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Abstract: The numerical computation of P{X > x} can be accomplished in a va-

riety of ways. An appealing class of methods may be derived from the contour

integral connecting P{X > x} and its Fourier representation. Statisticians have

largely focused on deriving saddlepoint approximations for this contour integral.

The accuracy of such approximations is generally understood in vague terms only

and, perhaps more importantly, is rarely under user control. Numerical integration

of the contour integral has received considerably less attention, particularly in the

statistics literature. The focus of this paper is on the use of the trapezoidal rule

applied to said contour integral along an appropriate path. An exponential bound

on the approximation (i.e., discretization) error of the trapezoidal rule as a func-

tion of the quadrature node spacing is obtained using results of Stenger (1993).

This bound is used in developing a reliable non-iterative method of selecting the

trapezoidal rule spacing that guarantees control of the approximation error. The

epsilon algorithm is used to accelerate the calculation of the tail of the infinite se-

ries that results upon applying the trapezoidal rule to the inversion integral. The

resulting “automatic” methodology is shown to produce extremely accurate results

in a diverse set of problems.

Key words and phrases: Analytic function, characteristic function, epsilon algo-

rithm, saddlepoint recentering, sinc quadrature.

1. Introduction

The “exact” calculation of a tail probability P{X > x} can be accomplished
in a variety of ways, including direct computation through a closed form expres-
sion, numerical integration of a known probability density, summation of point
probabilities, and so on. In principle, tail probabilities may also be computed via
well-known Fourier inversion theorems linking P{X > x} to the characteristic
function of X; see, for example, Kawata (1972) or Lukacs (1970). These inversion
theorems have potential value in cases where the characteristic function is easy
to obtain and simple expressions for the associated tail probability are not. For
example, as pointed out by Mehta, Senchaudhuri and Patel (1998), numerous
problems in exact conditional inference are well-suited to such methods since the
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characteristic function is either known or can be computed easily; in contrast,
the direct computation of a tail probability can require enormous computational
effort.

In statistics, the Fourier representation of a tail probability has primarily
been exploited through saddlepoint approximation and related asymptotic meth-
ods; see Strawderman (2000) for a selective review. Widely cited sources detailing
statistical uses of these approximations include Barndorff-Nielsen and Cox (1989,
1994), Daniels (1954, 1983, 1987), Jensen (1995), Kolassa (1997), Lugannani and
Rice (1980) and Field and Ronchetti (1990). Excellent results have been achieved
in the case where X represents a sum of independent and identically distributed
random variables. Outside of this comparatively straightforward setting, the
conditions required for the validity of these asymptotic approximations become
substantially more difficult to write down. In all cases, the approximation error
is only vaguely understood and typically depend on factors (e.g., sample size)
that are not under user control. These factors are significant obstacles to the
trustworthy, routine use of saddlepoint approximations.

Numerical integration of the Fourier inversion integral has received consid-
erably less attention from statisticians. Abate and Whitt (1992) provide an
extensive and interesting discussion of various methods for numerical transform
inversion, the focus primarily being applications in probability involving distribu-
tions supported on the positive real line. Later refinements of this work include
Abate and Whitt (1995) and Abate, Choudhury and Whitt (1999). Most of the
quadrature-based methods considered in these papers are “Fourier series” (i.e.,
trapezoidal rule) approximations. Waller, Turnbull and Hardin (1995) provide a
more limited, statistically oriented review of similar methods and in particular
illustrate the use of one method previously described in Böhman (1975). To-
gether, the respective reference lists of these two papers covers most of the work
by statisticians on numerical transform inversion. The attraction of numerical
quadrature is apparent: in principle, an exact answer can be obtained to any
specified level of precision, the resulting error being largely controlled by the
number and placement of quadrature nodes. However, the problem is also beset
with numerical difficulties, most of which can be traced to the rapidly oscillating
Fourier integrand (Davis and Rabinowitz (1984)). A recent survey of existing nu-
merical quadrature schemes for oscillatory integrands can be found in Krommer
and Ueberhuber (1998).

The Fourier integrands arising in the representation of tail probabilities have
properties that are neither exploited by existing methods for transform inversion
nor by more general quadrature schemes for oscillatory integrands. For exam-
ple, when the moment generating function (MGF) of the random variable of
interest exists, the corresponding characteristic function and resulting Fourier
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integrand are both analytic. The analytic behavior of the integrand has a num-
ber of useful implications. For example, the path of integration in the contour
integral may be altered, allowing substantial flexibility; an important choice of
path is that which passes through a saddlepoint (e.g., Rice (1980) and Helstrom
(1983)). Upon such path modification, the resulting inversion integral reduces
to the Fourier transform of an analytic function, opening up a number of new
computational possibilities. Using the results of Stenger (1993), it is proved that
the trapezoidal rule provides an extraordinarily accurate approximation to the
tail probability inversion integral. This approximation suffers from an unfortu-
nate computational drawback: it requires the summation of an infinite series. It
will be shown, however, that this series can be accurately summed using a mod-
est number of terms provided “convergence acceleration” is also employed. This
paper exploits these observations in order to derive an effective quadrature rule
for tail probability computations involving differentiable CDFs supported on any
subset of the real line. The method to be described applies to the computation
of almost any univariate tail probability, the main proviso being existence of the
MGF (a condition also required for saddlepoint methods).

In essential respects the conclusions of this paper reflect those of Abate and
Whitt (1992): the trapezoidal rule, combined with convergence acceleration, cre-
ates a powerful and effective tool for computing tail probabilities by numerical
inversion. However, the implementation to be described here differs from the
methods described in Abate and Whitt (1992). These differences stem primar-
ily from the assumed existence of the MGF, which has important implications
for the mathematical behavior of the characteristic function. One particularly
useful consequence is a simple exponential bound on the approximation error of
the trapezoidal rule, yielding an easy non-iterative method for selecting an ap-
propriate spacing. The error bound depends primarily on the MGF and path of
integration selected, and shows that the latter can have important implications
for determining both the number of and spacing between quadrature nodes. In
contrast, the error bounds for most of the quadrature methods detailed in Abate
and Whitt (1992) are derived via the Poisson summation formula. For general
probability distributions, these bounds require information about the tail be-
havior of the CDF (i.e., the quantity being computed) in order to determine an
appropriate choice of spacing; however, it is possible to avoid this requirement in
the case of probability distributions supported on the positive real line (Abate
and Whitt (1992, 1995)). The existence of the MGF also leads to asymptotic
regularity of the zero pattern in the Fourier integrand. This regularity is valuable
because it substantially increases the chances for successful convergence acceler-
ation. For these purposes, the method of choice in Abate and Whitt (1992) is
Euler summation. The epsilon algorithm is used here (e.g., Brezinski and Redivo
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Zaglia (1991)), and significantly outperforms Euler summation in the examples
considered in Section 5.

The remainder of this paper will proceed as follows. In Section 2, the in-
version integral representation of a tail probability for an absolutely continuous
random variable is reviewed. It is shown that this integral may be written as a
standard Fourier transform. In Section 3.1, some theory for trapezoidal rules ap-
plied to general Fourier transforms is reviewed. In Section 3.2, this theory is used
to obtain an exponential bound on the approximation error of the trapezoidal
rule when applied to the tail probability inversion integral. Section 4 provides
one possible implementation of this theory. In Section 5, the proposed method-
ology is applied to some problems previously considered in the literature. The
paper closes with a discussion in Section 6.

