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CRITERION-ROBUST OPTIMAL DESIGNS FOR MODEL

DISCRIMINATION AND PARAMETER ESTIMATION:

MULTIVARIATE POLYNOMIAL REGRESSION CASE

Min-Hsiao Tsai and Mei-Mei Zen

National Cheng-Kung University

Abstract: Consider the problem of discriminating between two polynomial regres-
sion models on the q-cube [−1, 1]q , q ≥ 2, and estimating parameters in the models.
To find designs which are efficient for both model discrimination and parameter es-
timation, Zen and Tsai (2002) proposed a multiple-objective optimality criterion for
the univariate case. In this work, taking the same Mγ-criterion which uses weight
γ (0 ≤ γ ≤ 1) for model discrimination and 1 − γ for parameter estimation, the
corresponding Mγ-optimal product design is investigated. Based on the maximin
principle on the Mγ-efficiency of any Mγ′ -optimal product design, a criterion-robust
optimal product design is proposed.

Key words and phrases: Efficiency, Mγ-criterion, multiple-objective, product de-
sign.

1. Introduction

The study of optimal designs for multivariate polynomial regression mod-
els has received considerable attention; see Kiefer (1961), Kôno (1962), Farrell,
Kiefer and Walbran (1967), Lim and Studden (1988), Rafajlowicz and Myszka
(1988, 1992), Dette (1994), Wong (1994), Gaffke and Heiligers (1995) and Dette
and Röder (1996) for details. Most of the works were done under the assump-
tion that the degree of the underlying model is given. But, in many practi-
cal situations, experimenters are uncertain about the degree. Dette and Röder
(1997) considered multifactor experiments and proposed a Φp-optimality crite-
rion (weighted p-mean of D-efficiencies) to construct optimal designs for model
discrimination. They claimed that the optimal discrimination designs also have
high efficiency for statistical analysis in the identified model. In this study, we
seek nonsequential experimental designs which take both model discrimination
and parameter estimation into consideration.

Consider the multivariate polynomial regression model

E(Yx) = θ0 +
q∑

i=1

θixi +
∑

1≤i1≤i2≤q

θi1,i2xi1xi2 + · · · +
∑

1≤i1≤···≤il≤q

θi1,...,il

l∏
j=1

xij

= θ�
l f l(x),
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where θl is the vector of parameters, f l(x) is the vector of theNq,l = (q+l)!/(q! l!)
monomials

∏q
i=1 x

mi
i with

∑q
i=1mi ≤ l, and l ∈ N denotes the degree of the model

with x ∈ X = [−1, 1]q . We tackle the problem of discriminating between

Model A : l = k − 1 and Model B : l = k,

and consider parameter estimation simultaneously. For the univariate case, Tsai
and Zen (2003) have extended their results with l in Model A replaced by k− r,
r ≥ 1, as considered by Studden (1982a) and Song and Wong (1999). In this
study, an approximate design η is a probability measure on the q-cube [−1, 1]q

and its performance depends on the information matrix

Ml(η) =
∫
X

f l(x)f�
l (x)dη(x). (1.1)

Discriminating between Model A and Model B is equivalent to testing the hy-
pothesis H0 : θ1,...,1,1 = θ1,...,1,2 = · · · = θq,...,q,q = 0. Note that the number of
parameters under H0 equals Nq,k − Nq,k−1 = Nq−1,k. As in Lim and Studden
(1988), the Ds-optimal design ηs maximizes the objective function

φs(η) =

(
|Mk(η)|
|Mk−1(η)|

)1/s

, (1.2)

where s = Nq−1,k and | · | denotes the determinant. To make inferences in
Model A or B, applying the usual D-criterion, the corresponding optimal design,
ηA or ηB , maximizes the objective function

ψl(η) = |Ml(η)|1/Nq,l . (1.3)

To serve the three objectives described in Pukelsheim and Rosenberger
(1993), Zen and Tsai (2002) proposed a weighted optimality criterion and de-
rived criterion-robust optimal designs. Herein, we use the same criterion for
multivariate polynomial regression models. Considering all three objectives si-
multaneously, a multiple-objective optimal design is defined to maximize the
weighted geometric average of φs(η) in (1.2) and ψk−1(η), ψk(η) in (1.3). Let

ψM (η) = ψα
k−1(η)ψ

β
k (η)φγ

s (η)

= |Mk−1(η)|
α

Nq,k−1
− γ

Nq−1,k |Mk(η)|
β

Nq,k
+

γ

Nq−1,k , (1.4)

where 0 ≤ α, β, γ ≤ 1 and α + β + γ = 1. Since there is no information about
which model is appropriate before model discrimination, it seems reasonable to
put α = β and reduce (1.4) to

