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Abstract: In the context of band recovery models with heterogeneous survival rates,

this paper estimates annual average survival rates by estimating the size of surviving

population of banded birds. For the case of homogeneous survival rates, Brownie,

Anderson, Burnham and Robson (1985) derived the relationship between the total

number of surviving banded birds and annual average survival rates. However,

their estimator of the total number of surviving banded birds is biased in the case

of heterogeneous survival rates. We generalize their result to the case that annual

average survival rates vary across individuals and years. In addition, the coefficient

of variation for individual survival rates is used to reduce the estimation bias.

The analytically intractable variances of proposed estimators are obtained by the

bootstrap method. The proposed method is applied to data, and a simulation study

is conducted to compare the performances of the estimators. Numerical results

indicate that the proposed method works satisfactorily in general, and when there

is a high degree of heterogeneity in particular.
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1. Introduction

In ecological research, it is important to estimate the survival probabilities
of animals. Consequently, many techniques and sampling methods have been
developed to estimate these quantities; see Seber (1970, 1982, 1986 and 1992),
Burnham, Anderson, White, Brownie and Pollock (1987), Brownie and Pollock
(1985), Pollock, Nichols, Brownie and Hines (1990) and Lebreton, Burnham,
Clobert and Anderson (1992). In this line of research, models based on the
release and recapture of a marked population have proven particularly useful for
estimating the survival probabilities of free-ranging animals. One branch of this
research, band recovery, is concerned with a single, terminal harvest recovery
method, as synthesized by Brownie, Anderson, Burnham and Robson (1985). In
a band recovery model, a sample of birds is captured, banded, and released into
the population at roughly the same time each year for a number of successive
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years. The banded population is assumed to be a representative sample of the
population of interest.

Two common assumptions in the band recovery model are that marked birds
have the same annual survival and recovery rates. Based on these assumptions,
Seber (1970) and Robson and Youngs (1971) derived the maximum likelihood
(ML) estimator for survival rate in the time-specific model. Brownie Anderson,
Burnham and Robson (1985) derived the bias-adjusted ML estimator for survival
probability. However, these two assumptions are not generally valid since sur-
vival probabilities can vary with individual effects (e.g., gender, weight and so
on). Little work has been done with respect to heterogeneous survival probabili-
ties. Pollock and Raveling (1982) and Nichols, Stockes, Hines and Conroy (1982)
included heterogeneity in the band recovery model. They found that Seber’s
maximum likelihood estimator for the annual survival rate is positively biased
when the band recovery rate and the survival rate are positively correlated or
uncorrelated, and negatively biased when they are negatively correlated. More-
over, the bias increases with the degree of heterogeneity. Without a time effect,
Burnham and Rexstad (1993) pointed out that ignoring heterogeneity may result
in an incremental increase in annual average survival rate estimates throughout
the study period, and proposed a parametric estimator for the expected survival
rate during year one. In contrast, a nonparametric approach to estimate an-
nual average survival rates with heterogeneous survival rates is considered in this
paper.

Brownie, Anderson, Burnham and Robson (1985) have discussed the rela-
tionship between the survival rate and the total number of surviving banded birds
for the marked birds having the same annual survival and recovery rates. The
purpose of this paper is to consider a Taylor series expansion to obtain an expres-
sion for the bias in the estimation of the total number of surviving banded birds
under homogeneity whenever the heterogeneity of survival rates exists in prac-
tice. Therefore an improved estimator of the total number of surviving banded
birds under heterogeneity is obtained. In this paper, we define the annual average
survival rate in terms of the expected total number of surviving banded birds
under the assumption of heterogeneous survival rates, and thus estimate annual
average survival rates by estimating the total number of surviving banded birds.
Regarding the estimation of the total size of the population of interest, Chao,
Lee and Jeng (1992) and Lee and Chao (1994) applied the coefficient of variation
of individual capture probabilities to reduce the bias caused by estimating the
closed population size. In a similar vein, the coefficient of variation of individ-
ual survival rates is used to reduce the bias caused by estimating the surviving
banded bird population. In fact, the proposed estimator is the same as Seber’s
estimator if heterogeneity is not present.
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A preliminary discussion of the banding experiment is given in the next
section. In Section 3, annual average survival rates are estimated by estimating
the total number of surviving banded birds. A simulation study provides a
more detailed examination of the proposed estimator in Section 4. In Section
5, data are analyzed and a brief comparison of estimators is made. In Section
6, conclusions about the performance and validity of the proposed estimator are
drawn.

2. Preliminary Discussion of the Banding Experiment

A description of the sampling process of banded birds in the band recovery
model is in order. Samples of adult birds are captured, banded, and released into
the population at roughly the same time each experimental year for a number of
successive years. Here the banded population is assumed to be a representative
sample of the population of interest, but survival rates can vary with individual
effects (e.g., gender, weights and so on).

Bands are collected from hunters who report banded birds they have shot.
Band collection may continue for several years after the last release of banded
birds. A year is the period between successive releases of banded birds. The
period of survival is the time from the banding in the ith year to the banding in
the (i + 1)th year.

For convenience, we let k represent the number of successive years in which
banded birds are released and l represent the number of years during which
recoveries are recorded. For most cases, band recovery model studies have k ≤ l.
In this paper, only k = l is considered since after k years (including the kth
year), annual average survival rates are not estimable. See Brownie, Anderson,
Burnham and Robson (1985) for a detailed discussion. Suppose Ni banded birds
are released in the ith experimental year, N∗

i banded birds survive up to the
ith release, S∗

i is the annual average survival rate in the ith year, and Ri,j is the
number of birds banded in the ith year and recovered in the jth year, i = 1, . . . k,
i ≤ j. With regard to individual and time effects, define S

(i)
m as the individual

effect associated with the survival rate of the mth bird banded in the ith year
while er is the time effect associated with survival rates in the rth year. Finally
the individual survival rate of the mth bird banded in the ith year for the rth
year is defined as S

(i)
m,r = S

(i)
m er, i < r.