2. Fourier Representation of Tail Probabilities

2.1. Preliminaries

Let X be a random variable with cumulative distribution function F (·). For
example, X might represent the convolution of several independent random vari-
ables; alternatively, X might be the sufficient statistic for a univariate parameter
of interest in a generalized linear model (e.g., see Davison (1988)). For t ∈ R,
suppose the MGF M(t) = E[etX ] exists for t ∈ E , where E is an open interval
containing t = 0. Let K(t) denote the associated cumulant generating function
(CGF). Finally, let the characteristic function of X be ξ(t) = E[eitX ], where
i =

√
−1 and ξ(t) = M(it).

Definitions of these quantities valid for complex-valued arguments will also
be required. Let z = x + iy ∈ C, where x, y ∈ R and C denotes the complex
plane. Let �(z) = x and �(z) = y respectively denote the real and imaginary
parts of z. Let Dd = {z ∈ C : z = x + iy, x ∈ R, |y| < d} denote an infinite
strip of width 2d containing the real axis R. Define the complex-valued function
ξ(z) = E[eizX ] = M(iz), and observe that the characteristic function is recovered
for �(z) = 0. Importantly, the existence of M(·) implies ξ(z) = M(−y + ix) is
analytic for z ∈ Dd (Lukacs (1970, Theorem 7.1.1)). If X has bounded support,
thenDd becomes the complex plane C (i.e., ξ(z) is entire) (Lukacs (1970, Theorem
7.2.3)). Otherwise, the strip of regularity takes the form −α < �(z) < β for
α, β > 0, where −iα and iβ are the singularities of ξ(z) closest to the origin
(Lukacs (1970, Theorem 7.1.1)).

2.2. The absolutely continuous case

In the case where X is absolutely continuous, there are numerous forms of
the so-called “inversion integral” for P{X > x}; see, for example, Abate and
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Whitt (1992). When the MGF exists, a general form providing a useful starting
point is the following:

P{X > x} = H(−c) +
eν(c)

2πi

∫ c+i∞

c−i∞
z−1 exp{ν(z) − ν(c)} dz, (1)

where c ∈ E , ν(z) = K(z) − xz for z ∈ C, and H(w) respectively equals 0, 1/2,
or 1 if w < 0, w = 0, or w > 0. Saddlepoint approximations for this contour
integral may be derived under suitable conditions. Typically, one selects c = ûx,
where K ′(ûx) = x; doing so,

P{X > x} = H(−ûx) +
eν(ûx)

2πi

∫ ûx+i∞

ûx−i∞
z−1 exp{ν(z) − ν(ûx)} dz. (2)

As ûx → 0 (i.e., as x→ E[X]), a pole occurs in the integrand on the right-hand
side of (2) at z = 0. In general, solutions for this problem have been devised
with a view towards generating valid asymptotic expansions; see, for example,
Daniels (1987) and Kolassa (1997). However, in view of Cauchy’s theorem (see
Bak and Newman (1996)) the choice of c is arbitrary and other selections are
possible. Helstrom (1983) proposed setting c = ūx, where

ν ′(ūx) − ū−1
x = 0. (3)

The solution to (3) maximizes the entire integrand in (2) (i.e., as opposed to just
the exponential term). Taking the path of integration through ūx is less desirable
from an asymptotic point of view because of the resulting difficulties associated
with applying Watson’s Lemma; for related discussion see Section 5.6 of Kolassa
(1997). However, it is an interesting and useful choice because (i) ūx ≈ ûx as x
moves towards the limits of the support of X, maintaining whatever benefits are
afforded by saddlepoint methods for “extreme” x; and (ii), the solution to (3)
remains bounded away from zero as x→ E[X], resolving the potential numerical
instability associated with using ûx for x near E[X].

The integral (1) with c = ūx will now be expressed in a less familiar form.
Specifically, parameterizing the path in C as ūx + it for t ∈ R, one may write

P{X > x} = H(−ūx) +
eν(ūx)

2π

∫ ∞

−∞
gx(t)e−ixtdt, (4)

where
gx(t) =

exp{K(ūx + it) −K(ūx)}
ūx + it

. (5)

The integral appearing in (4) takes the form of an (inverse) Fourier transform of
the complex-valued function gx(t). Consequently, any quadrature rule appropri-
ate for a Fourier transform can in principle be used to compute P{X > x}. The
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focus in this paper will be on the trapezoidal rule, which is explored in detail
in the remaining sections. Notably, gx(t)e−ixt generally has both a nonzero real
and imaginary part, the latter being an odd function of t. It follows that (4)
may be expressed in terms of �{gx(t)e−ixt} only. However, this fact will not be
exploited until later.

Remark A. In deriving (4), the path of integration is a straight line passing
through the saddlepoint ūx. An important alternative choice is to integrate
along a path of steepest descent. This is not done because it is typically im-
possible to characterize these paths explicitly. The “saddlepoint approximation”
is an asymptotic approximation to (2). In statistical applications, it is usually
derived by using a quadratic approximation to the path of steepest descent in a
neighborhood of the saddlepoint ûx. Generally, the region on which this approx-
imation is valid is not specified, and contributions to (2) of the integrand outside
of this region are thus considered as part of the error term. For tail probabilities
involving a mean of i.i.d. random variables, these errors vanish at a geometric
rate depending on the sample size. This is not necessarily true more generally,
and ignoring them can produce substantial inaccuracy.

3. Trapezoidal Rules for Tail Probabilities

3.1. The importance of smoothness

A trapezoidal rule is typically derived as the exact integral of a piecewise
linear approximation to a given integrand. Assuming only that the integrand
has two continuous derivatives, this derivation leads one to conclude that the
associated approximation error is O(h2), where h is the spacing between quadra-
ture nodes. Interesting alternative derivations of the trapezoidal rule exist that
better highlight the role of integrand smoothness and in particular substantially
refine the usual O(h2) error bound. Though several versions of such results are
available in the literature (e.g., see Butzer and Stens (1983)), of importance to
this paper is the fact that the trapezoidal rule may be derived as the exact inte-
gral of the Whittaker cardinal (or sinc) function expansion of the integrand; see,
for example, Stenger (1993). For analytic integrands (i.e., differentiable when
considered as a function of z ∈ C), contour integration may be used to show
that the approximation error vanishes exponentially fast. The following result
establishes the rate of convergence of the trapezoidal rule when applied to the
Fourier transform of an analytic function; the error bound refines that given in
Theorem 3.3.1 of Stenger (1993):

Theorem 1. For d > 0, let Dd = {z ∈ C : z = x+ iy, x ∈ R, |y| < d}, and define
B(Dd) to be the set of functions f satisfying
(i) For z ∈ Dd, f(z) is analytic,
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(ii)
∫ d
−d |f(t+ iy)|dy → 0 as |t| → ∞,

(iii)Nω(f,Dd) <∞, where

Nω(f,Dd) = lim
y→d−

∫ ∞

−∞

[
eωd|f(t− iy)| + e−ωd|f(t+ iy)|

]
dt. (6)

Suppose f ∈ B(Dd). Then, for 0 < h < 2πd
log 2 and |ω| < πh−1,

∣∣∣ ∫ ∞

−∞
f(t)eiωtdt − h

∞∑
k=−∞

f(kh)eiωkh
∣∣∣ ≤ 2Nω(f,Dd) exp {−2πd/h} .

This result says that the approximation error of the trapezoidal rule vanishes
exponentially fast as h→ 0 for functions f(·) that satisfy certain differentiability
and integrability conditions when considered as a function of z ∈ C. The con-
vergence rate is affected by transform ordinate (i.e., |ω|) and the width of the
region in which f is analytic (i.e., d). In the next section, this result is used to
bound the approximation error of the trapezoidal rule when applied to (4).

3.2. The approximation error for tail probabilities

Provided the required conditions are met, Theorem 1 applies directly to the
integral appearing in (4) upon making the identifications ω = −x and f(t) =
gx(t), where gx(t) is given in (5). The following result, proved in Appendix,
provides sufficient conditions under which Theorem 1 applies to the computation
of (4).