ψMγ
(η) =

[
ψk−1(η)ψk(η)

] 1−γ
2 [φs(η)]

γ

= |Mk−1(η)|
1−γ

2Nq,k−1
− γ

Nq−1,k |Mk(η)|
1−γ

2Nq,k
+

γ

Nq−1,k . (1.5)
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Thus the design ηMγ which maximizes (1.5) is called the Mγ-optimal design.
Note that (1.4) can be usefully generalized to a wider setup with different values
of α and β. For instance, α = 2β suggests that the ‘smaller’ model is more likely
to be the true model; the techniques are similar. To gain further insights into
properties of our designs, we give some numerical results in Section 4.

As pointed out by Lim and Studden (1988), the D- and Ds-optimal designs
for multivariate polynomial regression models can be obtained numerically only
for small q and l, and the algorithms fail to converge if q is too large. Thus they
restricted the optimization to the class of all product designs and claim that
there is not much loss in efficiency. We also restrict the optimization to the class
of all product designs on [−1, 1]q ; see Dette and Röder (1997) for details.

The paper is organized as follows. In Section 2, an Mγ-optimal product de-
sign is expressed by the canonical moments of its common factor. Since different
selection criteria result in different optimal designs, an appropriate selection cri-
terion is important for the problem itself. In Section 3, we derive the minimum
Mγ-efficiency of arbitrary Mγ′-optimal product designs and investigate the be-
havior of these minimum values. It turns out that the maximum value of the
minimum Mγ-efficiency of any Mγ′-optimal product design occurs at γ′ = γ∗.
Based on the maximin principle, a criterion-robust optimal product design ηMγ∗
is derived for any degree k. For practical use, the support points and weights of
the common factor of ηMγ∗ with minimum Mγ-efficiency will be given for k ≤ 5.
In Section 4, we make a comparison of efficiencies among some special optimal
designs. Also, a comparison with the optimal discrimination designs proposed
by Dette and Röder (1997) is made.

2. The Mγ-Optimal Product Design

In this section, we derive the Mγ-optimal product designs. Let η = ξ1×· · ·×
ξq be a product design on [−1, 1]q and let p(j)

1 , p
(j)
2 , . . . denote the canonical mo-

ments of ξj . The theory of canonical moments was first introduced by Skibinsky
(1967), then widely applied by Studden (1980, 1982a, 1982b, 1989) to determine
optimal designs for polynomial regression models. For more details, the readers
can refer to Skibinsky (1986) and Dette and Studden (1997). From Lemma 5.1
in Lim and Studden (1988), direct computation gives that the determinant in
(1.1) can be expressed as

|Ml(η)| =
q∏

j=1

l∏
i=1

(
22q

(j)
2i−2 p

(j)
2i−1 q

(j)
2i−1 p

(j)
2i

)Nq,l−i
, (2.1)

where q(j)0 = 1 and q
(j)
i = 1 − p

(j)
i . Substituting (2.1) into (1.3) and (1.5), we

have the following results.
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Lemma 2.1. For any product design η, the objective functions in (1.3) and (1.5)
can be expressed in terms of the canonical moments of each factor ξj as

ψ l(η) =
q∏

j=1

[
p
(j)
2l

l∏
i=1

(
22p

(j)
2i−1q

(j)
2i−1

)Nq,l−i l−1∏
i=1

(
p
(j)
2i

)Nq,l−i
(
q
(j)
2i

)Nq,l−(i+1)

] 1
Nq,l

,

ψMγ
(η) =

q∏
j=1

[(
p
(j)
2k

)Bq,k(γ) k∏
i=1

(
22p

(j)
2i−1q

(j)
2i−1

)Bq,k(γ)Nq,k−i+Aq,k(γ)Nq,k−(i+1)

×
k−1∏
i=1

(
p
(j)
2i

)Bq,k(γ)Nq,k−i+Aq,k(γ)Nq,k−(i+1)

×
(
q
(j)
2i

)Bq,k(γ)Nq,k−(i+1)+Aq,k(γ)Nq,k−(i+2)
]
,

where Bq,k(γ) = q+(q+2k)γ
2(q+k)Nq−1,k

, Aq,k(γ) = q−(q+2k)γ
2(q+k−1)Nq−1,k−1

, and Nq,−1 = 0, ∀q ∈ N.

