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Abstract: A tolerance interval procedure is derived from the concept of generalized

pivotal quantities usually used to obtain confidence intervals in situations where

standard procedures do not lead to useful solutions. We apply the generalized con-

fidence intervals approach and propose a two-sided tolerance interval for the dis-

tribution N(θ,
∑q

i=1
hiσ

2
i ) based on mutually independent statistics θ̂, S2

1 , . . . , S2
q ,

where θ̂ is distributed as N(θ,
∑q

i=1
ciσ

2
i ), hi and ci are known constants, and

niS
2
i /σ2

i are independent chi-squared random variables with ni df, for i = 1, . . . , q.

Some practical examples are given to illustrate the applications of the proposed

procedure. A simulation study is conducted to evaluate its frequentist coverage

probability. The results indicate that the proposed method may be recommended

for use in practical applications. The procedure provided in this paper can be

applied to tolerance interval questions arising in arbitrary normal balanced mixed

linear model situations.
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alized confidence intervals, linear models, variance components.

1. Introduction

Let F denote the cumulative distribution of a random variable. An interval
[L(Y ), U(Y )] (or [L,U ], for simplicity), based on the data vector Y , is called a
two-sided β-content, γ-confidence tolerance interval (or (β, γ)-tolerance interval,
for short) for F if

Pr[F (U(Y )) − F (L(Y )) ≥ β] = γ.

Thus, we can state with confidence coefficient γ that at least a proportion β of
the population modeled by F is contained in the interval [L,U ].

Two-sided tolerance intervals are widely used in industrial applications where
manufactured parts have to meet certain specifications. If the manufacturing
process is capable, then a high proportion of the items manufactured will meet
the specifications. Two-sided tolerance intervals give us L and U such that we
can claim, with a specified degree of confidence γ, that a specified proportion β

or more of the manufactured items lie between L and U .
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The problem for computing a tolerance interval for the simple case in which
F is the normal distribution with unknown mean µ and unknown variance σ2

has been extensively studied; see, for example, Wald and Wolfowitz (1946), Howe
(1969) and Odeh and Owen (1980). For more complex situations, only scattered
results are available. The problem of setting a two-sided tolerance interval for
the distribution N(θ, σ2

1−σ2
2) based on mutually independent statistics θ̂, S2

1 and
S2

2 , where θ̂ ∼ N(θ, cσ2
1), c is a known constant, n1S

2
1/σ2

1 and n2S
2
2/σ2

2 are chi-
squared random variables with n1 and n2 degrees of freedom (df), respectively,
was considered in Wang and Iyer (1994). Also some practical examples were
given in their paper to illustrate the applications of their proposed procedure.
Brown, Iyer and Wang (1997) applied their results to evaluate the bioequivalence
of two formulations of a drug using various cross-over designs for data collection.
Liao and Iyer (2001) extended the results of Wang and Iyer (1994) and pro-
posed tolerance intervals for the distribution N(θ, σ2

1 −σ2
2) for the case where the

distribution of the statistic θ̂ is N(θ,
∑q

i=1 ciσ
2
i ), with q ≥ 1 and the ci known

constants. Their study was motivated by an actual application involving the
assessment of the quality of a type of glucose monitoring meter. We will revisit
this problem in Section 4.

In this paper, we generalize the problem as follows. We seek a two-sided
tolerance interval for a random variable W which has a N(θ,

∑q
i=1 hiσ

2
i ) dis-

tribution. Suppose mutually independent statistics θ̂, S2
1 , . . . , S2

q are available,
where θ̂ is normally distributed with mean θ and variance

∑q
i=1 ciσ

2
i , hi and ci

are known constants, and niS
2
i /σ2

i are independent chi-squared random variables
with ni df, for i = 1, . . . , q. The solution we propose is based on the concept of
generalized confidence intervals, see Weerahandi (1993, 1995), and is different
from the derivation based on the method given in Wang and Iyer (1994).

The simplest instance of the general problem stated above occurs in the
context of a one-way, balanced, random effects model. Consider the model

Yij = µ + Ai + eij,

where Yij is the jth repeat measurement (1 ≤ j ≤ n) on item i (1 ≤ i ≤
a) selected randomly from a population of items. It is assumed that Ai

i.i.d.∼
N(0, σ2

A), eij
i.i.d.∼ N(0, σ2

e ), and all random variables are jointly independent.
The true value associated with item i is µ + Ai and the mean of the entire
population of items is µ. In industrial applications one may be interested in a
tolerance interval for the distribution of the true values µ + Ai of the items, in
which case one needs a tolerance interval for the distribution N(µ, σ2

A); or one
may be interested in a tolerance interval for the distribution of the measured
values, which is N(µ, σ2

