, we assume the following regularity condi-
tions.

(a) Observations across centers are independent and, conditional on the unob-
served random effects, individuals within a center are independent.

(b) As K → ∞ and nk → ∞, K1/2 ∑K
k=1 wk/n

1/2
k = O(1) and K

∑K
k=1 w2

k =
O(1).

(c) K
∑K

k=1 w2
kσ

2
ke1e

T
1 → V1 and K

∑K
k=1 w2

kΓk → V2 as K → ∞ with V1 + V2 <

∞, where Γk = E[Var
θ̂(k)|uk

(θ̂(k))].

(d) For some δ > 0, E|tr((θ̂(k) − E
θ̂(k)|uk

(θ̂(k)))⊗2)|(1+δ) and E|uk|2(1+δ) exist,

K1+δ ∑K
k=1 w

2(1+δ)
k E|tr((θ̂(k) − E

θ̂(k)|uk
(θ̂(k)))⊗2)|(1+δ) → 0, and K1+δ ∑K

k=1

w
2(1+δ)
k E|uk|2(1+δ) → 0 as K → ∞.

(e) For some δ>0, K1+δ∑K
k=1 w2+2δ

k σ
2(1+δ)
k →0 and K1+δ∑K

k=1 w2+2δ
k |(Γk)ij |1+δ

→ 0, as K → ∞, where (Γk)ij denotes the (i, j) element of Γk.

Following the theory of Pepe and Fleming (1991), the score function from
(6) can be expressed asymptotically as

1√
nk

d log ELk(θ(k))
dθ(k)

=
1√
nk

d log Lk(θ(k))
dθ(k)

+
1√
nk

1 − ρv
k

ρv
k

∑
i∈Vk

SXki,Wki
(θ(k))

 + Op

(
1√
nk

)
,

where the first term, d log Lk(θ(k))/dθ(k), would be the score function if fθ(k)

(X|Z,W ) were known. Note that Ik(.) is the conditional expected information
of θ(k) based on the likelihood for the observed data if the form of fθ(k)(X|Z,W ) is
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completely known and Σk(.) is the conditional variance induced by estimating the
likelihood component for nonvalidation data within each center k. Furthermore,
it follows that

E
θ̂(k)|uk

(θ̂(k))=θ(k)+op

(
1√
nk

)
, Var

θ̂(k)|uk
(θ̂(k))=

1
nk

Σ∗
k(θ

(k))+op

(
1
nk

)
, (9)

uniformly for k = 1, . . . ,K.

Theorem 1. Under Conditions (a)−(d), as K → ∞, the two-step estimator
θ̂ = (α̂, β̂T )T is a consistent estimator of θ = (α, βT )T and K1/2

(
θ̂ − θ

)
has an

asymptotic normal distribution N(0, V ). Here V = V1 + V2 with

V1 = lim
K→∞

K
K∑

k=1

w2
kσ

2
ke1e

T
1 and V2 = lim

K→∞
K

K∑
k=1

w2
kEuk

[
Var

θ̂(k)|uk
(θ̂(k))

]
,

where e1 is a vector with 1 in the 1st position and 0 elsewhere.

Remark. In fact, we have the asymptotic expansions

Var
[
K1/2(α̂ − α)

]
= lim

K→∞
K

K∑
k=1

w2
kσ

2
k + lim

K→∞
K

K∑
k=1

w2
kEuk

(
Var α̂(k)|uk

(α̂(k))
)

,

Var
[
K1/2(β̂ − β)

]
= lim

K→∞
K

K∑
k=1

w2
kEuk

(
Var

β̂(k)|uk
(β̂(k))

)
.

In particular, consider the situation that σ2
1 = · · · = σ2

K , then the asymptotic
variance of α̂ reduces to

Var
[
K1/2(α̂−α)

]
=

(
lim

K→∞
K

K∑
k=1

w2
k

)
σ2+ lim

K→∞
K

K∑
k=1

w2
kEuk

(
Var α̂(k)|uk

(α̂(k))
)

.

This result can be used to estimate the variance σ2 of the random effects.