Lemma 2.2. For any q ∈ N and k ≥ 2, we have

(i) the canonical moments of each factor of the D-optimal product design, for
model with degree l, satisfy p2i+1 = 1/2, p2i = [q+(l− i)]/[q+2(l− i)], i ≤
l − 1, and p2l = 1;

(ii) the canonical moments of each factor of the Mγ-optimal product design
satisfy p2i+1 = 1/2,

p2i =
Bq,k(γ)Nq,k−i +Aq,k(γ)Nq,k−(i+1)

Bq,k(γ)[Nq,k−i +Nq,k−(i+1)] +Aq,k(γ)[Nq,k−(i+1) +Nq,k−(i+2)]
, (2.2)

i ≤ k − 1, and p2k = 1.

The proof of (i) was given in Lim and Studden (1988); part (ii) follows directly
from Dette (1994) and (1.5). The termination of canonical moments at 1 shows
that each factor is uniquely determined with a finite number of support points; see
Skibinsky (1986). Moreover, all canonical moments of odd order in Theorem 2.2
are 1/2, which means that the corresponding product design is symmetric about
the original point; see Lau (1983).

Proposition 2.3. p2i in (2.2) is strictly decreasing in γ, i ≤ k − 1.

Proof. Direct differentiation gives

d

dγ
p2i =

(N2
q,k−(i+1) −Nq,k−iNq,k−(i+2))(Bq,k(γ)A′

q,k(γ) −Aq,k(γ)B′
q,k(γ))

(Bq,k(γ)[Nq,k−i +Nq,k−(i+1)] +Aq,k(γ)[Nq,k−(i+1) +Nq,k−(i+2)])2
.
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The assertion then follows from

N2
q,k−(i+1) −Nq,k−iNq,k−(i+2) =

q N2
q,k−(i+1)

(k − i)(q + k − i− 1)
> 0,

Bq,k(γ)A′
q,k(γ) −Aq,k(γ)B′

q,k(γ) =
−(q + 2k)

2qNq,kNq,k−1
< 0.

To explicitly determine the optimal product designs in Theorem 2.2, it is
essential to find the support points and weights of the common factor ξ, which
can be found in Studden (1982a).

3. Criterion-Robust Optimal Product Design

3.1. The efficiency of the Mγ-optimal product design

As discussed in Zen and Tsai (2002), the performance of any Mγ′-optimal
product design ηMγ′ under the Mγ-criterion is evaluated by the Mγ-efficiency
defined by

Mγ-eff(ηMγ′ ) =
ψMγ

(ηMγ′ )

ψMγ
(ηMγ )

, γ, γ′ ∈ [0, 1].

Lemma 2.1 and Theorem 2.2 give the following result directly.

Theorem 3.1. For any fixed γ′ ∈ [0, 1], q ∈ N and k ≥ 2, let ηMγ′ be the
Mγ′-optimal product design. Then the Mγ-efficiency of ηMγ′ for any γ ∈ [0, 1]
can be expressed as

Mγ-eff(ηMγ′ ) =


k−1∏

i=1

(
p[γ′]
2i

p[γ]

2i

)Bq,k(γ)Nq,k−i+Aq,k(γ)Nq,k−(i+1)

×
(
q[γ′]
2i

q[γ]

2i

)Bq,k(γ)Nq,k−(i+1)+Aq,k(γ)Nq,k−(i+2)



q

, (3.1)

where p[·]
2i is as in (2.2) and q[·]

2i = 1 − p[·]
2i.

3.2. Minimum M γ-efficiency of Mγ′-optimal product design

Using arguments similar to those of Zen and Tsai (2002), we have the fol-
lowing results; the details can be found in Tsai and Zen (2002).

Lemma 3.2. For any q ∈ N and k ≥ 2,

(i) given γ′ ∈ [0, 1], Mγ-eff(ηMγ′ ) is strictly increasing on [0, γ′) and decreasing
on (γ′, 1];
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(ii) given γ ∈ [0, 1], Mγ-eff(ηMγ′ ) is strictly increasing on [0, γ) and decreasing
on (γ, 1].

Lemma 3.2 (i) shows that, for any given γ′, the minimum value of
Mγ-eff(ηMγ′ ) will be attained at either γ = 0 or 1. To determine which of these
applies, let h(γ′) = M1-eff(ηMγ′ )/M0-eff(ηMγ′ ) and plug in (3.1) to get

h(γ′) =


k−1∏

i=1

(
p[γ′]
2i

p[0]

2i

)iNq−1,k−i
(
q[γ′]
2i

q[0]

2i

)(i+1)Nq−1,k−(i+1)



(q+2k)/(2kNq,k)

×

k−1∏

i=1

(
p[0]

2i

p[1]

2i

)Nq−1,k−i
(
q[0]

2i

q[1]

2i

)Nq−1,k−(i+1)



q/Nq−1,k

. (3.2)

It can be shown that h(γ′) is strictly increasing in γ′, and we have the following
result.