In this paper, we assume that the first two moments of S
(i)
m are the same for

each experimental year. There are two possible ways to treat the moments of
S

(i)
m . Firstly, individual survival rates could be treated as parameters if individual

effects are viewed as fixed. Secondly, individual survival rates could be treated as
random variables if the individual effects for each year are ascribed to the whole
population. From the viewpoint of the experimental design, the former and the
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latter cases can be referred to as the fixed effects model and the random effects
model, respectively. Moreover, the random effects model is the general case of
the fixed effects model.

For the fixed effects model, the S
(i)
m are parameters, the first two moments

of S
(i)
m are

Assumption (A)
Ni∑

m=1

S(i)
m /Ni = S, i = 1, . . . , k,

Assumption (B)
Ni∑

m=1

(S(i)
m − S)2/(NiS

2) = γ2, i = 1, . . . , k.

In words, S is the average of individual effects for each banding year and γ is the
coefficient of variation for S

(i)
m in the ith banding year, m = 1, . . . , Ni.

For the random effects model, the S
(i)
m are random variables, the continuous

versions of Assumptions (A) and (B) are

Assumption (A∗)
∫

sdF (s) = S0,

Assumption (B∗)
∫

s2dF (s)/S2
0 − 1 = γ2

0 ,

where F (s) stands for the distribution of individual effects. Note that the form of
the distribution of S

(i)
m is not specified. In the following section, we show that the

proposed method is valid under either Assumptions (A) and (B) or Assumptions
(A∗) and (B∗).

3. Estimation of Annual Average Survival Rates

For convenience, we assume the ith band recovery rate, fi, varies across years
and is independent of individual survival rates; that is, recoveries are time-specific
and there is no relationship between the survival rate and the recovery rate. In
fact, a similar method can be applied to deal with heterogeneous recovery rates.
The case of homogeneous survival rates for the band recovery model is considered
first.

3.1. Homogeneous case

Suppose S
(i)
m = S for all i = 1, . . . , k and m = 1, . . . , Ni, and the annual

survival rate in the rth year is Sr = Ser. Here S and er are not estimable. Based
on the empirical definition of Sr, it can be rewritten as

Sr =
E(N∗

r+1)
E(N∗

r ) + Nr
. (1)
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Seber (1970) derived the maximum likelihood estimator of Sr as

Ŝr =
Rr(Tr+1 − Rr+1)Nr+1

NrTrRr+1
,

where Rr is the total number of birds banded in Year r and recovered at the
end of experiment, and Tr is the total number of birds banded before Year r

(including Year r) and recovered after Year r. If Cr is the total number of birds
recovered in Year r, we can write T1 = R1, Tr = Tr−1−Cr−1+Rr, r = 2, . . . , k,
and Tk+j = Tk+j−1 − Ck+j−1, j = 1, . . . , l − k.

Because of the bias of Ŝr, Brownie, Anderson, Burnham and Robson (1985)
proposed the bias-adjusted maximum likelihood estimator of Sr as

Ŝr(b) =
Rr(Tr+1 − Rr+1)(Nr+1 + 1)

NrTr(Rr+1 + 1)
.

3.2. Heterogeneous case

For the case of heterogeneous individual effects, define I
(i)
m,r=I(the mth bird

banded in the ith year survives to the rth year), where I(.) is the indicator
function. Empirically, the annual average survival rate in the rth year can be
written as

S∗
r =

∑r
i=1

∑Ni
m=1 S

(i)
m,rI

(i)
m,r∑r

i=1

∑Ni
m=1 I

(i)
m,r

=
E(N∗

r+1|Fr)
N∗

r + Nr
, (2)

where Fr denotes the σ-field generated by {I(i)
m,j ; j = i, . . . , r, i = 1, . . . , j, m =

1, . . . , Ni}. Here N∗
1 = 0. Seen this way, an accurate estimate of S∗

r depends on
an accurate estimate of the number of surviving birds. Also notice that if S

(i)
m = S

for i = 1, . . . , k and m = 1, . . . , Ni, we obtain S
(i)
m,r = Ser = Sr. Therefore, S∗

r is
indeed the extension of Sr to account for individual effects. For heterogeneous
S

(i)
m , the expected values of Ri,j are listed in Table 1, where φi,r =

∏r
t=i et.

Table 1. Expected recoveries E(Ri,j) for the fixed effects model.

Banding Birds

Year Banded 1 2 3 · · · k

1 N1 N1f1

∑N1
m=1(S

(1)
m )φ1,1f2

∑N1
m=1(S

(1)
m )2φ1,2f3 · · · ∑N1

m=1(S
(1)
m )k−1φ1,k−1fk

2 N2 N2f2

∑N2
m=1(S

(2)
m )φ2,2f3 · · · ∑N2

m=1(S
(2)
m )k−2φ2,k−1fk

3 N3 N3f3 · · · ∑N3
m=1(S

(3)
m )k−3φ3,k−1fk

...
...

...
...

k Nk Nkfk



518 SHEN-MING LEE, LI-HUI HUANG AND SHYH-TYAN OU

Burnham and Rexstad (1993) found that if er = e for all r, then S∗
r increases

with r; our extension explains this phenomenon as will be described in Section
4. The band recovery model with time effects and heterogeneous survival rates
is considered next.

Notice that N∗
r can be rewritten as N∗

r =
∑r−1

i=1

∑Ni
m=1 I

(i)
m,r. Therefore,

E(N∗
r ) =

r−1∑
i=1

Ni∑
m=1

(S(i)
m )r−iφi,r−1. (3)

Specifically, if S
(i)
m = S for all i = 1, . . . , k and m = 1, . . . , Ni (survival rates are

homogeneous), then

E(N∗
r ) =

NrE(Tr − Rr)
E(Rr)

. (4)

To reduce the estimation bias due to heterogeneity, we compute the difference
between E(N∗

r ) and NrE(Tr − Rr)/E(Rr), in the following proposition.