The proof of Theorem 1 is outlined in the Appendix. From the expression
for the variance of the estimator, it is clear that the direct estimator V̂DE(β̂) is
a consistent estimator of the variance of the estimated β̂ where

V̂DE(β̂) =
K∑

k=1

w2
kV̂ar

β̂(k)|uk
(β̂(k)), (10)

V̂ar
θ̂(k)|uk

(θ̂(k)) =
1
nk

(
Î−1
k (θ̂(k)) +

(1 − ρ̂v
k)

2

ρ̂v
k

Î−1
k (θ̂(k))Σ̂k(θ̂(k))Î−1

k (θ̂(k))
)
, (11)
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ρ̂v
k = nv

k/nk, Îk(θ̂(k)) = −d2 log ELk(θ(k))/dθ(k)2 |
θ(k)=θ̂(k) and Σ̂k(θ(k)) = V̂ar

{ŜXki,Wki
(θ(k)), i ∈ Vk, }. Here V̂ar {ŜXki,Wki

(θ(k)), i ∈ Vk, } is the sample
variance-covariance matrix of {ŜXki,Wki

(θ(k)), i ∈ Vk, } with

ŜXki,Wki
(θ(k)) =

∑
j∈V̄k

[
dfθ(k)(Ykj|Xki, Zkj)/dθ(k)

f̂θ(k)(Ykj|Zkj ,Wkj)
− df̂θ(k)(Ykj|Zkj,Wkj)/dθ(k)

(f̂θ(k)(Ykj|Zkj ,Wkj))2

×fθ(k)(Ykj|Xki, Zkj)
] I[Wkj=Wki]∑

l∈V̄k

I[Wkl=Wki]
.

The direct variance estimator for α̂, V̂DE(α̂) =
∑K

k=1 w2
kV̂ar α̂(k)|uk

(α̂(k)), is
not a consistent estimator of variance in this situation: the variance of α̂ will be
larger than V̂DE(α̂) which assumes independence of observation within a center.
The following theorem gives a consistent estimator for the variance-covariance
matrix of the proposed two-step estimator θ̂ = (α̂, β̂).

Theorem 2. Under Conditions (a)−(e), K · V̂PE(θ̂) is a consistent estimator of
the variance-covariance matrix V of K1/2(θ̂ − θ), where V̂PE(θ̂) = (K/(K − 1))∑K

k=1 w2
k(θ̂ − θ̂(k))⊗2 and b⊗2 = bbT for a vector b.

The proof of Theorem 2 is also outlined in the Appendix. From the results
of the Remark and Theorem 2, we see that both variance estimators V̂DE(β̂) and
V̂PE(β̂) are consistent estimators for the variance-covariance matrix of β̂. When
it comes to estimate the intercept, the variance estimator V̂PE(α̂) is a consistent
estimator while V̂DE(α̂) will under-estimate the variance of α̂.

The proposed two-step estimator and the estimated variance depend on the
selection of the weights. Based on the results in (8), the optimal selection of the
weights can be expressed as

wk =
1/tr[Var

θ̂(k)|uk
(θ̂(k))]

K∑
k=1

(
1/tr[Var

θ̂(k)|uk
(θ̂(k))]

) , (12)

for k=1, . . . ,K, where tr(A) denote the trace of the matrix A and Var
θ̂(k)|uk

(θ̂(k))

can be consistently estimated by V̂ar
θ̂(k)|uk

(θ̂(k)) defined in (11).
Furthermore, when the variance of the random effect is the same across

centers, i.e., σ2
1 = · · · = σ2

K , the variance of the random effect can be estimated
by

σ̂2 =
V̂PE(α̂) − V̂DE(α̂)∑K

k=1 ŵ2
k
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=
K

K − 1

K∑
k=1

ŵ2
k∑K

l=1 ŵ2
l

(
α̂ − α̂(k)

)2 −
K∑

k=1

ŵ2
k∑K

l=1 ŵ2
l

V̂ar α̂(k)|uk
(α̂(k)).