Theorem 2. Let X be an absolutely continuous random variable with CDF F (·)
and density F ′(·). Suppose M(t) = exp{K(t)} < ∞ for t ∈ E, where E is an
open interval containing t = 0. Let δ = min{|s| : s 	∈ E} > 0 and, for a given
x ∈ R, suppose min{F (x), 1 − F (x)} > 0. Finally, let β and r > 0 be such that
M(β) <∞ and

M(β + is)
M(β)

= O(s−r) (7)

as |s| → ∞. Then, (i)-(iii) of Theorem 1 are satisfied by gx(z) for z ∈ Dd� , where

1. for E = R, 0 < d� < |ūx|,
2. for E = (−∞, δ), 0 < d� < min{|δ − ūx|, |ūx|},

(8)
3. for E = (−δ,∞), 0 < d� < min{|δ + ūx|, |ūx|},
4. for E a bounded interval, 0 < d� < min{|δ + ūx|, |δ − ūx|, |ūx|}.

Moreover, with h = π/∆, ∆ > max{|x|, log 2/(2d�)}, and

Tx(h) =
h

2

∞∑
k=−∞

gx(kh)e−ixkh, (9)
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the following error bound holds:∣∣∣P{X > x} −
[
H(−ūx) +

eν(ūx)

π
Tx(h)

]∣∣∣ ≤ η(∆, x),

where η(∆, x) = π−1 Nx(gx,Dd�) exp {ν(ūx) − 2∆d�} and Nx(gx,Dd�) is defined
as in (6).

The error η(∆, x) decays exponentially as ∆ → ∞ (i.e., h → 0). This
observation is useful precisely because h = π/∆ is the main parameter under
user control. In particular, to bound η(∆, x) above by εa > 0, one must only
select ∆ satisfying η(∆, x) < εa. This requires specifying d� and computing
N (gx,Dd�), problems dealt with in the next section.

Remark B. The assumptions that X has a probability density and MGF require
no discussion. The key assumption is (7), which requires that the characteristic
function of the exponentially tilted density qβ(u) = eβuF ′(u)/M(β) decay to zero
at least algebraically. This relatively weak condition holds with r = 1 provided
F ′′(·) exists and is integrable; see also Lemma 6.2.1 of Bleistein and Handelsman
(1975). However, (7) holds under much weaker conditions; see, for example,
Lemma 12.3 of Olver (1974) or Theorem 1 of Wong ((1989), §IV.2). Finally,
it is noted that (7) can be guaranteed by considering instead the CDF of the
convolution X + Zσ, where Zσ ∼ N(0, σ2) and X⊥Zσ. In this case, Theorem 2
provides an accurate approximation to the CDF of X + Zσ; the accuracy of the
latter as an approximation to the CDF of X depends primarily on σ and, to a
lesser extent, F (·).

Remark C. Theorem 2 continues to hold with ūx replaced by any other constant
c, provided c is restricted to be interior to E . This observation has some useful
practical implications. Typically, ūx approaches the boundaries of E as x ap-
proaches the limits of the support of X; see, for example, Daniels ((1954), §6). In
this situation and when δ <∞ (i.e., E is either semi-infinite or finite), it can hap-
pen that d� → 0. To see this, suppose ūx > 0 (i.e., x > E[X]) and E = (−∞, δ)
where δ <∞. Then, min{|δ− ūx|, |ūx|} → 0 and hence d� → 0 as ūx → δ (i.e., as
x approaches the upper bound of the support of X). This is problematic because
the error bound η(∆, x) depends on d� through Nx(gx,Dd�) exp{−2d�∆}. For
example, if Nx(gx,Dd�) changes slowly as d� → 0, ∆ will typically need to be
increased (i.e., h decreased) in order to maintain η(∆, x) at a given level. Since
decreasing h tends to increase the number of quadrature nodes required, this can
adversely affect computation. Intuitively, bounding ūx away from the boundaries
of E should alleviate such difficulties. However, as the discussion in Section 4.1
will reveal, this is not quite sufficient; one must also be careful in fixing the value
of d�. One simple solution addressing these issues is given in Lemma 1.
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In addition to approximation error, one must also consider the error incurred
by truncating the infinite sum (9). This is important in probability computations
because the integrand gx(·) generally decays to zero at a rate governed by the
number of integrable derivatives of F on R (e.g., Feller (1971, Lemma 4, p.514)).
When the number of such derivatives is small, the resulting slow rate of decay
may require the computation of a large number of terms in (9) in order to attain
a desired level of accuracy. It is possible to place conservative bounds on the
truncation error under minimal assumptions; see, for example, Abate and Whitt
((1992), §6). These bounds typically yield inefficient quadrature schemes, and a
more adaptive approach often proves beneficial. In Section 4.4 a hybrid approach
is proposed that involves selecting an initial truncation point based on properties
of the integrand. The initial approximation is then improved using convergence
acceleration techniques.

4. Implementation

The next three sections describe one implementation of the theory of the
previous section. It is assumed that an approximation to P{X > x} to within
εtot > 0 is desired. Previous discussion implies εtot = εt+εa, where εa > 0 denotes
approximation error and εt > 0 denotes truncation error; here it is assumed that
εa = εt = εtot/2. The methodology below is guaranteed to control the level of
approximation error. However, guaranteeing control of the truncation error εt is
considerably more difficult, particularly if computational efficiency is of concern.
One method for dealing with this problem is discussed in Section 4.4. While
the proposed method is unable to provide an explicit guarantee, the results of
Section 5 show that it works extremely well.

As discussed in Remark C, a modified version of ūx may prove useful in
handling certain numerical problems. Section 4.1 details a simple but effective
proposal. Subsequent to this modification, the essential steps for implementing
the theory of Section 3.2 are then: (i) determine an approximation to Nx(gx,Dd�);
(ii) select an appropriate spacing h = π/∆; and (iii), accurately compute (9).
The first two relate to the control of approximation error; the last primarily
reflects control of the truncation error. Sections 4.2 and 4.3 below contain the
major supporting details for Steps 1 and 2; Section 4.4 contains the key details
required for understanding how Step 3 will be handled. The main computational
algorithm is then summarized in Section 4.5.

4.1. A modification of ūx

The discussion following Theorem 2 suggests that the magnitude of d� plays a
significant role in determining ∆, hence h and possibly the number of quadrature
nodes required for the accurate computation of (9). These difficulties may arise
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when the set E is bounded above or below (or both). Since E is dictated by the
problem under consideration, alleviating the aforementioned difficulties evidently
requires modification of ūx or, equivalently, the path of integration; Lemma 1
provides one possible choice.

Lemma 1. Let κ = I{ūx > 0}. Then Theorem 2 continues to hold with ūx
replaced by ¯̄ux and d� = |¯̄ux|/2, where

1. for E = R, ¯̄ux = ūx,

2. for E = (−∞, δ), ¯̄ux = κmin{ūx, δ2} + (1 − κ)ūx,

3. for E = (−δ,∞), ¯̄ux = (1 − κ)max{ūx,− δ
2} + κūx,

4. for E a bounded interval, ¯̄ux = (1 − κ)max{ūx,− δ
2} + κmin{ūx, δ2}.

Moreover, Nx(gx,Dd�) =
∫∞
−∞[e−xd� |gx(t− id�)| + exd

� |gx(t+ id�)|]dt.
The proof of Lemma 1 is identical to Theorem 2 and is omitted. No modi-

fication to the path of integration is required if E = R since ūx is bounded away
from zero. In the remaining cases, ¯̄ux is bounded away from the finite boundaries
of E , preventing the bounds on d� in (8) from converging to zero.