Theorem 3.3. For any fixed γ′ ∈ [0, 1], q ∈ N and k ≥ 2, we have

min
0≤γ≤1

{
Mγ-eff(ηMγ′ )

}
=



M0-eff(ηMγ′ ) , if γ′ ≥ γ∗,

M1-eff(ηMγ′ ) , if γ′ < γ∗,

where M0-eff(ηMγ′ ) and M1-eff(ηMγ′ ) are as in (3.1) with γ = 0 and 1, respec-
tively, and γ∗ is the root of h(γ′) = 1 in (3.2).

To find a criterion-robust optimal design, the maximum value of min 0≤γ≤1

{Mγ-eff(ηMγ′ )} plays an important role. From Lemma 3.2 (ii), we have the
fact that M0-eff(ηMγ′ ) is strictly decreasing in γ′ and M1-eff(ηMγ′ ) is strictly
increasing in γ′, which gives the main result.

Theorem 3.4. For any q ∈ N and k ≥ 2, min 0≤γ≤1{Mγ-eff(ηMγ′ )} first in-
creases, then decreases in γ′, and the maximum value of min 0≤γ≤1{Mγ-eff(ηMγ′ )}
is attained at γ′ = γ∗ = arg{max0≤γ′≤1 min0≤γ≤1 Mγ-eff(ηMγ′ )}, where γ∗ is the
root of h(γ′) = 1 in (3.2).

To describe the main theorem graphically, Figure 1 shows the plots of
min 0≤γ≤1 {Mγ-eff(ηMγ′ )} versus γ′ for some q and k; the corresponding values
of γ∗ are 0.39649 and 0.39736, respectively. For practical use, Table 1 gives
some numerical results on γ∗ and the corresponding minimum efficiencies of
ηMγ∗ , ηM1/3

and ηM1/2
for various q and k, where ηM1/3

and ηM1/2
are chosen

due to the fact that γ∗ varies between 1/3 to 1/2. The minimum efficiency,
min 0≤γ≤1{Mγ-eff(ηMγ∗ )}, is increasing in k and greater than 0.9748 for q ≥ 2.
That means that for any Mγ-criterion, ηMγ∗ is very robust in the sense of having
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high minimum efficiency. Therefore, it can serve as a criterion-robust optimal
design for the problem of model discrimination and parameter estimation.

Figure 1. Plots of min 0≤γ≤1

{
Mγ-eff(ηMγ′ )

}
vs. γ′.

Table 1. The values of γ∗ and minimum efficiencies for small q and k.

q k γ∗ min
0≤γ≤1

Mγ-eff(ηMγ∗ ) min
0≤γ≤1

Mγ-eff(ηM1/3) min
0≤γ≤1

Mγ-eff(ηM1/2)

1 2 0.3678 0.9526 0.9433 0.9346
3 0.3566 0.9522 0.9460 0.9336
4 0.3457 0.9551 0.9520 0.9372
5 0.3362 0.9581 0.9575 0.9411

2 2 0.3965 0.9748 0.9659 0.9665
3 0.3974 0.9752 0.9664 0.9671
4 0.3961 0.9774 0.9696 0.9701
5 0.3944 0.9796 0.9728 0.9729

3 2 0.4097 0.9839 0.9771 0.9791
3 0.4170 0.9841 0.9769 0.9797
4 0.4204 0.9855 0.9787 0.9816
5 0.4223 0.9869 0.9806 0.9834

4 2 0.4174 0.9886 0.9832 0.9853
3 0.4283 0.9886 0.9827 0.9857
4 0.4340 0.9894 0.9838 0.9870
5 0.4374 0.9903 0.9850 0.9882

Note that the value of γ∗ depends on both q and k and requires numerical
solution. To describe how the value γ∗ varies, Figure 2 shows the plot of γ∗

versus k under different q. It is noted that γ∗ is decreasing in k for q = 1 and 2,
and increasing in k for q = 3 and 4. Moreover, for any fixed k, γ∗ is increasing
in q.
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Figure 2. The plot of γ∗ vs. k.