4. Simulation Studies

We conduct extensive Monte Carlo simulation studies to evaluate the per-
formance of the proposed two-step estimator. To illustrate the effectiveness of
the proposed estimator, we compare it with two competing estimators: the naive
estimator (θ̂N ) and the complete-case two-step estimator (θ̂V ) that is based only
on the validation data. The naive estimator considers the auxiliary covariate in-
formation but not the random effects, and the complete-case two-step estimator
using only the validation data considers the random effects but not the auxiliary
covariates information in the nonvalidation set. For the proposed estimator (θ̂),
we used an estimator with the optimal weight in (12). The data are generated
according to the following logistic regression model:

Pβ(Yki = 1|Xki, uk) =
exp{α + Xkiβ + uk}

1 + exp{α + Xkiβ + uk} , (13)

for i = 1, . . . , nk, k = 1, . . . ,K, where Xki ∼ N(0, 1), uk ∼ N(0, σ2
k). The

auxiliary variable W is defined as Wki = I(Xki + εk > 0), where εk ∼ N(0, λ2
k)

is a random error and λ2
k is the parameter that controls the strength of the

association between X and W . The parameter values used in our simulation
studies are α = 0, β = log 2 = 0.693, and λk = Unif[0, 0.5]. The sample sizes
studied are n = 1000, 2000 and 4000, and the corresponding numbers of centers
are K = 10, 20 and 40. We set the number of individuals in each center to
be equal, n1 = · · · = nK = 100. The validation fraction in each center is
chosen to be 50%. For a given sample size, the average of the estimates (Mean),
sample standard deviation (SE), the square root of the average of the mean
squared error (

√
MSE), the average of estimated standard errors (ŜE) and 95%

confidence intervals coverage rate (C.I.) are obtained from 500 independent runs.
The simulation results are summarized in Tables 1−3.

Table 1 presents the results for cases with common variance of the random
effects across centers for (n,K) = (2000, 20). We consider σ = 0.50, 0.75 and 1.0.
Table 2 presents the results for cases with varying variance of the random effects
across centers for (n,K) = (1000, 10), (2000, 20) and (4000, 40). We generated
σk from the uniform distribution on [0, 1.5]. The results of the center-specific
estimators for each center are listed in Table 3.

Under the models studied, we make the following observations. (i) Both the
complete-case two-step estimator (θ̂V ) and the proposed two-step estimated like-
lihood estimator (θ̂) are valid. The naive estimator (θ̂N ) yields biased estimates
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when there are random effects in the model (see Table 1). The bias in β̂N could
be severe when there are strong random effects, i.e., when σ2 is large. (ii) The
estimator θ̂ is more efficient than θ̂V . The relative efficiency calculated as the
ratio of the corresponding mean square errors (MSE) of the estimators shows
that θ̂V E is only about 50%-80% as efficient as θ̂. (iii) The proposed variance
estimates, V̂PE(β̂) and V̂DE(β̂), provide good estimation of the variation of β̂.
V̂PE(α̂) provides a good estimate for the variance of the intercept while V̂DE(α̂)
is biased. The 95% confidence intervals using either V̂DE(β̂) or V̂PE(β̂) provide
good coverage for the cases studied. The variance estimator V̂PE(α̂) also gives
good coverage for the 95% confidence intervals of α. On the contrary, the vari-
ance estimator for α̂N underestimates the true variance, especially for large σ2

k

cases, and β̂N is biased. Consequently, the 95% confidence interval coverage is
very poor. (iv) Examining the results in Tables 2 and 3, it is clear that the
proposed two-step estimator has better finite sample properties than the center-
specific estimators both in term of bias and variance. We also note that results
from some additional simulations with sparse data in individual centers show
that V̂DE(β̂) is more stable than V̂PE(β̂) (results not shown). We use V̂DE(β̂) in
the presentation of our data analysis.

Table 1. Simulation study results for σ2
k ≡ σ2, k = 1, . . . , K, and θ =

(α, β) = (0, ln 2) with K = 20 and nk = 100, k = 1, . . . , K.

95 % C.I. w/
σ Estimator Mean SE

√
MSE ŜEPE ŜEDE SEPE SEDE

0.50 α̂N -0.007 0.118 0.119 0.047 0.558
α̂V -0.008 0.121 0.122 0.121 0.072 0.928 0.762
α̂ -0.006 0.115 0.116 0.113 0.051 0.928 0.590

β̂N 0.651 0.058 0.071 0.058 0.878
β̂V 0.687 0.077 0.077 0.075 0.078 0.924 0.948
β̂ 0.677 0.057 0.059 0.059 0.061 0.940 0.950