With ¯̄ux as defined, the restrictions on d� detailed in (8) can be further
reduced to the single constraint 0 < d� < |¯̄ux|. The reason Lemma 1 sets d�

to be one half the distance to |¯̄ux| is to avoid further numerical problems when
computing Nx(gx,Dd�). In particular, Nx(gx,Dd�) can still grow without bound
as d� → |¯̄ux|, resulting in problems similar to those discussed in Remark C. The
remainder of this paper employs ¯̄ux in place of ūx and d� = ¯̄ux/2.

4.2. Approximating Nx(gx,Dd�)

In order to select ∆ to bound the approximation error of the trapezoidal
rule, the constant Nx(gx,Dd�) of Lemma 1 must be computed. However, since
Nx(gx,Dd�) appears as part of an upper bound, it need not be computed to a
high level of precision. Below, an approximation to Nx(gx,Dd�) is obtained that
significantly facilitates its computation.

Define for suitable α the function

a(t, α) = � [K(α+ it) −K(α)] . (10)

Since a(t, α) = a(−t, α) for t ∈ R and a(0, α) = 0, straightforward algebra shows∫ ∞

−∞
|gx(t± id�)|dt = 2

M(¯̄ux ∓ d�)
M(¯̄ux)

∫ ∞

0

ea(t,¯̄ux∓d�)√
(¯̄ux ∓ d�)2 + t2

dt. (11)

These integrals exist provided ea(t,α) = O(t−ψ) for some ψ > 0 as t → ∞. This
condition is equivalent to requiring that the characteristic function of X decay
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to zero at least algebraically, and is thus satisfied provided the conditions of
Theorem 2 hold.

Now, define

I1(α) =
∫ U

−Lα

ea(e
s,α)+s

√
α2 + e2s

ds and I2(α) =
∫ 1/U

0

ea(e
1/s ,α)−1/s

s2
√
α2 + e2/s

ds,

where U > 0 is arbitrary and

Lα = max

[
0,

1
2

log

(
1 − tanh2(γ)
α2 tanh2(γ)

)]
(12)

for 0 < γ < 1. The following approximation result is proved in the Appendix.

Proposition 1. Let 0 < γ < 1, I(α) = 2 [M(α)/M(¯̄ux)] × [I1(α) + I2(α)], and

N̂x = e−xd
�
I(¯̄ux + d�) + exd

�
I(¯̄ux − d�). (13)

Then |N̂x −N (gx,Dd�)| = O(2γ).

The integrals I1(α) and I2(α) involve finite limits of integration. More im-
portantly, they involve integrands that decay exponentially, and thus (13) may be
easily approximated using crude methods of numerical quadrature. In the exam-
ples of Section 5, Lα is computed as in (12) with γ = 0.01. Then, with U = 10, the
integrals I1(¯̄ux+d�) and I1(¯̄ux−d�) are each computed with a simple Clenshaw-
Curtis-type quadrature rule; see, for example, Krommer and Ueberhuber ((1998),
§5.2.6) or Press et al. (1989, §5.7). The selection U = 10 is made both to ensure
that I1(¯̄ux±d�) is the dominant contribution to I(α) and to fix the computation
of I2(¯̄ux ± d�) over a relatively small interval. The integrals I2(¯̄ux + d�) and
I2(¯̄ux− d�) are each computed with a three-point Simpson rule, requiring a total
of four additional function evaluations since lims→0 s

−2ea(e
1/s,¯̄ux±d�) = 0.

4.3. Bounding the appropriate choice of h

Define ∆min = max{log 2/(2d�), |x|}. Then, proceeding as in Theorem 2, ∆
should be taken as the larger of ∆min and the solution to Nx(gx,Dd�)exp{−2∆d�}
< πεae

−ν(¯̄ux). Substituting (13) in place of Nx(gx,Dd�), one finds that selecting

∆ > max

(
∆min,

1
2d�

log

(
eν(¯̄ux)N̂x

πεa

))
(14)

ensures that the approximation error is either close to or bounded above by εa.
Since h = π/∆, selecting ∆ in this way places an upper bound on h. A specific
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choice of ∆, hence h, satisfying the required inequalities is proposed in Section
4.5.1.

4.4. Handling truncation error

The main task is to compute (9) to within ±εt of its actual value. For an
integer N ≥ 2, straightforward calculations yield

h

2

∞∑
k=−∞

gx(kh)e−ixkh = h
[
gx(0) +

N−1∑
k=1

Rx(kh)
]

+ EN (h), (15)

where EN (h) = h
∑∞
k=N Rx(kh) and Rx(kh) is the real part of gx(kh)e−ixkh.

Computing (15) to a guaranteed level of accuracy requires an upper bound on
|EN (h)|. Some limited insight here can be gained by rewriting Rx(t) in a different
form. Specifically let ax(t) = a(t, ¯̄ux), the latter being defined as in (10), and set
bx(t) = �(K(¯̄ux + it)) to be its corresponding imaginary part. Then, it is easy
to show that

Rx(t) =
eax(t)

¯̄u2
x + t2

[
¯̄ux cos(bx(t) − xt) + t sin(bx(t) − xt)

]
(16)

and, consequently, that |Rx(t)| ≤ eax(t)(¯̄u2
x + t2)−1/2. This bound is typically

monotone decreasing for t > 0, in which case

|EN (h)| ≤
∫ ∞

(N−1)h

eax(t)√
¯̄u2
x + t2

dt (17)

(e.g., Abate and Whitt (1992, p.36)). The error bound (17) is usually very conser-
vative. The conservatism occurs because the cancellation arising from oscillations
in Rx(t) about zero, captured by the bracketed term on the right hand side of
(16), is ignored. Abate and Whitt (1992, 1995) show that conservative bounds
like (17) can be avoided by instead exploiting oscillatory behavior in the terms
of the series (15). The approach to be taken here will involve fixing N to ensure
that the terms in the tail series EN (h), properly grouped, exhibit approximately
alternating behavior. The series EN (h) is then summed using a convergence ac-
celeration method. Importantly, the substantial computational gains that can be
achieved by doing so come at the expense of guaranteed accuracy.

The effective summation of (15) requires information on the pattern of oscil-
lation in Rx(t). Toward this end, first write bx(t) = arg (ξR(t) + iξI(t)) , where
ξR(t) and ξI(t) respectively denote the real and imaginary parts ofM(¯̄ux+it) and
argz denotes the unique angle in (−π, π] such that z = |z|eiarg(z). For z = x+ iy,
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arg(z) = sign(y) {H(−x)π + [2H(x) − 1] arctan (|y/x|)} , where H(w) is defined
as in (1). Consequently,

bx(t) = sign(ξI(t))
{
H(−ξR(t))π + [2H(ξR(t)) − 1] arctan

(∣∣∣∣ ξI(t)ξR(t)

∣∣∣∣)} . (18)

The following result characterizes the behavior of bx(t) as t → ∞ assuming
certain conditions hold, and is important for developing insight into the behavior
of Rx(t).

Proposition 2. Let the even and odd parts of �T (s) = e¯̄uxsF ′(s) be �e(s) =
(1/2)(�T (s) +�T (−s)) and �o(s) = (1/2)(�T (s)−�T (−s)). As s ↓ 0, suppose

�e(s) ∼
1
2

∞∑
j=0

γe,j s
j+αe−1 and �o(s) ∼

1
2

∞∑
j=0

γo,j s
j+αo−1,

where αk > 0, k = e, o. Then, under further smoothness and integrability condi-
tions on �k(·) and its derivatives, bx(t) → θ as t → ∞, where θ ∈ (−π, π] is a
constant.