Proposition 1. Given (A) and (B) in the time specific band recovery model
with heterogeneous survival rates, the expected value of the surviving population
in the rth year is

E(N∗
r ) =

NrE(Tr − Rr)
E(Rr)

− gr(S)
E(Rr)

=
NrE(Tr − Rr)

E(Rr)
− 1

E(Rr)

{r−1∑
i=1

Nr(r − i)NiS
r−i+1

φi,r−1[erfr+1 + · · · + (k − r)Sk−r−1
φr,k−1fk]

}
γ2 + �2, (5)

where S=(S(1)
1 , S

(1)
2 , . . ., S

(1)
N1

, . . . , S
(r)
Nr

),

gr(S) = Nr

r−1∑
i=1

Ni∑
m=1

(S(i)
m )r−iφi,r−1{fr + S(i)

m erfr+1 + · · · + (S(i)
m )k−rφr,k−1fk}

−[
r−1∑
i=1

Ni∑
m=1

(S(i)
m )r−iφi,r−1][

Nr∑
m=1

(fr+S(r)
m erfr+1+· · ·+(S(r)

m )k−rφr,k−1fk]. (6)

�2 = −�1/E(Rr) and �1 is the error term in the Taylor expansion of gr(S).
(The content of �1 is seen in Appendix A.)

Note that Proposition 1 is valid for the fixed effects model and Appendix A
is the proof of Proposition 1, which includes a detailed expansion of gr(S) and
the derivation of (5). Appendix B also shows that �2 can be ignored in (5). The
extension of Proposition 1 to the random effects case is the following.
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Proposition 2. Given (A∗) and (B∗) in the time specific band recovery model
with heterogeneous survival rates, the expected value of the surviving population
in the rth year is given by

E(N∗
r ) =

NrE(Tr − Rr)
E(Rr)

− 1
E(Rr)

{r−1∑
i=1

Nr(r − i)NiS
r−i+1
0 φi,r−1[erfr+1 + · · ·

+(k − r)Sk−r−1
0 φr,k−1fk]

}
γ2

0 + �2, (7)

�2 =
−1

E(Rr)

{
Nr

r−1∑
i=1

Ni

k∑
j=r

φi,j−1fj

[∫
sj−idF (s)−(

∫
sr−idF (s))(

∫
sj−rdF (s))

−(r − i)(j − r)Sj−i
0 γ2

0

]}
.

Note that the derivation of Proposition 2, obtained via a Taylor expansion,
is valid for the random effects model. Since the derivation of Proposition 2 is
similar to the case of Proposition 1 it is omitted here. If it is assumed that
the recovery rates are heterogeneous and independent of the survival rates, the
results of Proposition 2 still holds. Similar to the fixed effects case, �2 in (7)
can be ignored. Moreover, if S

(i)
m ∼ Be(α, β), �2 can be written as

�2 =
−1

E(Rr)

{
Nr

r−1∑
i=1

Ni

k∑
j=r

φi,j−1fj

[
Beta(α + j − i, β)

Beta(α, β)

−Beta(α + r − i, β)Beta(α + j − r, β)
(Beta(α, β))2

−(r − i)(j − r)(
α

α + β
)j−i β

α(α + β + 1)

]}
, (8)

where Be(α, β) denotes the beta distribution, and Beta(x, y) is beta function.
Numerical results that show �2 is negligible for a range of values of (α, β) are
given in Appendix B. In general, there are no analytic results to show that �2

is negligible under the fixed effects or the random effects model.

Next, we can estimate E(N∗
r ) with the help of Propositions 1 or 2. Based on

(5) or (7) without �2, the proposed estimator of N∗
r is N̂∗

r = [Nr(Tr − Rr) − ĝr]
/Rr, where

ĝr =
[r−1∑

i=1

Nr(r − i)Ni

r−1∏
j=i

(Ŝej)
][

(Ŝer)f̂r+1 + · · · + (k − r)[
k−r−1∏

t=r

(Ŝet)]f̂k

]
γ̂2,

Ŝer = Rr,r+1/(Nr f̂r+1), f̂r = Rr,r/Nr,

γ̂2 = max

{ ∑k−2
i=1 Ri+1,i+1Ri,i+2∑k−2
j=1 Rj,j+1Rj+1,j+2

− 1, 0

}
.
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The derivation of N̂∗
r for the fixed effects model is given in Appendix C. For the

random effects model, the expected values of Ri,j can be expressed as E(Ri,j) =
Niφi,j−1

∫
sj−idF (s)fj , where φi,j−1 =

∏j−1
k=i ek. Apparently the expected values

of Ri,j for the fixed effects model (see Table 1) and for the random effects model

are different. The terms Ŝer and γ̂2 appearing in the fixed effects model will be
replaced with Ŝ0er and γ̂2

0 , respectively, in the random effects model. In fact, the
moment estimators of S0er and γ2

0 are the same as Ser and γ2.
With the help of N̂∗

r , the proposed estimator of S∗
r is defined as

S̃r =
N̂∗

r+1

N̂∗
r + Nr

=
Rr{Nr+1(Tr+1 − Rr+1) − ĝr+1}

Rr+1(NrTr − ĝr)
. (9)

The analytically intractable variance of S̃r is computed by the bootstrap sampling
method. The variance estimates for S̃r were derived as follows.

1. For given values of Ni and Ri,j, assume

(R∗
i,i, R

∗
i,i+1, . . . , R

∗
i,k, Ni − R∗

i )

∼ Multinomial(Ni,
Ri,i

Ni
,
Ri,i+1

Ni
, . . . ,

Ri,k

Ni
,
Ni − Ri

Ni
).

2. Generate the bootstrap data, (R∗
i,i, R

∗
i,i+1, . . . , R

∗
i,k, Ni − R∗

i ), from the distri-
bution in Step 1 and compute S̃r.

3. Repeat the first two steps 1000 times.
4. Use the 1000 estimates of S̃r to obtain the variance of S̃r.

Define the recovery rate as fr = E(Cr)/[E(N∗
r ) + Nr], where Cr is the total

number of birds recovered in Year r. This suggests an improved estimator of fr is
f̃r = Cr/[N̂∗

r + Nr]. The variance of f̃r is also obtained by the bootstrap method.
However, we won’t investigate the properties of f̃r here since the performance of
f̃r depends on the performance of N̂∗

r .