0.75 α̂N -0.010 0.161 0.161 0.047 0.432
α̂V -0.010 0.159 0.159 0.155 0.076 0.934 0.647
α̂ -0.008 0.154 0.155 0.150 0.052 0.930 0.471

β̂N 0.616 0.061 0.099 0.057 0.711
β̂V 0.685 0.078 0.078 0.077 0.080 0.916 0.945
β̂ 0.677 0.059 0.061 0.061 0.063 0.934 0.948

1.00 α̂N -0.011 0.200 0.200 0.047 0.367
α̂V -0.010 0.189 0.190 0.185 0.077 0.931 0.583
α̂ -0.009 0.187 0.188 0.181 0.055 0.942 0.429

β̂N 0.575 0.065 0.135 0.056 0.465
β̂V 0.682 0.079 0.080 0.080 0.083 0.933 0.955
β̂ 0.675 0.059 0.061 0.063 0.065 0.953 0.959
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Table 2. Simulation study results for σk = Unif[0, 1.5], k = 1, . . . , K. The
true parameter (α, β) = (0, ln 2) and n1 = · · · = nK = 100.

95 % C.I. w/
K Estimator Mean SE

√
MSE ŜEPE ŜEDE SEPE SEDE

10 α̂N -0.007 0.206 0.206 0.067 0.484
α̂V -0.004 0.194 0.194 0.189 0.103 0.921 0.706
α̂ -0.002 0.179 0.179 0.177 0.073 0.910 0.583

β̂N 0.632 0.084 0.104 0.081 0.858
β̂V 0.687 0.108 0.108 0.109 0.113 0.919 0.957
β̂ 0.678 0.086 0.088 0.086 0.103 0.917 0.995

20 α̂N -0.011 0.158 0.158 0.047 0.410
α̂V -0.010 0.144 0.144 0.142 0.074 0.936 0.669
α̂ -0.009 0.138 0.138 0.134 0.052 0.938 0.519

β̂N 0.620 0.060 0.095 0.057 0.740
β̂V 0.687 0.077 0.077 0.077 0.080 0.940 0.959
β̂ 0.677 0.056 0.058 0.060 0.063 0.949 0.959

40 α̂N -0.002 0.105 0.105 0.033 0.464
α̂V -0.002 0.096 0.096 0.093 0.052 0.941 0.695
α̂ -0.002 0.091 0.091 0.087 0.036 0.949 0.582

β̂N 0.631 0.044 0.075 0.040 0.672
β̂V 0.688 0.054 0.055 0.054 0.056 0.949 0.960
β̂ 0.680 0.042 0.044 0.042 0.044 0.938 0.937

Table 3. Simulation study results for the center-specific estimators within
each center with σk = Unif[0, 1.5], k = 1, . . . , K, for K = 10 and n = 1000.
The true parameter (α, β) = (0, ln 2).

α̂
(k)
V β̂

(k)
V α̂(k) β̂(k)

Center Mean SE ŜE Mean SE ŜE Mean SE ŜE Mean SE ŜE
1 0.031 0.454 0.313 0.717 0.353 0.359 0.019 0.380 0.220 0.698 0.281 0.272
2 -0.059 1.424 0.435 0.756 0.426 0.463 -0.059 1.361 0.312 0.736 0.352 0.347
3 -0.020 0.386 0.312 0.767 0.374 0.375 -0.012 0.315 0.220 0.741 0.302 0.280
4 0.061 0.580 0.322 0.755 0.389 0.386 0.062 0.504 0.225 0.721 0.273 0.280
5 -0.011 0.329 0.312 0.780 0.395 0.395 0.001 0.222 0.218 0.747 0.285 0.276
6 -0.032 0.850 0.340 0.754 0.389 0.388 -0.015 0.777 0.238 0.729 0.297 0.293
7 -0.027 1.285 0.432 0.767 0.441 0.463 -0.043 1.195 0.296 0.736 0.350 0.332
8 0.052 0.485 0.316 0.749 0.407 0.403 -0.048 0.445 0.223 0.728 0.317 0.282
9 0.005 1.076 0.372 0.755 0.426 0.401 -0.004 1.014 0.258 0.728 0.321 0.307
10 -0.005 0.573 0.319 0.744 0.380 0.369 -0.014 0.523 0.224 0.704 0.296 0.283
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5. Risk of Male Birth Defects and DDE Exposure

DDE are ubiquitous environmental contaminants. It has been hypothesized
in a recent study that in-utero exposure to the androgen antagonist DDE could
be related to the frequency of male birth defects among boys (Longnecker, Kleb-
noff, Zhou and Brock (2002)). The investigators tested this hypothesis on a
population with relatively high serum DDE levels consisting of male offsprings
of those enrolled in the Collaborative Perinatal Project (CPP). We illustrate our
proposed method by evaluating the effect of DDE exposure on the risk of male
birth defects (cryptochidism, hypospadias and polythelia) using a subset data
set from the Longnecker et al. (2002) study.