A + σ2
e). Both of these problems are special cases of

the general problem stated above. First consider the distribution of true values.
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Write Ȳ = (1/an)
∑a

i=1

∑n
j=1 Yij , Ȳi = 1/n

∑n
j=1 Yij, S2

1 = n
∑a

i=1(Ȳi−Ȳ )2, S2
2 =∑a

i=1

∑n
j=1(Yij − Ȳi)2, σ2

1 = σ2
e + nσ2

A, σ2
2 = σ2

e , θ = µ and θ̂ = Ȳ . We then see
that we are interested in a tolerance interval for the distribution N(θ, h1σ

2
1+h2σ

2
2)

with h1 = 1/n and h2 = −1/n. Furthermore, jointly independent statistics θ̂,
S2

1 and S2
2 are available with θ̂ ∼ N(θ, c1σ

2
1 + c2σ

2
2) where c1 = 1/an, c2 = 0,

(a − 1)S2
1/σ2

1 ∼ χ2
a−1, and a(n − 1)S2

2/σ2
2 ∼ χ2

a(n−1). Thus, the premise of
our problem is satisfied. Next, consider the distribution of measured values,
namely, N(µ, σ2

A + σ2
e). Note that σ2

A + σ2
e = h1σ

2
1 + h2σ

2
2 , where h1 = 1/n and

h2 = (n−1)/n. Let θ̂, S2
1 and S2

2 be as before. Again, the premise of our general
problem is satisfied.

In the next section, we review the concept of generalized pivotal quantities
and generalized confidence intervals. An approach to computing the tolerance
intervals of interest based on the concept of generalized confidence intervals is
proposed in Section 3. In Section 4, the glucose meters problem described in Liao
and Iyer (2001) and a bioequivalence experiment discussed in Brown, Iyer and
Wang (1997) are used to illustrate the application of our proposed procedure.
A simulation study is conducted to evaluate the performance of the proposed
procedure and the results of this study are discussed in Section 5.

2. Generalized Confidence Intervals

Tsui and Weerahandi (1989) introduced generalized P -Values and general-
ized test variables and demonstrated that useful hypothesis tests could be derived
for situations where standard methods fail to yield satisfactory solutions. Weer-
ahandi (1993) extended this idea and introduced generalized pivotal quantities
and generalized confidence intervals. He demonstrated that generalized confi-
dence intervals provided useful solutions to interval estimation problems where
satisfactory solutions were unavailable. Frequentist coverage probabilities of gen-
eralized confidence intervals are, typically, functions of nuisance parameters; so
generalized confidence intervals do not in general have exact coverage probabil-
ities. Empirical evidence based on examination of large number of situations
suggests that coverage probabilities of generalized confidence intervals are, as a
rule, sufficiently close to the nominal levels over the entire ranges of nuisance
parameters, that the resulting intervals are satisfactory in practical applications.

Generalized tests and generalized confidence intervals are now available in
the literature for many applications. The following is a partial list of publica-
tions in this area − Weerahandi (1991), Zhou and Mathew (1994), Weerahandi
(1995), Khuri, Mathew and Sinha (1998) and Chang and Huang (2000). Gener-
alized P -values and generalized confidence intervals are applicable in a variety of
situations, not just normal mixed linear models. However, most of the published
implementations of this approach are to linear model problems.
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In the following paragraphs we describe the construction of generalized con-
fidence intervals for θ and τ mentioned in the problem statement. These will
be used in Section 3 to obtain a two-sided tolerance interval for the distribution
N(θ,

∑q
i=1 hiσ

2
i ). We follow the convention used by Tsui and Weerahandi (1989)

of representing with upper case letters the observable random variables and with
lower case letters their realized values.

Let τ2 =
∑q

i=1 hiσ
2
i and σ2 =

∑q
i=1 ciσ

2
i . We first give generalized pivotal

quantities for θ and τ . Let T represent the observable random variable θ̂ and t

denote its observed value, Z = (T − θ)/σ and, for i = 1, . . . , q, Ui = niS
2
i /σ2

i .
Then Z ∼ N(0, 1) and, for i = 1, . . . , q, Ui ∼ χ2(ni). We define

Rθ = t − Z

√√√√ q∑
i=1

cinis2
i

Ui
= t −

(
T − θ

σ

) √√√√ q∑
i=1

ciσ2
i s

2
i

S2
i

. (2.1)

Likewise, let us define

Rτ =

√√√√ q∑
i=1

hinis2
i

Ui
=

√√√√ q∑
i=1

hiσ2
i s

2
i

S2
i

. (2.2)

From (2.1) and (2.2), it follows that Rθ and Rτ have distributions that are free
of model parameters. Furthermore, we see that, when the observed values t and
s2
i are substituted for the observable random variables T and S2

i , i = 1, . . . , q, Rθ

and Rτ become rθ = θ and rτ = τ . Therefore, Rθ and Rτ satisfy the requirements
for being generalized pivotal quantities for θ and τ . See Weerahandi (1993) for
the relevant definitions and details. Hence, a two-sided α confidence interval for
θ and an upper α confidence bound for τ are {θ|Rθ,(1−α)/2 ≤ rθ ≤ Rθ,(1+α)/2}
and {τ |rτ ≤ Rτ,α}, respectively. The required percentiles Rθ,α and Rτ,α may be
determined by the following Monte-Carlo algorithm.