4. Simulation Study

In this section, a simulation study is conducted to compare the performances
of the bias-adjusted ML estimators Ŝr(b) and the proposed estimator S̃r. The
combinations of (fj, ej , γ) conducted in the simulation are listed in the follow-
ing.
• (f1, . . . , f6)=(0.05, 0.05, 0.05, 0.5, 0.05, 0.05), (0.07, 0.03, 0.07, 0.3, 0.07, 0.03).
• (e1, . . . , e6)=(0.99, 0.99, 0.99, 0.99, 0.99, 0.99),(0.81, 0.99, 0.81, 0.99, 0.81, 0.99).
• 0 ≤ γ ≤ 0.8.
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As mentioned in Section 2, individual effects can be treated as parame-
ters (fixed-effect) or random variables (random-effect). Therefore two models
for generating individual-effect factors are considered in the simulation. In the
fixed-effect model, individual effects are specified. For each banding year, Ni

individuals are divided into two equal groups. The two individual-effect factors,
S

(i)
1 and S

(i)
2 , are assigned to the two groups separately. Then the survival rates

of the two groups are S
(i)
1 er and S

(i)
2 er in the rth year, respectively. Table 2

includes 13 different trials for the simulation. In the random-effect model, in-
dividual effects are generated from the Beta distribution; i.e., S

(i)
m ∼ Be(α, β).

Then the individual survival rates of the mth bird banded in the ith year and
survived in the rth year will be S

(i)
m er. Simulations are conducted under these

two models. For each trial, 1000 data sets are generated to compute Ŝr(b), S̃r

and S∗
r . The sample mean, the sample standard deviation, the sample root mean

squared error (RMSE), and the relative bias are used to evaluate estimator per-
formances. The sample standard deviations of S̃r are computed by the bootstrap
procedure described in Section 3.

Table 2. Description of the trial parameters (Ni = 2000, i = 1, . . . , 6).

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13
S

(i)
1 0.30 0.25 0.20 0.15 0.50 0.40 0.30 0.20 0.10 0.60 0.50 0.40 0.30

S
(i)
2 0.30 0.35 0.40 0.45 0.50 0.60 0.70 0.80 0.90 0.60 0.70 0.80 0.90

S 0.30 0.30 0.30 0.30 0.50 0.50 0.50 0.50 0.50 0.60 0.60 0.60 0.60

γ 0.000 0.167 0.333 0.500 0.000 0.200 0.400 0.600 0.800 0.000 0.167 0.333 0.500

Before comparing the performance of S̃r and Ŝr(b), first we need to know
the properties of S∗

r , and set these properties as the criteria for the comparisons.
The properties of S∗

r are summarized corresponding to the 52 fixed-effect and
random-effect models considered as follows.

1. With constant time effects ei and homogeneous recovery rates fj , S∗
r is an

increasing function of the banding years and γ. This pattern coincides with
the results of Burnham and Rexstad (1993). This phenomenon is considered
as the criterion for evaluating the performances of estimators.

2. The values of S∗
r are not affected by time-specific recovery rates fj, and S∗

r is
still an increasing function of the banding years and γ.

It is reasonable to believe that a satisfactory estimator should provide a
similar performance as S∗

r . The performances of the fixed-effect model and the
random-effect model are investigated, and the robustness property for the pro-
posed estimator is discussed in the following section.
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4.1. Fixed-effect model

Due to space considerations, only trials 5, 7 and 9 are shown in detail in Table
3; other trials provide similar performances. The values of two individual-effect
factors, S

(i)
1 and S

(i)
2 , are determined before the experiment.

Table 3. Performance of Ŝr(b) and S̃r.

Relative Sample Relative Bootstrap Sample Sample

Trial Year S∗
r Ŝr(b) Bias RMSE S̃r Bias S.E. S.D. RMSE

1 0.4049 0.4092 1.1% 0.0586 0.3837 −5.2% 0.0700 0.0703 0.0723

S = 0.5 2 0.4952 0.4946 0.1% 0.0561 0.4845 −2.2% 0.0592 0.0589 0.0594

γ = 0.0 3 0.4048 0.4035 0.3% 0.0546 0.3823 −5.6% 0.0632 0.0615 0.0651

4 0.4953 0.4973 0.4% 0.0615 0.5066 2.3% 0.0648 0.0642 0.0649

5 0.4047 0.4038 −0.2% 0.0802 0.4140 2.3% 0.0879 0.0833 0.0835

1 0.4048 0.4596 13.5% 0.0821 0.4011 −0.9% 0.0764 0.0803 0.0792

S = 0.5 2 0.5176 0.5431 4.9% 0.0640 0.5186 0.2% 0.0619 0.0615 0.0603

γ = 0.4 3 0.4385 0.4848 10.6% 0.0763 0.4392 0.2% 0.0712 0.0720 0.0710

4 0.5432 0.5266 3.1% 0.0644 0.5452 0.4% 0.0684 0.0672 0.0662

5 0.4515 0.4506 −0.2% 0.0866 0.4664 3.3% 0.0947 0.0919 0.0921

1 0.4050 0.6087 50.3% 0.2129 0.4313 6.5% 0.0837 0.0800 0.0831

S = 0.5 2 0.5864 0.6666 13.7% 0.1005 0.5906 0.7% 0.0661 0.0630 0.0625

γ = 0.8 3 0.5322 0.6817 28.1% 0.1667 0.5500 3.3% 0.0818 0.0828 0.0838

4 0.6720 0.6088 9.4% 0.0924 0.6746 0.4% 0.0823 0.0818 0.0811

5 0.5746 0.5445 −5.2% 0.1051 0.5836 1.6% 0.1097 0.1114 0.1112

S = 0.5 and 0 ≤ γ ≤ 0.8, (e1, . . . , e6) = (0.81, 0.99, 0.81, 0.99, 0.81, 0.99), (f1, . . . , f6) =

(0.07, 0.03, 0.07, 0.03, 0.07, 0.03), Ni = 2000, i = 1, . . . , 6.