The appearance of �k(·), k = e, o in Proposition 2 stems from the depen-
dence of ξR(t) on �e(·) and ξI(t) on �o(·). Implied in the expansions for �k(s)
as s ↓ 0 is the assumption of either boundedness or unbounded integrability. For
example, �e(s) is bounded near s = 0 if αe = 1; �o(s) is unbounded but inte-
grable near s = 0 if αo = 1/2. Under these and other conditions on �e(·) and
�o(·), ξR(t) and ξI(t) admit asymptotic expansions as t → ∞ that are useful in
studying the asymptotic behavior of bx(t).

Precise regularity conditions under which the stated expansions hold may
be found in Wong (1989, §4.2)). Presently, the following loose interpretation is
sufficient: if ξI(t) and ξR(t) are eventually of constant sign and their ratio tends
to a unique (possibly infinite) limit as t→ ∞, then bx(t) tends to a unique limit
θ ∈ (−π, π]. Subsequent discussion regarding the oscillation patterns in Rx(t)
will be restricted to this case, and covers a large and useful class of interesting
distributions. For example, if �T (s) has nonnegative support (i.e., the random
variable X > 0 with probability 1), then�e(s) = �o(s) = (1/2)�T (s). Existence
of the MGF of X implies exponential decay of F (x) and hence F ′(x) as x→ ∞.
The existence of �T (s) ∼ ∑∞

j=0 γj s
j+α−1 for some α > 0 as s ↓ 0 is then

sufficient because the remaining regularity conditions can be shown to hold (cf.
Wong (1989, §IV.2, Theorem 1)).

Assuming bx(t) → θ as t → ∞, (16) implies that the cases x = 0 and x 	= 0
should be considered separately. Specifically, with x = 0, the oscillation in Rx(t)
dies out as t→ ∞; efficient computation of (15) then relies primarily on the decay
rate of t−1eax(t), and any reasonable quadrature rule can be employed. However,
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if x 	= 0, the oscillation in Rx(t) does not die out as t → ∞. Computation of
(15) then becomes more difficult, and it is helpful to obtain further insight into
the zero patterns of Rx(t). For t > 0 and integers k, the zeros of (16) arise as
solutions to

bx(t) − xt+ kπ = arctan
(
−

¯̄ux
t

)
. (19)

Suppose bx(t)−xt ∼ θ−xt as t→ ∞, where θ ∈ (−π, π]. Because arctan(−¯̄ux t−1)
∼ −¯̄uxt−1 as t → ∞, the solutions of (19) are approximately given by the solu-
tions to θ−xt+kπ+¯̄uxt−1 = 0 or, equivalently, by t̂k = θ̄k+(2|x|)−1

√
θ̄2
k + 4x¯̄ux

for θ̄k = θ + kπ and integers k such that t̂k is real and positive. It is expected
that t̂k will provide an accurate approximation for t such that bx(t) is roughly
constant and t > 2|¯̄ux|; the latter condition arises because | arctan(u)−u| ≤ 0.037
for |u| < 1/2. Moreover, as k → ∞,

t̂k+1 − t̂k =
π

|x| − sign(x)
¯̄ux
πk2

+O(k−3), (20)

showing that the spacing between successive zeros settles down quickly.
This last observation is useful precisely because it implies EN (h), with its

terms grouped properly, behaves like an alternating series for N sufficiently large.
Two “convergence acceleration” methods known to be effective for summing al-
ternating series are Euler summation and the epsilon algorithm (e.g., see Brezin-
ski and Redivo Zaglia (1991)); the latter is used in Section 4.5.2 below.

4.5. The main algorithm

The previous sections contain key details underlying the computational al-
gorithm for

P̂{X > x} = H(−¯̄ux) +
eν(¯̄ux)

π

[
hgx(0) + h

N−1∑
k=1

Rx(kh) +EN (h)
]
, (21)

where Rx(·) and EN (·) are defined in Section 4.4. The main algorithm can now
presented. Section 4.5.1 describes how N and h are determined; Section 4.5.2
describes how the epsilon algorithm is used in computing the “tail” of the infinite
series (21), i.e., π−1eν(¯̄ux)EN (h).

4.5.1. Selection of N and h

As discussed in Section 4.4, the initial truncation point N is determined
such that the terms in the series EN (h), when properly grouped, begin to exhibit
regular alternating behavior. This is evidently connected to the behavior of Rx(t)
for t ≥ Nh; consequently, the selection of N and h are linked as is described
below:
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1. Determine z0 > 0 such that Rx(z0) = 0 and the zeros of Rx(t) for t ≥ z0 are
approximately equally spaced. Specifically, the zeros tk of Rx(t) for t > 2|¯̄ux|
are successively computed until tK+1/tK − 1 < 0.1 for some K ≥ 1, at which
point z0 = tK .

2. As shown in (20), the predicted asymptotic spacing between successive zeros is
ϕ0 = π/|x|. If |tK+1 − tK −ϕ0| < 0.1ϕ0, the spacing between successive zeros
is set to ϕ = ϕ0. However, if tK+1/tK −1 < 0.1 and |tK+1− tK −ϕ0| ≥ 0.1ϕ0,
this indicates (20) may be incorrect. In this case, the spacing ϕ is empirically
determined, being set to the distance between z0 and the next largest root of
Rx(t).

3. Compute e0 = z0 + (ϕ/2), the first (approximate) extrema subsequent to z0.
4. Set N = �e0∆0/π� + 1, ∆N = Nπ/e0, and h = π/∆N , where

∆0 = max
(
∆min,

1
2d�

log
(eν(¯̄ux)N̂x

πεa

))
.

Steps 1 and 2 can be computationally demanding. They can also be avoided if
the user specifies z0 and ϕ, computations typically requiring asymptotic analysis.
Step 4 ensures Nh = e0 and that ∆N satisfies (14). If the zeros of Rx(t) are
approximately equally spaced for t > e0, then the terms in EN (h) can be grouped
to produce an approximately alternating series. The rationale for selecting N

such that Nh coincides with an extrema (i.e., e0) instead of a zero (i.e., z0) is
based on recommendations made in Sauter (2000). With these choices, an initial
approximation P� to (21) is:

P� = H(−¯̄ux) +
eν(¯̄ux)

∆N

[ 1
¯̄ux

+
N−1∑
k=1

Rx
( πk
∆N

)]
. (22)

4.5.2. Computing P̂{X > x}
The computation of (21) requires both P� and EN (π/∆N ); the former is

easily computed via (22), so the latter is now considered. Let α denote the
nearest integer to ϕ/h. Then EN (π/∆N ) = [π/∆N ]

∑∞
j=0 βj , with

βj =
N+(j+1)α−1∑
k=N+jα

Rx
( kπ
∆N

)
. (23)

Because Nh = e0 is a point of extrema and αh approximates the period of Rx(t),
each βj is essentially a trapezoidal rule approximation to the integral of Rx(t)
between successive extrema. Provided |gx(t)e−ixt| decays monotonically and the
zeros of Rx(t) are approximately equi-spaced for t > Nh, the β′js should be small
in magnitude and alternate in sign.
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Now, for L ≥ 0, define the sequence PL = P� + (eν(¯̄ux)/∆N )
∑L
j=0 βj . Notice

that P∞ equals (21) for a specific choice of h and N . Moreover, PL is just a linear
transformation of

∑L
j=0 βj and corresponds to a partial sum of the desired infinite

series. Hence the sequence of partial sums {PL, L ≥ 0} should oscillate about the
desired limit P∞. If so, the rate at which PL converges to P∞ can potentially be
accelerated. The epsilon algorithm has been found to be effective when applied
to sequences whose terms oscillate about a finite limit; see, for example, Smith
and Ford (1982) and more recently Sauter (2000). Readers unfamiliar with this
algorithm may wish to consult Wimp (1981), Brezinski and Redivo Zaglia (1991),
or Sauter (2000).