Step 1: Let M be a large positive integer, say 100,000. For i equal to 1 through
M , carry out the following steps 2 and 3.

Step 2: Generate a standard normal random deviate Zi and chi-squared random
deviates U1,i, . . ., Uq,i with n1, . . . , nq degrees of freedom, respectively.
The random deviates are required to be jointly independent.

Step 3: Calculate Rθ,i and Rτ,i using the expressions (2.1) and (2.2) for Rθ and
Rτ , respectively.

Let θ̂(1−γ)/2 and θ̂(1+γ)/2 be the (1−γ)/2 and (1+γ)/2 sample percentiles of
the collection of values Rθ,1, . . . , Rθ,M . Then [θ̂(1−γ)/2, θ̂(1+γ)/2] may be used as a
two-sided generalized confidence interval for θ with nominal confidence coefficient
γ. Similarly, we may use τ̂γ as an upper generalized confidence bound for τ with
nominal confidence coefficient γ.
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3. A Generalized Tolerance Interval for N(θ,
∑q

i=1 hiσ
2
i )

Recall that we seek a (β, γ)-tolerance interval for a random variable W ∼
N(θ, τ2), where τ2 =

∑q
i=1 hiσ

2
i . We have θ̂ ∼ N(θ, σ2) with σ2 given by

σ2 =
∑q

i=1 ciσ
2
i , where hi and ci are known constants. Furthermore, mutually

independent statistics S2
1 , . . . , S2

q are available such that they are independent of
θ̂ and niS

2
i /σ2

i ∼ χ2
(ni)

, for i = 1, . . . , q.
We need to find a margin of error statistic D = D(S2

1 , . . . , S2
q ) such that

Prθ̂,S2
1 ,...,S2

q
{PrW [θ̂ − D ≤ W ≤ θ̂ + D] ≥ β} = γ.

Define Q(β,D) = Prθ̂,S2
1 ,...,S2

q
{PrW [θ̂ − D ≤ W ≤ θ̂ + D] ≥ β}. Also let Z =

(θ̂− θ)/σ which is a standard normal random variable. We thus have Q(β,D) =
PrZ,S2

1 ,...,S2
q
{[Φ(Z(σ/τ) + (D/τ)) − Φ(Z(σ/τ) − (D/τ))] ≥ β}, where Φ(·) is the

standard normal distribution function. Therefore, the problem is to find D such
that Q(β,D) = γ. As in the work of Wald and Wolfowitz (1946), we can first
compute k = k(z, σ, τ, β) that satisfies

Φ(z
σ

τ
+ k) − Φ(z

σ

τ
− k) = β. (3.1)

Then Q(β,D|Z = z) = PrS2
1 ,...,S2

q
{(D/τ) ≥ k} = PrS2

1 ,...,S2
q
{(D/k) ≥ τ} = γ.

Obviously, D/k is an upper γ confidence bound for τ . So the value of D may
be estimated by the k τ̂γ , where τ̂γ is given in the previous subsection. Finally,
the value of k must be computed from (3.1) which satisfies EZ [Φ(Z(σ/τ) + k)−
Φ(Z(σ/τ) − k)] = β. Using the Wald-Wolfowitz (1946) approximation which
states that k is closely approximated by the root of the nonlinear equation
Φ(φ−1 + k) − Φ(φ−1 − k) = β, where φ = τ/σ. Another approximation is given
in Howe (1969), which uses

k =

√
1 +

1
φ2

z(1+β)/2. (3.2)

The parameter φ2 = τ2/σ2 can be estimated by φ̂2 = τ̂2/σ̂2, where τ̂2 =∑q
i=1 his

2
i and σ̂2 =

∑q
i=1 cis

2
i . There is a possibility that the estimated value τ̂

is a negative number for some situations. If this happens, we replace τ̂ by τ̂γ in φ̂.
The value of τ̂γ is rarely negative in our experience based on the simulation study
reported in Section 5. In case τ̂γ ≤ 0, we may use the two-sided γ generalized
confidence interval [θ̂(1−γ)/2, θ̂(1+γ)/2] as the (β, γ)-tolerance interval.