With constant time effects ei (compare Years 1, 3, 5 or Years 2, 4 in Table
3), S̃r increases with the banding years and γ. In contrast, Ŝr(b) does not possess
this property. With varying time effects ei (Table 3), S̃r and S∗

r have a similar
pattern of change. With any value of γ, the relative bias of S̃r is always less than
7%, but the relative bias of Ŝr(b) varies between 0.1% and 51%. This evidence
indicates that S̃r does a better job of estimating S∗

r than does Ŝr(b) in the presence
of heterogeneity. The larger the value of γ is, the larger the relative bias of Ŝr(b).
Notice also that bootstrap method works well for estimating the standard error
of S̃r. The estimated s.d. is quite close to the sample standard deviation of S∗

r .
Regarding the sample RMSE, most of the time S̃r produces smaller values of
sample RMSE than Ŝr(b). The difference between them becomes more significant
as the value of γ increases. Especially for γ ≥ 0.4, the RMSE of S̃r is much
smaller than the sample RMSE of Ŝr(b). This indicates that S̃r is preferable,
particularly when the degree of heterogeneity is high. Moreover, we note that
MSE(mean square error) is the sum of variance and the square of bias. The
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estimator S̃r generally reduces bias but increases the variance due to estimation
of γ. Thus whether the reduction in the square of bias can compensate for the
increase in variance clearly depends on the value of γ. When γ is relatively small,
the usual estimators Ŝr(b) without estimating γ are not seriously biased, so the
improvement in bias is quite limited. Thus our method cannot effectively reduce
MSE. However if γ is relatively large the usual estimators Ŝr(b) have quite a large
bias, warranting the use of the proposed procedure to reduce MSE.

4.2. Random-effect model

In practice, it is reasonable to consider individual-effect factors as random
variables generated from the Beta distribution. Assume S

(i)
m is distributed as

Be(α, β). To avoid rounding error, we consider the restriction 0.01 ≤ S
(i)
m ≤ 0.99

in the simulation process. The simulation results when α = β are summarized
in Table 4. The value of E(S) in Table 4 is 0.5. Based on Table 4, it is apparent
that the proposed estimator is superior to the bias-adjusted ML estimator when
γ is large enough; for example, γ ≥ 0.4. In addition, the proposed estimator and
the bias-adjusted ML estimator provide similar performance when γ is small.
Meanwhile, the proposed estimators of survival rates increase with the banding
year and γ, which is consistent with the fixed-effect model. The other results for
the fixed-effect model are provided in Table 4.

Table 4. Performance of Ŝr(b) and S̃r.

Relative Sample Relative Bootstrap Sample Sample

Trial Year S∗
r Ŝr(b) Bias RMSE S̃r Bias S.E. S.D. RMSE

(α, β)= 1 0.4946 0.6617 33.8% 0.1788 0.5124 3.6% 0.0764 0.0759 0.0779

(0.2812, 2 0.5746 0.6923 20.5% 0.1340 0.5768 0.4% 0.0720 0.0699 0.0696

0.2812) 3 0.6226 0.6940 11.5% 0.1007 0.6237 0.2% 0.0728 0.0731 0.0723

γ =0.6995 4 0.6553 0.6667 1.7% 0.0743 0.6553 0.0% 0.0776 0.0750 0.0743

5 0.6794 0.6360 −6.4% 0.0953 0.7108 4.6% 0.1051 0.0991 0.1038

1 0.4953 0.6131 23.8% 0.1321 0.5062 2.2% 0.0764 0.0762 0.0759

(α, β)= 2 0.5478 0.6406 16.9% 0.1123 0.5549 1.3% 0.0719 0.0733 0.0728

(1, 1) 3 0.5809 0.6397 10.1% 0.0887 0.5866 1.0% 0.0701 0.0693 0.0688

γ =0.5654 4 0.6043 0.6172 2.2% 0.0714 0.6075 0.5% 0.0729 0.0716 0.0702

5 0.6219 0.5781 −7.1% 0.0933 0.6285 1.1% 0.0941 0.0946 0.0937

(α, β)= 1 0.4943 0.5597 13.2% 0.0905 0.4997 1.1% 0.0742 0.0780 0.0774

(2.6250, 2 0.5212 0.5737 10.1% 0.0804 0.5253 0.8% 0.0690 0.0707 0.0695

2.6250) 3 0.5386 0.5713 6.1% 0.0691 0.5399 0.2% 0.0664 0.0652 0.0646

γ =0.3999 4 0.5515 0.5613 1.8% 0.0691 0.5543 0.5% 0.0684 0.0702 0.0692

5 0.5607 0.5398 −3.7% 0.0833 0.5688 1.4% 0.0873 0.0889 0.0882

S = 0.5, (e1, . . . , e6) = (0.99, 0.99, 0.99, 0.99, 0.99, 0.99), (f1, . . . , f6) = (0.05, 0.05, 0.05, 0.05,

0.05, 0.05), Ni = 2000, i = 1, . . . , 6.
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Table 5. Sensitivity analysis on Ŝr(b) and S̃r.