The CPP was designed to identify determinants of neurological disorders and
other conditions in children (Niswander (1972)). Pregnant women were recruited
from 12 US medical centers from 1959 to 1966. The method of subject selection
varied across study centers. Approximately 42,000 women were enrolled, result-
ing in 55,000 children in the study. The children were systematically assessed
for the presence of birth defects and other outcomes through age 7. The third
trimester serum was assayed for DDE at the center for Disease Control and Pre-
vention (Longnecker et al., 2002).

We define the binary outcome variable to be one if at least one of the three
birth defects is reported. It is well documented that race (black or white) is
a good auxiliary information for the DDE level (e.g., Stehr-Green (1989)). In
our analysis, there are 1,474 children in all from 11 medical centers, with 712
having DDE measured. The smallest center has 46 children with 29 having DDE
measured; the largest one is 302 with 155 having DDE measured. The possible
confounding variables are maternal age in years (MAGE), family’s socio-economic
index (SEINDX), infant race (RACE), smoking during pregnancy (SMK), ma-
ternal height (MHGT), Triglycerides (TRIGLYC), maternal pre-pregnancy body
mass index (MBMIPP) and preterm birth (PRETERM). We fit model (13) to
this subset of CPP data with center-specific random effects.

Table 4 shows the results from fitting the random effect model based on the
validation set only, and those of the proposed method. Both methods show no
statistically significant effect of DDE on the risk of birth defects. The proposed
method is more efficient since it uses more data than the validation set analysis:
the proposed method has a smaller variance and hence a narrower confidence in-
terval. The improvement in efficiency is more significant among other covariates.
The standard errors from the proposed method is about one-third to one-half of
that from the validation set analysis. Among the confounding variables in the
model, the body mass index is significant with the additional information from
the non-validation set. Our results agree with those of Longnecker et al. (2002).
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Table 4. Analysis of CPP data set on DDE in relationship to male birth defects.

Validation Method Proposed Method
Factors Coefficient S.E. Coefficient S.E.
Intercept -3.9751 2.5356 -3.3837 1.8136
DDE -0.0113 0.0071 -0.0094 0.0065
MAGE 0.0032 0.0170 -0.0067 0.0122
SEINDX 0.0478 0.0615 0.0207 0.0445
RACE -0.0165 0.3406 -0.2138 0.2518
MBMIPP 0.0133 0.0209 0.0365* 0.0165
TRIGLYC -0.0005 0.0014 -0.0014 0.0010
SMK 0.0368 0.2041 0.1427 0.1469
MHGT 0.0368 0.0382 0.0338 0.0269
PRETERM 0.2007 0.2906 -0.1021 0.1985

6. Discussion

The derivation of the asymptotic properties for our proposed two-step
method requires that the number of observations within each center goes to in-
finity. The simulation results indicate that when the cluster size is reasonably
large, the asymptotic approximation works well for the finite samples. Although
the requirement for large cluster size is easily satisfied in many large scale mul-
ticenter or longitudinal studies, the proposed method is not applicable for the
type of data where limited observations are available within each cluster, such as
in the eye-disease or family studies.
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Appendix. Proofs of Theorems 1 and 2

Proof of Theorem 1. It follows from the results of Pepe and Fleming (1991)
that E

θ̂(k)|uk
(θ̂(k)) = θ(k) + op

(
1/
√

nk

)
, uniformly for k = 1, . . . ,K. By the

expression of the two-step estimator and Condition (b), we have√
K(θ̂ − θ)

=
√

K
K∑

k=1

wk

{(
θ̂(k) − E

θ̂(k)|uk
(θ̂(k))