Based on the above discussion, we propose the following as the (β, γ)-toler-
ance interval for the distribution N(θ, τ2): (i) When τ̂γ > 0, the required toler-
ance interval is computed as

θ̂ ± k̂τ̂γ , (3.3)
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where k̂ is obtained from (3.2) in which φ is estimated by φ̂ = τ̂ /σ̂ if τ̂ > 0, and
by φ̂ = τ̂γ/σ̂ otherwise; (ii) When τ̂γ ≤ 0, the required tolerance interval is taken
to be the two-sided γ-level generalized confidence interval [θ̂(1−γ)/2, θ̂(1+γ)/2].

4. Illustrative Examples

The following practical examples are given to illustrate the proposed proce-
dure.

Example 4.1. The glucose monitoring meter experiment
Liao and Iyer (2001) described a gage study for comparing the quality be-

tween a newly developed glucose monitoring meter for in-home use by patients
with diabetes (called test meter) and a marked one (called reference meter).
The details regarding the experiment are given in their paper. Let X denote a
measurement using a test meter and Y denote a measurement using a reference
meter. Then X is modeled as Xijkl = µT +Mi +Bj +Lk +eijkl, for i = 1, . . . ,m,
j = 1, . . . , B, k = 1, . . . , L and l = 1, . . . , E, where µT denotes the expected
reading when using a test meter, Mi the effect of test meter i, Bj the effect of
the jth blood sample, Lk the effect of the kth strip-lot and eijkl measurement
error. Likewise, Yijkl = µR + M ′

i + Bj + Lk + e′ijkl, for i = 1, . . . , n, j = 1, . . . , B,
k = 1, . . . , L and l = 1, . . . , E, where µR denotes the expected reading when using
a reference meter, M ′

i the effect of reference meter i, Bj the effect of the jth blood
sample, Lk the effect of the kth strip-lot and e′ijkl measurement error. The effects
Mi,M

′
i , Bj , Lk, eijkl and e′ijkl are random effects, normally distributed with zero

mean and standard deviations equal to σT , σR, σB , σL, σe and σe, respectively
(the variances of eijkl and e′ijkl are assumed to be equal).

The theoretical mean for the ith test meter when using blood sample j

and strip-lot k is equal to µT + Mi + Bj + Lk. The theoretical mean reading,
averaging over all reference meters, for the same blood sample and strip-lot is
equal to µR+Bj+Lk. This theoretical mean reading is used as the reference value
against which the readings from individual test meters will be compared to assess
their accuracy. The deviation of the reading obtained using a single test meter
from the mean over all reference meters is thus equal to Di = µT −µR +Mi. It is
the distribution of the Di’s that is of interest. For the quality control objective,
a (β = 0.95, γ = 0.90)-tolerance interval is required for the distribution of Di.
A batch of test meters is deemed to have met the quality requirements if the
tolerance interval falls completely into the interval [−5, 5].

We now apply the tolerance interval given in Section 3 to this problem. Let

X̄ =

m∑
i=1

B∑
j=1

L∑
k=1

E∑
l=1

Xijkl

mBLE
,
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MST =

BLE
m∑

i=1

(X̄i... − X̄)2

m − 1
,

MSET =

m∑
i=1

B∑
j=1

L∑
k=1

E∑
l=1

(Xijkl − X̄i... − X̄.j.. − X̄..k. + 2X̄)2

mBLE − m − B − L + 2
.

Similarly, let Ȳ , MSR and MSER denote the corresponding sample mean, mean
square for the reference meter effect and error mean square for the model fitted
to the reference meters data. Then the statistics X̄ , Ȳ , MST , MSET , MSR

and MSER are mutually independent. Let σ2
1 = σ2

T + σ2
e/k0, n1 = m − 1, S2

1 =
MST /k0; and σ2

2 = σ2
R + σ2

e/k0, n2 = n− 1, S2
2 = MSR/k0, where k0 = BLE. It

follows that n1S
2
1/σ2

1 ∼ χ2
(n1), n2S

2
2/σ2

2 ∼ χ2
(n2). Also v1MSET /σ2

e ∼ χ2
(v1) and

v2MSER/σ2
e ∼ χ2

(v2), where v1 = mk0−m−B−L+2 and v2 = nk0−n−B−L+2.
MSET and MSER are pooled to get MSE = (v1MSET + v2MSER)/(v1 + v2),
so we have n3S

2
3/σ2

3 ∼ χ2
(n3)

, where σ2
3 = σ2

e/k0, n3 = v1 +v2 and S2
3 = MSE/k0.

Let W denote a random variable which has the same distribution as the Di,
i = 1, . . . , n. We are interested in a tolerance interval for W ∼ N(θ, τ2), where
θ = µT − µR and τ2 = σ2

T = σ2
1 − σ2

3 . Also observe that θ̂ = X̄ − Ȳ ∼ N(θ, σ2),
where σ2 = σ2

1/m + σ2
2/n.