Relative Sample Relative Bootstrap Sample Sample

Trial Year S∗
r Ŝr(b) Bias RMSE S̃r Bias S.E. S.D. RMSE

1 0.4948 0.4916 −0.7% 0.0549 0.4689 −5.2% 0.0641 0.0645 0.0688

2 0.4949 0.4941 −0.2% 0.0522 0.4754 −3.9% 0.0598 0.0588 0.0615

γ = 0.0 3 0.4944 0.4988 0.9% 0.0547 0.4859 −1.7% 0.0584 0.0578 0.0579

4 0.4947 0.4931 −0.3% 0.0572 0.4900 −0.9% 0.0593 0.0587 0.0583

5 0.4955 0.5000 0.9% 0.0699 0.5132 3.6% 0.0761 0.0739 0.0753

1 0.4946 0.5451 10.2% 0.0762 0.4818 −2.6% 0.0690 0.0705 0.0706

2 0.5215 0.5609 7.6% 0.0672 0.5103 −2.1% 0.0644 0.0652 0.0654

γ = 0.4 3 0.5386 0.5599 4.0% 0.0599 0.5275 −2.1% 0.0617 0.0621 0.0623

4 0.5504 0.5474 −0.5% 0.0597 0.5390 −2.1% 0.0630 0.0612 0.0614

5 0.5578 0.5213 −6.5% 0.0790 0.5492 −1.5% 0.0791 0.0781 0.0776

1 0.4950 0.6798 37.3% 0.19530 0.5025 1.5% 0.0657 0.0670 0.0669

2 0.6000 0.7199 20.0% 0.13580 0.5854 −2.4% 0.0633 0.0618 0.0628

γ = 0.8 3 0.6594 0.7167 8.7% 0.08950 0.6382 −3.2% 0.0670 0.0682 0.0708

4 0.6957 0.6772 −2.7% 0.0712 0.6663 −4.2% 0.0732 0.0699 0.0750

5 0.7197 0.5809 −19.3% 0.1574 0.6572 −8.7% 0.0891 0.0882 0.1077

S = 0.5 and γ = 0 ∼ 0.8, (e1, . . . , e6) = (0.99, 0.99, 0.99, 0.99, 0.99, 0.99), f
(i)
m,j = (1.0−0.3S

(i)
m )ẽj ,

Ni = 2000, i = 1, . . . , 6, (ẽ1, . . . , ẽ6) =(0.0667, 0.0667, 0.0667, 0.0667, 0.0667, 0.0667).

Table 6. Sensitivity analysis onŜr(b) and S̃r.

Relative Sample Relative Bootstrap Sample Sample

Trial Year S∗
r Ŝr(b) Bias RMSE S̃r Bias S.E. S.D. RMSE

1 0.4948 0.4919 −0.6% 0.0459 0.4726 −4.5% 0.0549 0.0544 0.0572

2 0.4949 0.4951 0.1% 0.0450 0.4794 −3.1% 0.0510 0.0517 0.0529

γ = 0.0 3 0.4944 0.4979 0.7% 0.0469 0.4870 −1.5% 0.0495 0.0513 0.0505

4 0.4947 0.4940 −0.1% 0.0489 0.4912 −0.7% 0.0501 0.0507 0.0493

5 0.4955 0.5001 0.9% 0.0590 0.5105 3.0% 0.0640 0.0625 0.0626

1 0.4946 0.5684 14.9%0 .08770 .5038 1.9% 0.0619 0.0624 0.0620

2 0.5215 0.5798 11.2%0 .07450 .5282 1.3% 0.0567 0.0576 0.0572

γ = 0.4 3 0.5386 0.5804 7.8%0 .06320 .5476 1.7% 0.0534 0.0538 0.0537

4 0.5504 0.5697 3.5%0 .05570 .5619 2.1% 0.0542 0.0540 0.0540

5 0.5578 0.5448 − 2.3%0 .06320 .5725 2.6% 0.0693 0.0686 0.0691

1 0.4950 0.7487 51.3%0 .25850 .5511 11.3% 0.0632 0.0626 0.0837

2 0.6000 0.7758 29.3%0 .18310 .6250 4.2% 0.0584 0.0567 0.0614

γ = 0.8 3 0.6594 0.7735 17.3%0 .12730 .6909 4.8% 0.0586 0.0579 0.0653

4 0.6957 0.7387 6.2%0 .07310 .7381 6.1% 0.0646 0.0606 0.0733

5 0.7197 0.6558 − 8.9%0 .09470 .7454 3.6% 0.0844 0.0843 0.0876

S = 0.5 and γ = 0 ∼ 0.8, (e1, . . . , e6) = (0.99, 0.99, 0.99, 0.99, 0.99, 0.99), f
(i)
m,j = (1.0+0.3S

(i)
m )ẽj ,

Ni = 2000, i = 1, . . . , 6, (ẽ1, . . . , ẽ6) =(0.0667, 0.0667, 0.0667, 0.0667, 0.0667, 0.0667).

Tables 3−4 are set up under the assumption that survival rates are inde-
pendent of recovery rates. Without this assumption, do their results still hold?
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Assume recovery rates are heterogeneous and time-specific. Define f
(i)
m,j as the

individual recovery rate of the mth bird banded in the ith year and recovered in
the jth year, and ẽj as the time effect associated with the recovery rate in the jth
year. The relationships between f

(i)
m,j and S

(i)
m include f

(i)
m,j = (1. − aS

(i)
m )ẽj and

f
(i)
m,j = (1. + aS

(i)
m )ẽj , where a = 0.3, 0.5. Tables 5−6 (a = 0.3) summarize the

simulation results. Based on them, both of S∗
r and S̃r increase with the banding

years. The proposed estimator always underestimates the true survival rate in
Table 5 and overestimates the true survival rate in Table 6, when γ ≥ 0.4. The
proposed estimator is superior to the bias-adjusted ML estimator if γ ≥ 0.4,
consistent with the results from Tables 3−4. Thus the proposed estimator is
preferred whether independence of survival rates and recovery rates is assumed
or not.

5. Data Analysis

With the band recovery data in Brownie, Anderson, Burnham and Robson
(1985), we compare the performances of Ŝr(b) and S̃r in estimating S∗

r . The
data are listed in Table 7 (k = l = 9); adult male ducks were collected and
banded in San Luis Valley (Colorado) from 1963 to 1971. From Table 8 we
obtain γ̂ = 0.5140, which indicates heterogeneity of survival rates. Note that as
γ̂ > 0.4, the simulation have demonstrated our method preferable. The results
for the performances of Ŝr(b) and S̃r are in Table 8.

Table 7. Band recoveries for adult male mallards.

Banding year Ni 1963 1964 1965 1966 1967 1968 1969 1970 1971
1963 231 10 13 6 1 1 3 1 2 0
1964 649 58 21 16 15 13 6 1 1
1965 885 54 39 23 18 11 10 6
1966 590 44 21 22 9 9 3
1967 943 55 39 23 11 12
1968 1077 66 46 29 18
1969 1250 101 59 30
1970 938 97 22
1971 312 21

In Table 8, Ŝr(b) exceeds S̃r from 1963 to 1968. This pattern was evident
in the simulations. The sample standard deviations for Ŝr(b) are smaller than
the bootstrap standard deviations for S̃r due to the large value of γ̂. Since
the data suggest that γ > 0.4, it is expected that the proposed estimator S̃r

provides better performance than Ŝr(b). Therefore Ŝr(b) might overestimate the
true annual survival rates.
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Table 8. Estimates of annual average survival rates.