Let εL denote the result of applying the epsilon algorithm to a given sequence
{P0 . . . PL}, where L ≥ 0. The exclusion of P� as a member of this sequence
is deliberate; the intent here is to accelerate the computation of the tail series
EN (π/∆N ), or equivalently, P∞−P�. The computations for (21) are then finished
adaptively as described below.
1. Set L = 0, compute ε0 = P0 and initialize errorold to be a large number.
2. Increment L by 2, compute PL−1 and PL.
3. Compute εL and errornew = |εL − εL−2|/εL.
4. If (1/3)errorold + (2/3)errornew < εt/1000, take εL as the approximation and

stop iteration; otherwise, set errorold = errornew and return to step 2.

The reason for increasing the sequence length by two each time is connected
to the difference in behavior of the epsilon algorithm when applied to sequences
of even versus odd length; see, for example, Wimp (1981, p.141)) or Sauter
(2000). The stopping criterion for checking convergence of the computed answer
uses relative error and is set significantly smaller than the requested accuracy
εt = (1/2)εtot. This is to help ensure that the final approximation matches
the desired answer to (at least) the specified level of accuracy. The use of an
unequally weighted average of the relative error across two successive iterations
is used to guard against being fooled by locally small changes in the computed
answer. The most recent iteration receives a larger weight since it is based on
more quadrature points.

5. Examples

The examples below represent a subset of examples chosen to illustrate the
performance of the proposed method across a reasonably diverse spectrum of
problems; see Strawderman (2002) for several other examples. They were also
chosen because it was possible to either compute or at least accurately approx-
imate the tail probabilities using other methods, hence providing a basis for
comparison. The computations were carried out in Maple 6 with floating point
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precision set at 20 digits (i.e., Digits:=20; Waterloo Maple Inc., 2000). A copy of
the Maple code used for these examples is available upon request.

All computations are carried out using εtot = 10−8. In addition to the CGF
K(t) = logM(t), the only user input required is the ordinate x and the set E
for which M(t), t ∈ E is finite. The computation of ūx requires K ′(·); numerical
differentiation is used here. In the tables, the absolute error of the approximations
are reported. Also summarized are the values of h, d�, N̂x, and the number of
points at which the CGF K(·) has been evaluated. This reported number of
function evaluations reflects the computations involved in obtaining N̂x; and the
quadrature nodes computed in Sections 4.5.1 and 4.5.2. However, it does not
reflect those computations needed for determining ūx, z0 and ϕ (see Sections
2.2 and 4.5.1). These computations rely on a built-in root finding subroutine,
and the author was unable to obtain this information from Maple. However,
as noted earlier, the numerical computation of z0 and ψ may also be viewed as
optional since it absolves the user from doing the requisite asymptotic analysis.
Consequently the reported number of function evaluations may be viewed as a
measure of the efficiency of εL, given z0, ψ and ūx.

For comparison, also reported are the absolute errors of the “straight trape-
zoidal rule” (i.e., unaccelerated) approximation PL and

Euler(x) = P� +
eν(¯̄ux)

∆N2L+1

L+1∑
k=0

(
L+ 1
k

)[ k∑
j=0

βj
]

≡ P� +
eν(¯̄ux)

∆N

L+1∑
j=0

wjβj ,

where wj = P{W ≥ j} for W ∼ Binomial(L + 1, 1/2). The approximation
Euler(x) is obtained by adding the (truncated) Euler sum of the series

∑∞
j=0 βj

to the initial approximation P�. Euler summation is expected to be effective
since βj and βj+1 should have opposite signs and be decreasing in magnitude.
Abate and Whitt (1992) provide a useful discussion on the application of Euler
summation in similar problems. In the tables, the approximations εL and PL
are respectively referred to as Epsilon(x) and Straight(x). Importantly, each of
these approximations is ultimately based on the same set of quadrature nodes,
providing a balanced assessment of both accuracy and the effect of convergence
acceleration. Finally, since one motivation of this paper is to provide a trustwor-
thy alternative to saddlepoint methods, the absolute error of the Lugannani-Rice
approximation

LR(x) = 1 − Φ(ω̂x) + φ(ω̂x)
[
ẑ−1
x − ω̂−1

x

]
to P{X > x} is also provided. Here, ẑx = sign(ûx)

√
K ′′(ûx), ω̂x = sign(ûx)√

2[xûx −K(ûx)], and K ′(ûx) = x; see, for example, Kolassa (1997, Chap. 5). To
a large extent, the tabulated results speak for themselves; comment is therefore
reserved until Section 5.3, where some general observations are made.
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5.1. Mixtures of independent non-central χ2 random variables

Let χ2
p(ω2) denote a chi-squared random variable with p degrees of freedom

and noncentrality parameter ω2. The problems considered in this section deal
with the mixture X =

∑n
j=1 λjYj, where Yj ∼ χ2

pj
(ω2
j ), Yj⊥Yk for all j 	= k,

pj > 0 are integers, ω2
j ≥ 0, and λj ∈ R is nonzero. The MGF of X takes the form

MX(t) =
∏n
j=1G(λjt; pj, ω2

j ) whereG(u; ν, η2) = (1−2u)−ν/2 exp{η2u(1−2u)−1};
see, for example, Johnson, Kotz and Balakrishnan (1995, Chap. 29). Importantly,
the set E on whichMX(t) <∞ is governed by the sign and magnitude of λ1 . . . λn.
Davies (1980) notes that any quadratic form (or ratio thereof) in independent
normal random variables can be reduced to the formX+σ0Z, where Z ∼ N(0, 1),
Z⊥X, and σ0 ≥ 0. Marsh (1998) obtains saddlepoint approximations for the
ratio of quadratic forms in normal random variables, and demonstrates that the
error of approximation decreases as O(n−1). The numerical methods of this paper
apply directly to this significant class of problems in statistics. Various methods
of numerical inversion of the characteristic function for this problem have been
considered previously; see, for example, Imhof (1961), Davies (1973, 1980), Rice
(1980) and Helstrom (1983).

5.1.1. An unweighted mixture

Consider X = Y1 + Y2, where Y1 ∼ χ2
2(0.1) and Y2 ∼ χ2

5(0.9). In this case,
X ∼ χ2

7(1), and

P{X > x} =
e−1/2

27/2Γ(7/2)

∫ ∞

x

(
s7/2 − 1

)
e−s/20F1

(
7
2
,
7s
4

)
ds,

with 0F1 denoting a generalized hypergeometric series. The mean and standard
deviation of X are respectively 8 and 4.14. For the purposes of determining
the approximation error of the various quadrature rules, the “exact” CDF is
computed using Maple’s built-in numerical integration routine to a requested
accuracy of 20 digits. The results are reported in Table 1.

Table 1. Unweighted mixture of 2 noncentral chi-square random variables.