For the data provided in Liao and Iyer (2001), m = 44, n = 10, B =
L = E = 3, θ̂ = −1.13654, s2

1 = 0.61928, s2
2 = 0.63132 and s2

3 = 0.19052. A
(β = 0.95, γ = 0.90)-tolerance interval for the distribution of Di is obtained as
[−2.84498, 0.571899] which is completely contained in the interval [-5,5]. There-
fore, for this example, one concludes that the batch of test meters has satisfied
the quality requirement.

Example 4.2. The individual bioequivalence experiment
Brown, Iyer and Wang (1997) applied the procedure of Wang and Iyer (1994)

to evaluate the bioequivalence of two formulations of a drug using various cross-
over designs for data collection. One of the designs they gave is the two-period
and four-sequence design commonly known as a Balaam design (Balaam (1968)).
They used the following model to describe the response from the experiment:
Yijk = µ + κi + ξij + πk + φl[i,k] + (ξφ)ijl + eijk, for i = 1, 2, 3, 4, j = 1, . . . , a,
k = 1, 2, l = 1, 2. Yijk denotes the response of the j subject in the i sequence for
the kth period and µ is the overall mean, κi is the fixed effect of sequence i, ξij

is the random subject effect, πk is the fixed effect for the period k, φl[i,k] is the
direct fixed effect of the lth formulation given in the ith sequence in period k,
(ξφ)ijl is the interaction of subject ij and drug l, and eijk is the within-subject
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random error in observing Yijk. ξij, (ξφ)ijl and eijk are normally distributed with
zero mean and standard deviations equal to σs, σsd and σe, respectively.

It is of interest to examine the expected difference between the response from
the reference and test formulations of an individual at period k. Let this difference
be denoted by δij = φ1−φ2 +(ξφ)ij1− (ξφ)ij2. One needs a (β = 0.75, γ = 0.95)-
tolerance interval for δij ∼ N(φ1 − φ2, 2σ2

sd) and check of whether the obtained
interval is completely contained in the interval[0.75, 1.25].

Define dij = Yij1 − Yij2 and sij = Yij1 + Yij2. Then the following statistics
are mutually independent:

θ̂ =
1
4
[(d̄1. − d̄2.) + (s̄3. − s̄4.)],

S2
1 =

2∑
i=1

a∑
j=1

(dij − d̄i.)2

2(a − 1)
,

S2
2 =

4∑
i=3

a∑
j=1

(sij − s̄i.)2

2(a − 1)
,

S2
3 =

4∑
i=3

a∑
j=1

(dij − d̄..)2

2a − 1
,

S2
4 =

2∑
i=1

a∑
j=1

(sij − s̄..)2

2a − 1
.

Note that in S2
3 , d̄.. =

∑4
i=3

∑a
j=1 dij/(2a) and in S2

4 , s̄.. =
∑2

i=1

∑a
j=1 sij/(2a).

Let σ2
1 = 2σ2

sd +2σ2
e , σ2

2 = 4σ2
s +4σ2

sd +2σ2
e , σ2

3 = 2σ2
e and σ2

4 = 4σ2
s +2σ2

sd +2σ2
e .

Then it is easy to check that niS
2
i /σ2

i ∼ χ2
(ni)

for i = 1, 2, 3, 4, where n1 =

n2 = 2(a − 1) and n3 = n4 = 2a − 1. Also we have θ̂ ∼ N(φ1 − φ2, σ
2), where

σ2 = (σ2
1 + σ2

2)/(8a). Therefore, the required tolerance interval can be easily
computed using the proposed procedure given in Section 3.

For the log-transformed data provided in Brown, Iyer and Wang (1997),
who cited Chow and Liu (1992) as the original source, θ̂ = 0.1180, s2

1 = 0.0839,
s2
2 = 0.5213, s2

3 = 0.1534, s2
4 = 0.2874 and a = 6. A (β = 0.75, γ = 0.95)-

tolerance interval for δij using the proposed procedure is [−0.72582, 0.96182].
After exponentiating, we obtain an interval of [0.48392, 2.61646] which is not
completely contained in the interval [0.75, 1.25]. So we cannot conclude individual
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bioequivalence for this example based on the tolerance interval criterion.