Year 1963 1964 1965 1966 1967 1968 1969 1970

Ŝr(b) 0.5756 0.6079 0.6642 0.7799 0.6351 0.5333 0.5855 0.5357
s.e. 0.1134 0.0777 0.0803 0.0978 0.0732 0.0586 0.0704 0.1305

S̃r 0.4171 0.4366 0.5101 0.6163 0.5475 0.5102 0.6157 0.5851
s.e. 0.1466 0.1452 0.1349 0.1575 0.0885 0.0667 0.0807 0.1664

6. Conclusions

The band recovery model considered here is based on the assumptions that
individual survival rates are heterogeneous and the band recovery rate is in-
dependent of the individual survival rate. In this context, a new estimator of
the annual average survival rate is proposed, and the following conclusions are
obtained.
1. The bias-adjusted MLE derived under a homogeneous survival rate is recom-

mended when the coefficient of variation of individual survival rate is relatively
small, say γ < 0.4.

2. When the coefficient of variation of individual survival rate is relatively large,
say γ ≥ 0.4, the proposed estimator performs better than the bias-adjusted
MLE since the effect of heterogeneity becomes significant. With the help of
the bootstrap method, we can compute the sample variance of the proposed
estimator for further statistical inference.

3. As the survival rates and recovery rates are negatively linearly correlated,
the bias-adjusted MLE produces a negative bias on estimating the annual
average survival rate only for the last experimental year. This phenomenon
is consistent with the results in Pollock and Raveling(1982). Nevertheless the
annual average survival rates for the first two or three years are overestimated
by the bias-adjusted MLE. Based on the simulation set up in this paper,
the proposed estimator has smaller bias and MSE on estimating the annual
average survival rates.

4. As the survival rates and recovery rates are positively linearly correlated,
the bias-adjusted MLE produces a negative bias on estimating the annual
average survival rate only for the last experimental year. This phenomenon is
not consistent with the results in Nichols, Stockes, Hines and Conroy (1982).
Similarly, based on the simulation set up in this paper, the proposed method
is recommended on estimating the annual average survival rates.
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Appendix A.

Proof of Proposition 1. Note that E(Rr) and E(Tr −Rr) can be expressed as

E(Rr) =
Nr∑

m=1

[fr + S(r)
m erfr+1 + · · · + (S(r)

m )k−rφr,k−1fk],

E(Tr − Rr) =
r−1∑
i=1

Ni∑
m=1

(S(i)
m )r−iφi,r−1[fr + S(i)

m erfr+1 + · · · + (S(i)
m )k−rφr,k−1fk].

Then, when S
(i)
m = S for all i = 1, . . . , k and m = 1, . . . , Ni, we obtain from (3)

that
E(N∗

r ) =
NrE(Tr − Rr)

E(Rr)
.

When the S
(i)
m are not the same, E(N∗

r ) �= NrE(Tr − Rr)/E(Rr). Naturally the
next step is to find the discrepancy between E(N∗

r ) and NrE(Tr − Rr)/E(Rr)
when S

(i)
m ’s are different.

E(Tr − Rr)Nr

E(Rr)
− E(N∗

r ) =
gr(S)
E(Rr)

,

where S=(S(1)
1 , S

(1)
2 , . . ., S

(1)
N1

, . . . , S
(r)
Nr

) and gr(S) is defined at (6).
Next we need to derive the first and second partial derivatives of gr(S) in

order to obtain the Taylor expansion on gr(S).

∂gr(S)

∂S
(j)
m

∣∣∣∣
S= (S̄, S̄, . . . , S̄)

= NrS̄
r−jφj,r−1[erfr+1 + · · · + (k − r)S̄k−r−1φr,k−1fk], j = 1, . . . , r − 1,

∂gr(S)

∂S
(r)
m

∣∣∣∣
S=(S̄,S̄,...,S̄)

= −[
r−1∑
j=1

NjS̄
r−jφj,r−1][erfr+1+· · ·+(k−r)S̄k−r−1φr,k−1fk],

∂2gr(S)

∂S
(j)2
m

∣∣∣∣
S= (S̄, S̄, . . . , S̄)

= 2Nr(r−j)S̄r−j−1φj,r−1[erfr+1+· · · + (k−r)S̄k−r−1φr,k−1fk]+NrS̄
r−jφj,r−1

×[2erer+1fr+2 + · · · + (k−r)(k − r − 1)Sk−r−2φr,k−1fk], j = 1, . . . , r − 1,
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∂2gr(S)

∂S
(r)2
m

∣∣∣∣
S= (S̄, S̄, . . . , S̄)

= −[
r−1∑
j=1

Nj S̄
r−jφj,r−1][2erer+1fr+2 + · · · + (k − r)(k − r − 1)S̄k−r−2φr,k−1fk],

∂2gr(S)

∂S
(j)
m ∂S

(i)
t

∣∣∣∣
S=(S̄, S̄, . . . , S̄)

= 0 i, j = 1, . . . , r − 1, i �= j,

∂2gr(S)

∂S
(j)
m ∂S

(r)
t

∣∣∣∣
S=(S̄, S̄, . . . , S̄)

= −(r−j)S̄r−j−1φj,r−1[erfr+1+· · · + (k−r)S̄k−r−1φr,k−1fk], j =1, . . . r−1.