# of Absolute Error
x h d� N̂x points Straight(x) Epsilon(x) Euler(x) LR(x)

0.1 16.785 22.334 4.92 56 1.9 × 10−11 1.6 × 10−11 9.8 × 10−12 1.7 × 10−8

1.0 0.839 2.087 5.02 101 1.5 × 10−8 1.7 × 10−14 2.5 × 10−9 1.3 × 10−5

3.0 0.201 0.595 5.04 157 1.2 × 10−7 1.6 × 10−16 8.9 × 10−10 5.6 × 10−5

5.0 0.097 0.305 5.38 161 1.1 × 10−6 5.3 × 10−14 1.3 × 10−7 5.8 × 10−5

7.0 0.058 0.187 5.96 200 5.1 × 10−7 1.9 × 10−15 5.0 × 10−8 2.1 × 10−4

9.0 0.030 0.097 4.33 229 9.0 × 10−8 2.2 × 10−15 1.2 × 10−8 2.9 × 10−4

11.0 0.035 0.109 4.16 168 1.4 × 10−6 4.1 × 10−15 8.6 × 10−8 2.8 × 10−4
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5.1.2. A weighted mixture supported on R

Davies (1980, Table 3) considers computing the CDF for X = 7χ2
6(6) +

3χ2
2(2)−7χ2

1(6)−3χ2
1(2). The support of X is R; the mean and standard deviation

are respectively 38 and 56.88. The results of applying the present method to this
problem may be found in Table 2. In this case a tractable formula for the CDF
of X is not available. “Exact” answers are obtained using algorithm AS155
of Davies (1980), which is specifically designed for this class of problems. The
original Fortran 77 implementation of AS155 was modified for use with a
high precision Fortran 95 compiler; computations were then carried out to a
requested accuracy of 10−18. A minimum of 8102 quadrature points was required
for the ordinates of Table 2.

Table 2. Weighted mixture of 4 noncentral chi-square random variables.

# of Absolute Error
x h d� N̂x points Straight(x) Epsilon(x) Euler(x) LR(x)

-80.0 0.006 0.016 5.87 156 7.1 × 10−12 4.7 × 10−12 8.1 × 10−11 2.8 × 10−4

-40.0 0.005 0.014 4.25 275 3.5 × 10−12 3.6 × 10−16 1.8 × 10−11 1.1 × 10−3

-10.0 0.004 0.012 4.02 706 3.4 × 10−14 6.1 × 10−16 3.4 × 10−11 1.8 × 10−3

10.0 0.003 0.010 4.17 875 9.4 × 10−14 2.2 × 10−16 1.1 × 10−10 9.9 × 10−4

40.0 0.003 0.008 4.58 432 4.3 × 10−12 2.2 × 10−16 1.1 × 10−10 1.8 × 10−3

80.0 0.004 0.011 4.04 211 4.2 × 10−11 2.0 × 10−16 8.7 × 10−10 2.1 × 10−3

120.0 0.004 0.013 4.29 142 2.8 × 10−11 4.4 × 10−16 4.3 × 10−10 7.2 × 10−4

5.2. Time dependent mean of regulated Brownian motion

For t ≥ 0, define B∗(t) = B(t)− t−mins∈[0,t]{B(s)− s}, where B(t) denotes
standard Brownian motion. Then, B∗(t) is regulated Brownian motion with drift
−1 and diffusion coefficient 1, and is useful for modeling stochastic flow systems
arising in queuing theory. Evidently B∗(t) ≥ 0; moreover, for t > 0 (see Abate
and Whitt (1987)),

E [B∗(t)|B∗(0) = 0] =
1
2
− (t+ 1) [1 − Φ(t)] +

√
t φ(t), (24)

where Φ(·) and φ(·) denote, respectively, the standard normal CDF and density
functions. The MGF corresponding to (24) is M(t) = 2(1 + (1 − 2t)1/2)−1;
the mean and standard deviation are respectively 1/2 and 0.87. The CDF (24)
corresponds to that of a mixture of two exponential random variables (Abate and
Whitt (1987, Theorem 1.7)). While the density function F ′(t) = O(t−1/2) as t ↓
0, Theorem 2 still applies since the decay condition (7) is met with r = 1/2. Abate
and Whitt (1992) use this example to demonstrate the performance of transform
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inversion methods in a case where the terms in (15) decay slowly to zero. Their
results can be summarized as follows: a combination of summation with Euler
acceleration is far more effective than attempting to sum (15) directly. The
results of applying the proposed method to this problem are summarized in Table
3. Notably, F ′(t) ∼

√
2/(πt3) exp(−t/2) for large t (Abate and Whitt (1987, Cor.

1.3.5)), indicating that F behaves like an Inverse Gaussian distribution in the
upper tail. Consequently, it is reasonable to expect that LR(x) may perform
well, particularly for extreme x (cf. Daniels (1987, Table 1(b)), Jensen (1995, Ex.
2.4.7)).

Table 3. Time dependent mean of regulated Brownian motion.

# of Absolute Error
x h d� N̂x points Straight(x) Epsilon(x) Euler(x) LR(x)

0.1 2.095 7.037 13.57 345 3.3 × 10−4 1.5 × 10−17 6.8 × 10−8 3.4 × 10−2

0.5 0.038 0.125 16.05 3313 1.3 × 10−4 1.1 × 10−16 4.3 × 10−8 —
1.0 0.038 0.125 16.23 1591 1.1 × 10−4 6.1 × 10−16 2.0 × 10−7 2.7 × 10−2

2.0 0.038 0.125 16.80 888 1.4 × 10−4 3.8 × 10−17 2.6 × 10−8 1.3 × 10−2

4.0 0.039 0.125 18.73 454 4.6 × 10−4 4.0 × 10−17 2.2 × 10−8 3.5 × 10−3

6.0 0.039 0.125 21.85 309 3.9 × 10−4 3.5 × 10−17 1.7 × 10−8 9.7 × 10−4

8.0 0.040 0.125 26.33 275 1.9 × 10−4 8.6 × 10−18 2.8 × 10−9 2.8 × 10−4

10.0 0.041 0.125 32.47 227 1.0 × 10−4 2.2 × 10−17 2.3 × 10−9 8.5 × 10−5

5.3. Summary of results

In general, the tables here and in Strawderman (2002) show that Epsilon(x)
significantly outperforms both Straight(x) and Euler(x) in terms of absolute ac-
curacy. It is also evident that the epsilon algorithm substantially improves upon
Euler summation as a method for accelerating the computation of the infinite se-
ries P∞. The greatest benefit of using the epsilon algorithm occurs in Table 3. In
this case Rx(t) decays slowly, and Straight(x) provides a comparatively poor ap-
proximation; in contrast, Euler(x) roughly doubles and Epsilon(x) roughly triples
the number of correct significant digits. Tables 1 and 2 also display impressive
gains. The following general trends are present:
• h, d� and N̂x can vary significantly with the ordinate x;
• the number of quadrature nodes required is typically greatest for ordinates x

close to E[X], and decays in the tails;
• Epsilon(x) significantly exceeds the requested accuracy of εtot = 10−8 in all

cases;
• LR(x) provides an erratic and comparatively inaccurate approximation to
P{X > x}, though it often improves for extreme values of x.
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6. Discussion

The trapezoidal rule is well known and has been proposed as a way to inte-
grate the tail probability inversion integral in a number of previous papers. This
paper is the first to apply the results of Stenger (1993) to this problem. Theorem
2 shows that the conditions required on the distribution of the random vari-
able X are fairly weak, the most restrictive being existence of the MGF. From
the perspective of the literature on sinc quadrature rules (see e.g., Lund and
Bowers (1992) or Stenger (1993)), a novel feature of this work is the attention
paid to computing Nx(gx,Dd�). The proposal of Section 4.2 for approximat-
ing Nx(gx,Dd�) is new and facilitates choosing h with confidence. As stated,
Proposition 1 is restricted to the specific problem at hand. However, the essen-
tial assumptions on the integrand(s) are boundedness at the origin and algebraic
decay, and thus the basic ideas apply more generally.