5. Simulation Study

To evaluate the performance of the proposed procedure, the following simu-
lation study was carried out based on the glucose monitoring meter experiment of
Example 4.1. Without loss of generality, we may assume that θ = 0 and σR = 1.
For fixed B = L = E = 3 and specified values of m, n, σT and σe, we generated
a normal random deviate Z from the distribution N(0, σ2) and three chi-squared
random deviates U1, U2 and U3 with n1, n2, n3 df, using the functions RNORM
and RCHISQ, respectively, in the statistical package S-PLUS. The corresponding
sample statistics S2

1 = U1σ
2
1/n1, S2

2 = U2σ
2
2/n2, S2

3 = U3σ
2
3/n3 are then gener-

ated. We then computed the quantities of τ̂γ , θ̂(1−γ)/2 and θ̂(1+γ)/2 using the
Monte-Carlo algorithm described in Subsection 3.1. When τ̂γ > 0, compute the
margin of error ME = k̂τ̂γ based on (3.7) and let p = Φ(Z +ME)−Φ(Z−ME).
When τ̂γ ≤ 0, then let p = Φ(θ̂(1+γ)/2) − Φ(θ̂(1−γ)/2), where Φ(·) is the standard
normal distribution function. The procedure was repeated 10,000 times and the
fraction of times that p was greater than or equal to β was computed. The results
are presented in the following tables.

Table 1. Simulated confidence coefficients (times 104) for the (β = 0.95, γ =
0.90)-tolerance interval, with m = 5, 10; B = L = E = 3 and σR = 1.

m
5 10
n n

σT σe 5 10 20 40 60 80 5 10 20 40 60 80
0.5 9799 9821 9769 9506 9359 9258 9407 9548 9430 9252 9111 9137
1 9744 9673 9682 9629 9646 9631 9504 9636 9579 9361 9269 9214

0.5 2 9138 9071 8951 8901 8891 8875 9529 9533 9462 9440 9451 9487
4 8954 8928 8924 8861 8843 8828 9030 8995 8899 8931 8893 8896
8 8971 8926 8896 8902 8895 8914 8964 8992 8998 8927 8951 8934

0.5 9553 9389 9189 9180 9069 9094 9313 9202 9134 9054 9022 9009
1 9636 9497 9300 9199 9172 9070 9324 9287 9144 9136 9041 9053

1 2 9667 9671 9635 9573 9493 9480 9509 9429 9212 9151 9104 9083
4 9040 8865 8886 8872 8911 8822 9480 9486 9432 9413 9445 9436
8 8945 8878 8808 8807 8934 8847 8958 8936 8907 8860 8857 8849

0.5 9191 9154 9063 9066 9031 9006 9142 9063 9090 8981 8988 8948
1 9250 9181 9082 9102 8995 9042 9124 9030 9056 9054 8989 8976

2 2 9307 9185 9125 9073 9069 9120 9146 9081 9161 9040 9004 9022
4 9611 9542 9507 9503 9448 9465 9307 9162 9109 9106 9070 9068
8 8895 8828 8865 8870 8883 8851 9398 9459 9473 9473 9454 9444

0.5 9065 9054 8957 8985 9026 9002 9042 9024 9031 8997 9017 9018
1 9050 9034 9063 9020 8952 9052 8989 8991 8954 9031 9014 8997

4 2 9074 9090 9001 9033 9025 9044 9070 9008 9041 9004 8948 8973
4 9151 9049 9085 9055 9135 9075 9070 9052 9000 8990 9034 9039
8 9576 9503 9495 9440 9389 9394 9179 9069 9097 9034 9056 9110
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Table 2. Simulated confidence coefficients (times 104) for the (β = 0.95, γ =
0.90)-tolerance interval, with m = 25, 50; B = L = E = 3 and σR = 1.

m
25 50
n n

σT σe 5 10 20 40 60 80 5 10 20 40 60 80
0.5 8654 8986 9151 9091 9084 9136 8206 8652 8879 8991 8999 9033
1 8839 9156 9259 9190 9105 9049 8334 8665 8960 9053 9033 9010

0.5 2 9218 9526 9546 9520 9360 9299 8751 9030 9203 9244 9137 9120
4 9249 9236 9105 9082 9034 8970 9301 9473 9393 9387 9368 9348
8 8955 8993 9057 9023 9004 8994 8938 9067 9034 9039 9033 8963

0.5 8968 9060 9033 9006 9046 9039 8715 8912 9001 8962 9021 8927
1 9062 9133 9090 9005 8900 9054 8652 8970 9037 9038 9033 9038

1 2 9032 9166 9087 9038 9039 9068 8738 8962 9030 9017 9041 8969
4 9342 9460 9392 9271 9186 9180 8953 9152 9168 9112 9059 9050
8 9196 9181 9029 8991 8985 9007 9377 9403 9372 9398 9384 9356

0.5 9008 9052 8980 8967 9025 9033 8965 9006 9046 9023 8983 9009
1 9044 9067 8992 8992 8949 9014 8964 9003 9015 8971 9029 8943

2 2 9076 9005 8978 9045 8993 8980 8956 9033 8992 8983 9028 9021
4 9117 9019 9012 9026 9001 9040 8991 8975 8986 9026 8995 8974
8 9422 9350 9212 9208 9125 9121 9127 9147 9138 9065 9021 9046