Since different selection criteria result in different optimal designs, under the
Mγ∗-criterion, from Theorem 2.2 (ii) we can derive the canonical moments of the
common factor of ηMγ∗ precisely. Table 2 gives the support points and weights
of the common factor ξγ∗ .

Table 2. The support points and weights of the factor ξγ∗ , ηMγ∗ = ξγ∗ × · · · × ξγ∗ .

k q = 2 q = 3 q = 4

2
(

±1 0
0.3693 0.2614

) (
±1 0

0.4011 0.1978

) (
±1 0

0.4203 0.1594

)

3
(

±1 ±0.4236
0.2866 0.2134

) (
±1 ±0.3847

0.3280 0.1720

) (
±1 ±0.3554

0.3558 0.1442

)

4
(

±1 ±0.6330 0
0.2336 0.1769 0.1790

) (
±1 ±0.5897 0

0.2767 0.1485 0.1496

) (
±1 ±0.5549 0

0.3076 0.1281 0.1286

)

5
(

±1 ±0.7477 ±0.2773
0.1971 0.1503 0.1526

) (
±1 ±0.7087 ±0.2578

0.2391 0.1298 0.1311

) (
±1 ±0.6758 ±0.2422

0.2708 0.1142 0.1150

)

4. Comparison with Some Special Designs

In this section, to make a comparison of the Mγ∗ -optimal product design
ηMγ∗ with some special optimal designs, we investigate the efficiencies of designs
ηs, ηA, ηB , ηM0, ηM1/3

, ηM1/2
and ηMγ∗ defined in Section 1. Figure 3 shows the
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plots of the Mγ∗ -, Ds-, DB- and DA-efficiencies of the these seven designs versus
various k with q = 2.

Figure 3. The Mγ∗-, Ds-, DB- and DA-efficiencies of designs ηMγ∗ , ηs, ηM1/2 ,
ηM1/3 , ηM0 , ηB and ηA.

To go further, we consider the Φp-optimal discrimination designs with p = 0
mentioned in Tables 3 and 4 in Dette and Röder (1997) and denoted by ηDR.
Note that ηDR treats the regression models of degree 1, . . . , k uniformly, and
is said to have high efficiency for parameter estimation. Let ηMγ∗ denote the
Mγ∗-optimal product design defined in Section 3 with α = β in (1.4), and ηMγ∗∗
denote the corresponding optimal product design with α = 2β. Table 3 gives the
Ds-efficiency (for model discrimination) and DA-, DB-efficiencies (for parameter
estimation) of ηs, ηB, ηA, ηMγ∗ , ηMγ∗∗ and ηDR for small q and k. It can be seen
that ηMγ∗ , ηMγ∗∗ and ηDR typically perform well with respect to three criteria
even though they are not optimal individually. Moreover, the proposed designs
ηMγ∗ and ηMγ∗∗ have higher Ds- and DB-efficiencies than ηDR, with a lower DA-
efficiency. It is noted that our new design and the DB-optimal design behave
similarly because the exponent of the lower order determinant is close to 0.
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Table 3. The efficiencies of some special designs.

q = 2 q = 3
k Design Ds-eff DB-eff DA-eff Ds-eff DB-eff DA-eff

ηs 1 0.97835 0.76314 1 0.98955 0.80593
ηB 0.96585 1 0.82548 0.98534 1 0.84590

2 ηA 0 0 1 0 0 1
ηMγ∗ 0.97481 0.99955 0.81716 0.98394 0.99998 0.84766
ηMγ∗∗ 0.97197 0.99980 0.81996 0.98209 0.99988 0.84985
ηDR 0.93728 0.99711 0.84574 0.95629 0.99431 0.87220
ηs 1 0.97028 0.81740 1 0.98388 0.85912
ηB 0.95091 1 0.88889 0.97687 1 0.90852

3 ηA 0 0 1 0 0 1
ηMγ∗ 0.97519 0.99746 0.87038 0.98412 0.99952 0.90096
ηMγ∗∗ 0.97272 0.99803 0.87268 0.98267 0.99970 0.90262
ηDR 0.91058 0.99535 0.90786 0.92992 0.98986 0.93514
ηs 1 0.96776 0.85627 1 0.98121 0.89310
ηB 0.94447 1 0.92548 0.97252 1 0.94274

4 ηA 0 0 1 0 0 1
ηMγ∗ 0.97741 0.99575 0.90395 0.98549 0.99859 0.93112
ηMγ∗∗ 0.97534 0.99639 0.90579 0.98437 0.99886 0.93235
ηDR 0.89978 0.99436 0.94017 0.91578 0.98683 0.96360
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