At the point S = (S, S, . . . , S), the Taylor’s expansion on gr(S) is given by

gr(S) = gr(S̄) +
r∑

i=1

Ni∑
m=1

(
∂gr(S)

∂S
(i)
m

∣∣∣∣
S=(S̄,S̄,...,S̄)

)(
S(i)

m − S

)

+
1
2!

r∑
i=1

r∑
j=1

Ni∑
m=1

Nj∑
t=1

(
∂2gr(S)

∂S
(i)
m ∂S

(j)
t

∣∣∣∣
S=(S̄,S̄,...,S̄)

)
×

(
S(i)

m − S

)(
S

(j)
t − S

)
+�1,

where �1 is the error term. Under Assumptions (A) and (B), gr(S) is rewritten
as

gr(S)=
{r−1∑

i=1

Nr(r− i)NiS
r−i+1

φi,r−1[erfr+1+· · ·+(k−r)Sk−r−1
φr,k−1fk]

}
γ2 +�1.

(10)

Appendix B.

To show the validity of ignoring �2, simulation work is provided in Tables
9 and 10. Table 9 contains the values of �2 for three populations (see Table 2,
trials 5, 7 and 9). Table 10 contains the values of �2 for beta distributions. The
possible values of ej and fj, j = 1, . . . , 6, are (e1, . . . , e6)=(0.99, 0.99, 0.99, 0.99,
0.99, 0.99), (f1, . . . , f6)=(0.05, 0.05, 0.05, 0.05, 0.05, 0.05). Numerical results for
other values of ej and k are quite similar and support the validity of ignoring
�2, given S

(i)
m and ej , fj and E(N∗

r ) can be calculated from (3).

Appendix C.

Equation (5) may be rewritten as

E(N∗
r ) =

NrE(Tr − Rr)
E(Rr)

− gr(S)
E(Rr)
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=
NrE(Tr − Rr)

E(Rr)
− 1

E(Rr)

{r−1∑
i=1

Nr(r − i)NiS
r−i+1

φi,r−1

× [erfr+1 + · · · + (k − r)Sk−r−1
φr,k−1fk]

}
γ2 + �2,

where �2 = −�1/E(Rr). Here �2 is negligible (see Appendix B). With As-
sumption (B), for each i, the value of γ2 is defined as

γ2 =
∑Ni

m=1(S
(i)
m − S)2

NiS
2 =

∑Ni
m=1(S

(i)
m )2

NiS
2 − 1

=
Ni+1

∑Ni
m=1(S

(i)
m )2

(
∑Ni

m=1 S
(i)
m )(

∑Ni+1

m=1 S
(i+1)
m )

− 1

=
(Ni+1fi+1)[

∑Ni
m=1(S

(i)
m )2eiei+1fi+2]

(
∑Ni

m=1 S
(i)
m eifi+1)(

∑Ni+1

m=1 S
(i+1)
m ei+1fi+2)

− 1 =
E(Ri+1,i+1)E(Ri,i+2)
E(Ri,i+1)E(Ri+1,i+2)

− 1.

Considering the information from the whole experimental process, i.e., i = 1, . . .,
k, we can get another form of γ2 as

γ2 =
∑k−2

i=1 E(Ri+1,i+1)E(Ri,i+2)∑k−2
i=1 E(Ri,i+1)E(Ri+1,i+2)

− 1.

Table 9. Theoretical behavior of approximation (5), Ni = 2000, i = 1, . . . 6.

R.H.S R.H.S. Eq.(5)
Trial Year of Eq.(3) of Eq. (4) without �2 �2

1 990.0 990.0 990.0 0.0
S = 0.5 2 1480.0 1480.0 1480.0 0.0
γ = 0 3 1722.6 1722.6 1722.6 0.0

4 1842.6 1842.6 1842.6 0.0
5 1902.1 1902.1 1902.1 0.0
1 990.0 1115.5 994.4 -4.4

S = 0.5 2 1558.5 1778.6 1561.6 -3.1
γ = 0.4 3 1917.4 2159.9 1920.9 -3.5

4 2155.9 2330.4 2162.0 -6.1
5 2318.0 2318.0 2318.0 0.0
1 990.0 1439.5 1047.1 -57.1

S = 0.5 2 1793.7 2592.7 1837.2 -44.5
γ = 0.8 3 2502.0 3450.0 2553.6 -51.6

4 3132.5 3903.8 3230.4 -97.9
5 3694.2 3693.9 3693.9 0.3

R.H.S.=Right Hand Side
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Table 10. Theoretical behavior of approximation (7), Ni = 2000, i = 1, . . . 6.

R.H.S R.H.S. Eq.(7)
Trial Year of Eq.(3) of Eq. (4) without �2 �2

1 990.0 991.6 990.0 0.0
Beta(200., 200.) 2 1481.0 1483.9 1481.0 0.0
γ = 0.05 3 1725.1 1728.1 1725.1 0.0

4 1846.6 1848.7 1846.6 0.0
5 1907.2 1907.2 1907.2 0.0
1 990.0 1121.0 1000.0 -10.0

Beta(2.625, 2.625) 2 1558.5 1787.6 1570.5 -12.1
γ = 0.4 3 1917.4 2169.7 1930.7 -13.3

4 2159.8 2342.1 2173.7 -13.9
5 2331.6 2331.6 2331.6 0.0
1 990.0 1456.1 1064.9 -74.9

Beta(0.2813, 0.2813) 2 1793.7 2623.6 1868.0 -74.4
γ = 0.8 3 2502.0 3486.9 2590.2 -88.2

4 3147.9 3950.3 3276.9 -129.0
5 3747.9 3747.9 3747.9 0.0

R.H.S.=Right Hand Side

Thus, the moment estimator of γ2 is given as

γ̂2 = max

{∑k−2
i=1 Ri+1,i+1Ri,i+2∑k−2
i=1 Ri,i+1Ri+1,i+2

− 1, 0

}
.

Ignoring �1 in (10)(see Appendix A), we can estimate gr(S) as

ĝr =
r−1∑
i=1

Nr(r − i)Ni(
r−1∏
j=i

(Ŝej))[(Ŝer)f̂r+1 + · · · + (k − r)(
k−r−1∏

j=r

(Ŝej))f̂k]γ̂2,

where Ŝer = Rr,r+1/Nr and f̂r = Rr,r/Nr. Ignoring �2 in (5), the proposed
estimator of N∗

r is then

N̂∗
r =

Nr(Tr − Rr) − ĝr

Rr
.
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