0.5 9046 8999 8981 8976 9013 8986 9002 9019 9069 8933 8999 9003
1 9001 8965 8976 8957 8971 8992 8987 8997 8991 8978 9012 9013

4 2 9044 9025 9015 8994 8994 8987 9025 8979 8975 8934 8981 9002
4 9042 8984 8949 9033 8965 8998 8999 8964 8997 8945 8924 8964
8 9024 9044 8962 8955 9000 9011 9041 9044 9003 9014 9034 8973

Table 3. Simulated confidence coefficients (times 104) for the (β = 0.95, γ =
0.90)-tolerance interval, with m = 75, 100; B = L = E = 3 and σR = 1.

m
75 100
n n

σT σe 5 10 20 40 60 80 5 10 20 40 60 80
0.5 7951 8301 8628 8833 8968 9019 7866 8217 8532 8828 8802 8926
1 8013 8406 8728 8918 8956 8937 7860 8283 8635 8841 8908 8960

0.5 2 8374 8811 8992 9090 9121 9122 8274 8541 8911 9019 9060 9028
4 9228 9435 9526 9598 9667 9634 9056 9404 9525 9621 9667 9635
8 8998 9087 9091 9031 8999 8961 9026 9169 9030 9020 8965 9060

0.5 8405 8828 8955 8980 9060 9017 8274 8781 8906 8954 8948 8950
1 8431 8852 8937 8991 9004 9022 8316 8751 8973 8966 8981 8995

1 2 8502 8862 8990 9031 9028 8982 8298 8743 8940 9020 8995 9033
4 8718 9011 9094 9056 9084 9051 8551 8918 9046 9048 9040 9044
8 9319 9484 9616 9606 9623 9634 9175 9476 9592 9636 9563 9477

0.5 8914 8964 9006 9004 9057 8974 8894 8992 8946 9005 9046 9007
1 8918 8921 8985 9039 8959 9000 8886 8995 8989 8972 8947 8985

2 2 8943 8926 8947 9075 8987 8962 8878 8988 8958 9031 8967 8993
4 8883 8972 8982 8932 9001 8992 8757 9006 9029 8985 9007 9029
8 8936 9053 9091 9066 9063 9060 8764 9003 8988 9053 9002 9044

0.5 8987 8976 8948 8983 8964 9036 9014 9004 9057 9059 9006 9010
1 8977 9014 8991 8952 9009 8963 8987 9035 8977 8964 8976 8970

4 2 8969 9023 9018 9066 9047 8966 8957 9031 8990 8970 8979 9036
4 9025 8976 8969 8982 9008 8961 9020 9010 8988 8952 9014 8948
8 8990 9005 9003 9038 8994 9031 8971 9006 8964 8997 8965 8992
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For most parameter combinations, the constructed tolerance intervals are
successful in maintaining the confidence level close to the stated value of γ = 0.90.
Nonetheless, the results indicate that when σT is smaller than σR and m is small,
the proposed tolerance interval can be conservative. On the other hand, when σT

is smaller than σR and m is large but n is small, the proposed tolerance interval
appears to be somewhat liberal. Fortunately, in most practical situations, σT is
usually larger than σR because the reference meters tend to have much higher
precision than the test meters. If the number of reference meters is at least
10, then the results indicate that the proposed approach can be satisfactory for
practical use.

6. Concluding Remarks

Liao and Iyer (2001) conducted the same simulation study to evaluate their
procedure. For most of the parameter combinations the coverage probabilities
of the two methods are nearly the same. This indicates that they have similar
performance. Nonetheless, both Wang-Iyer (1994) and Liao-Iyer (2001) methods
are problem specific and are derived for a specific family of distributions under
consideration. Clearly, the procedure provided in this study can be applied to
tolerance interval questions arising in arbitrary normal balanced mixed linear
model situations.

It may be of interest to compare the widely used Satterthwaite approxi-
mation, (see Graybill (1976)), with the generalized confidence intervals for ob-
taining the tolerance intervals. Therefore, we made the following replacements
for the procedure given in Section 3. Let τ̂2

γ = f̂1τ̂
2/χ2

f̂1,1−γ
, where the df

f̂1 = (
∑q

i=1 his
2
i )

2/(
∑q

i=1(his
2
i )

2/ni); θ̂(1−γ)/2 = θ̂ − tf̂2,(1+γ)/2σ̂ and θ̂(1+γ)/2 =

θ̂ + tf̂2,(1+γ)/2σ̂, where the df f̂2 = (
∑q

i=1 cis
2
i )

2/(
∑q

i=1(cis
2
i )

2/ni). Here χ2
f̂1,1−γ

is the 1 − γ percentile of the chi-squared distribution with f̂1 df; and tf̂2,(1+γ)/2

is the (1 + γ)/2 percentile of the Student’s t-distribution with f̂2 df. Then we
conducted the same simulation study based on the glucose monitoring meter
experiment. We report the following partial results.