)
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(
θ(k) − θ

)
+

(
E

θ̂(k)|uk
(θ̂(k)) − θ(k)

)}

=
√

K
K∑

k=1

wk

{(
θ̂(k) − E

θ̂(k)|uk
(θ̂(k))

)
+ uke1

}
+

√
K

K∑
k=1

wkop (1/
√

nk)

= UK(θ̂) + op(1), (A.1)
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with UK(θ̂) =
√

K
K∑

k=1
wk

{(
θ̂(k) − E

θ̂(k)|uk
(θ̂(k))

)
+ uke1

}
, where e1 is a vector

with 1 on the 1st position and 0 elsewhere.
Now we establish the asymptotic normality of the two-step estimator. Be-

cause wk{(θ̂(k)− E
θ̂(k)|uk

(θ̂(k))) + uke1}, k = 1, . . . ,K, are independent, we only
need to compute the first two moment and check Liapounov’s condition. The
expectation of UK(θ̂) is given by

E
[
UK(θ̂)

]
=

√
K

K∑
k=1

wk

{
E

[
θ̂(k) − E

θ̂(k)|uk
(θ̂(k))

]
+ E [uke1]

}
= 0. (A.2)

Using Condition (c), the variance-covariance matrix of UK(θ̂) is

Var
[
UK(θ̂)

]
= K

K∑
k=1

w2
k

{
Var

[
E

θ̂(k)|uk

(
θ̂(k) − E

θ̂(k)|uk
(θ̂(k))

)]
+E

[
Var

θ̂(k)|uk

(
θ̂(k) − E

θ̂(k)|uk
(θ̂(k))

)]
+ σ2

ke1e
T
1

}
= K

K∑
k=1

w2
k

{
σ2

ke1e
T
1 + E

[
Var

θ̂(k)|uk

(
θ̂(k)

)]}
= V1 + V2 + o(1). (A.3)

By Condition (d) and the results in (A.2)−(A.3), it is clear that Liapounov’s
condition is satisfied. Therefore, from the Liapounov Central Limit Theorem, we
have

√
K

(
θ̂ − θ

)
→ N (0, V1 + V2).

Proof of Theorem 2. First, we note that the estimator K · V̂PE(θ̂) of the
variance-covariance matrix V1 + V2 can be expressed as

K2

K−1

K∑
k=1

w2
k(θ̂

(k)−θ̂)⊗2 =
K2

K−1

K∑
k=1
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K2

K−1
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+
K2

K−1

K∑
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K2

K−1
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k=1

w2
k(θ−θ̂)(θ̂(k)−θ)T

≡ I1 + I2 + I3 + I4. (A.4)

Furthermore, the first term can be written as

I1=
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+
K2

K − 1
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k=1
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Let Tk = K2w2
k

(
θ̂(k) − E

θ̂(k)|uk
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)⊗2
, for k = 1, . . . ,K. Note that

Tk are independent with ETk = K2w2
k(Γk + σ2

ke1e
T
1 ). Hence by Condition (c),

(1/K)
∑K

k=1 ETk → V1 + V2, as K → ∞. Let (B)ij denote the (ij)th element of
the matrix B. Under Conditions (d) and (e) and the Cr inequality (see Sen and
Singer (1993)), for each (i, j) we have
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E
(
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)
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}
→ 0, as K → ∞.

Therefore, by The Markov Weak Law of Large Mumber, it follows that (1/K)∑K
k=1 Tk

P−→ V1 + V2 as K → ∞. Thus we obtain I11
P−→ V1 + V2. Furthermore,

by Condition (b) and the convergence of (1/K)
∑K

k=1 Tk, it can be shown that
I1i

P−→ 0, for i = 2, 3, 4. Hence we have

I1 = I11 + I12 + I13 + I14
P−→ V1 + V2. (A.6)

On the other hand, by Condition (b) and Theorem 1, we have

I3 =
K

K − 1
× K

K∑
k=1

w2
k ×

(
θ − θ̂

)⊗2 P−→ 0, as K → ∞. (A.7)

Using the Cauchy-Schwartz Inequality and the results in (A.6) and (A.7), it can
be shown that as K → ∞, I2

P−→ 0 and I4
P−→ 0. Based on the above results,

we have that K · V̂PE(θ̂) is a consistent estimator for V1 + V2.
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