The simulation results indicate that the proposed generalized tolerance in-
tervals may outperform those found by the Satterthwaite approximation, partic-
ularly when the value of τ is small. Otherwise, both methods can have similar
performance. Note that results for certain parameter combinations are not re-
ported above because the performances of the methods being compared were
very similar.

We note that the construction of tolerance intervals using the concept of
the generalized confidence intervals can also be applied to the one-sided (β, γ)-
tolerance interval for the random variable W ∼ N(θ, τ2), where τ2 =

∑q
i=1 ciσ

2
i ,
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which corresponds to a statistic U satisfying Pr{Pr[W ≤ U ] ≥ β} = γ. It is
obvious that U is simply equal to the upper γ-level generalized confidence bound
for θ + τzβ .

Table 4. Simulated confidence coefficients (times 104) for the (β = 0.95, γ =
0.90) tolerance intervals using the generalized confidence intervals and the
Satterthwaite approximation procedures. The parameters B = L = E = 3
and σR = 1.

m
10 75
n n

σT σe 5 10 20 40 60 80 5 10 20 40 60 80
9313a 9202 9134 9054 9022 9009 8405 8828 8955 8980 9060 9017

0.5 9336b 9196 9159 9040 9077 9019 8441 8852 8956 9000 8975 9013
0c 0 0 0 0 0 0 0 0 0 0 0

9324 9287 9144 9136 9041 9053 8431 8852 8937 8991 9004 9022
1 9384 9403 9272 9258 9130 9165 8424 8853 9002 8979 9009 9066

0 0 0 0 0 0 0 0 0 0 0 0

9509 9429 9212 9151 9104 9083 8502 8862 8990 9031 9028 8982
1 2 9858 9898 9908 9894 9895 9890 8633 8932 9021 9121 9106 9078

14 5 12 5 12 10 0 0 0 0 0 0

9480 9486 9432 9413 9445 9436 8718 9011 9094 9056 9084 9051
4 9492 9480 9471 9490 9462 9479 9022 9299 9482 9449 9461 9445

514 520 529 510 538 521 0 0 0 0 0 0

8958 8936 8907 8860 8857 8849 9319 9484 9616 9606 9623 9634
8 7506 7118 7091 7087 7118 7074 9687 9744 9741 9721 9772 9729

2931 2883 2909 2913 2882 2926 289 251 258 279 228 271

9042a 9024 9031 8997 9017 9018 8997 8976 8948 8983 8964 9036
0.5 9064b 9008 8999 9054 8969 8985 8976 9023 8928 9015 9060 8999

0c 0 0 0 0 0 0 0 0 0 0 0

8989 8991 8954 9031 9014 8997 8977 9014 8991 8952 9009 8963
1 9031 9026 8991 9021 8992 8956 8995 8967 8985 8969 9013 8998

0 0 0 0 0 0 0 0 0 0 0 0

9070 9008 9041 9004 8948 8973 8969 9023 9018 9066 9047 8966
4 2 9064 9076 9036 9017 9016 9044 9023 8986 9053 8949 8977 8955

0 0 0 0 0 0 0 0 0 0 0 0

9070 9090 9001 9033 9025 9044 9025 8976 8969 8982 9008 8961
4 9155 9168 9132 9111 9104 9155 9012 9034 9042 9015 9025 9041

0 0 0 0 0 0 0 0 0 0 0 0

9179 9069 9097 9034 9056 9110 8990 9005 9003 9038 8994 9031
8 9896 9903 9876 9895 9886 9880 9085 9045 9124 9092 9076 9159

12 6 19 8 5 9 0 0 0 0 0 0
aTolerance intervals constructed by using the generalized confidence intervals.
bTolerance intervals constructed by using the Satterthwaite approximation.
cThe number of times that τ̂ is less then or equal to 0 over the 10000 stimlations.

Finally, to the best of our knowledge, there appear to be no satisfactory
two-sided tolerance interval procedures available in the literature for general un-
balanced data situations. Bagui, Bhaumik and Parnes (1996) do discuss proce-
dures for one-sided tolerance limits in m-way random effects ANOVA models.
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However, their approach is based on the ‘plug-in’ method whereby tolerance in-
tervals are derived assuming various parameters to be known and then estimates
for these parameters are substituted in the results. The coverage probabilities of
intervals based on the ‘plug-in’ method have not been satisfactorily evaluated in
general mixed-model situations. In the context of one-way random effects mod-
els, our own simulation studies (unpublished) indicate poor performance for the
‘plug-in’ methods. We are currently investigating other approaches for obtaining
satisfactory tolerance intervals in unbalanced mixed models.
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