The examples here and in Strawderman (2002) demonstrate that proposed
methodology works very well. The results support the conclusions of Abate and
Whitt (1992) that numerical transform inversion can be done accurately and
(relatively) easily. The current algorithm is an improvement over existing tech-
nology for univariate transform inversion in the sense that the same algorithm
may be applied without regard to the support of the distribution of X. However,
other choices exist, especially for the inversion of one-sided Laplace transforms;
see Abate and Whitt (1992, §15) for a review. Most of these algorithms are also
derived from the trapezoidal rule, but are otherwise distinct from the proposed
method. The algorithm EULER of Abate and Whitt (1992, 1995) is one elegant
example. EULER is surprisingly easy to code and could have been used in all
cases except Section 5.1.2. However, the simplicity of EULER is due to its igno-
rance of certain considerations addressed in detail here. In particular, EULER
requires specifying two parameters n and m whose roles are analogous to those
of N and L; the former determines at what point in the series acceleration is be-
gun, the latter determines how many terms are used in actually approximating
the “tail.” Abate and Whitt (1995) remark that “we typically use m = 11 and
n = 15, increasing n as necessary.” The selection m = 11 assumes that the tail
series being summed is alternating. Because EULER employs h = π/(2x), know-
ing whether or not this is the case is equivalent to the problem of determining
n such that the sign pattern of the integrand has indeed become “regular”; see
Section 4.5.1. The EULER algorithm expends no effort to determine whether
this is indeed the case.

The proposed methodology uses convergence acceleration to achieve the high
levels of accuracy observed in the tables. Though the utility and effectiveness of
convergence acceleration are apparent, these gains come at the expense of a rather
complicated computational methodology. In practice, tail probabilities are rarely
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needed to the level of accuracy reported in the tables. Indeed, LR(x) arguably
provides an adequate answer in most cases, and is relatively easy to compute.
However, Table 3 demonstrates that this is not always the case, despite the fact
that the theory suggests it may have potential. This is perhaps symptomatic of
saddlepoint methods: trustworthy guidelines for their successful application are
not available, in part because sharp error bounds are either difficult or impossible
to obtain. To a significant degree, then existing evidence of their accuracy in
statistical applications is arguably anecdotal. In contrast, the theory of this
paper provides a computable bound on the approximation error associated with
(9). These results ensure that P{X > x} can be computed to as many significant
digits as desired simply by summing enough terms. For example, one may simply
use Straight(x); that is, compute h according to (14) and then simply increase N
in (21) until the answer stabilizes at the desired number of significant digits. This
simple but somewhat inefficient method of approximation creates a rather happy
medium: when more moderate levels of accuracy are desired (e.g., 10−4), the
straight trapezoidal rule provides a simple computational method whose error is
under complete user control.

The proposed methodology only requires specifying the cumulant (or mo-
ment) generating function of a univariate random variable. This covers a large
number of interesting situations, including the computation of conditional distri-
bution functions. For example, the algorithm described here may in principle be
applied in problems for which Skovgaard’s conditional tail probability approxi-
mation can be used (Skovgaard (1987)). However, in order to do so, the corre-
sponding conditional cumulative generating function is needed, and this presents
a significant drawback (cf. Kolassa (1997, §7.2)). Put another way, the com-
putations required parallel those needed for a “single”, rather than “double”,
saddlepoint approximation to the desired conditional probability. Successfully
circumventing this problem might be accomplished by extending Theorem 1 to
multivariate transforms; for related work in this direction, see Choudhury, Lu-
cantoni, and Whitt (1994).

This paper has focused on the case in which X is absolutely continuous.
Computations for lattice-valued random variables are significantly easier because
the inversion integral (1) can be expressed over a finite range (cf. Kolassa (1997,
§2.7)). In this case the main challenge lies in obtaining a useful bound on the
approximation error; the difficulties dealt with in Section 4.4 do not arise. A
useful approach for handling lattice-valued random variables is described in Abate
and Whitt (1992); another can be derived using Stenger’s results. Computations
presenting greater challenges for “Fourier series” methods include cases in which
(i) X has a density but not a MGF (e.g., Cauchy random variables); (ii) X
is discrete but not lattice-valued; and (iii), the CDF of X is continuous but
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not everywhere differentiable. The difficulties stem from slow decay rates of
the Fourier transform and (at points of discontinuity) the Gibbs Phenomenon.
Smoothing is likely to be required to successfully cope with such problems.
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Appendix. Proofs

Proof of Theorem 2.
For h = π/∆, the conditions on ∆ become equivalent to the stated conditions

on h in Theorem 1. Also, from (4), observe that∣∣∣P{X > x} −
[
H(−ūx)+

eν(ūx)

π
Tx(h)

]∣∣∣
=
eν(ūx)

2π

∣∣∣ ∫ ∞

−∞
gx(t)e−ixtdt−

∞∑
k=−∞

gx(kh)e−ixkh
∣∣∣.

Hence, the result follows directly from Theorem 1 provided (i)-(iii) are satisfied
under the stated conditions.

Let z = s + iy ∈ C, and let Da ⊂ C denote the infinite strip of width a > 0
containing the real axis. We must first establish (i)-(iii) of Theorem 1 for f = gx.
To show (i), recall first that gx(z) = exp{K(ūx − y + is) − K(ūx)}/(ūx − y +
is). Using known results on the analyticity of the composition of two analytic
functions and properties of exp{K(iz)} (e.g., Lukacs (1970, Chap. 7)), it follows
that gx(z) is analytic in Dd� provided d� is strictly less than the upper bounds
specified in (8).

Let d� satisfy the stated conditions. Then, in order to prove (ii), it must be
shown that∫ d�

−d�
|gx(s+ iy)|dy =

∫ d�

−d�

|exp{K(ūx − y + is) −K(ūx)}|√
(ūx − y)2 + s2

dy (25)

decays to zero as |s| → ∞. Since |y| ≤ d�, it follows that |K(ūx − y)| < ∞;
moreover, |exp{K(ūx − y + is) −K(ūx − y)}| ≤ 1 for all s ∈ R. Consequently,

|exp{K(ūx − y + is) −K(ūx)}| ≤ exp{K(ūx − y) −K(ūx)} <∞,

and the right-hand side of (25) goes to zero as |s| → ∞.
To prove (iii), let y → (d�)−. Then, with M(u) = exp{K(u)} and z = s±id�,

|gx(z)| =
M(ūx ∓ d�)
M(ūx)

× |exp{K(ūx ∓ d� + is) −K(ūx ∓ d�)}|√
(ūx ∓ d�)2 + s2

. (26)
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The restrictions on d� ensure that M(ūx ∓ d�) < ∞ and (ūx ∓ d�)2 > 0. This,
combined with the ridge property of characteristic functions (e.g., Lukacs (1970)),
implies the integrand is bounded and exists for s = 0. Provided | exp{K(ūx ∓
d�+is) −K(ūx ∓ d�)}| = O(|s|−r) as |s| → 0 for some r > 0, (26) is o(|s|−1) as
|s| → ∞ and therefore integrable.

Let F ′(·) denote the probability density function associated with the CDF
F (·) of X; note that F ′(·) exists since X is assumed to be absolutely continuous.
Then,

exp{K(ūx ∓ d� + is) −K(ūx ∓ d�)} =
∫ ∞

−∞
eisu

[
e(ūx∓d�)uF ′(u)
M(ūx ∓ d�)

]
du.

The right-hand side is exactly the same as the left-hand side of (7) with β =
ūx ∓ d� and thus satisfies the needed condition. Since M(ūx ∓ d�) < ∞ by con-
struction, (26) and arguments just given now establish the requisite boundedness,
completing the proof.

Proof of Proposition 1. The function exp{a(t, ¯̄ux ∓ d�)} may decay slowly
(i.e., algebraically) to zero as t→ ∞, making the integral on the right-hand side
of (11) more challenging to compute. This difficulty is alleviated by making the
change of variable t = es:∫ ∞

0

ea(t,¯̄ux∓d�)√
(¯̄ux ∓ d�)2 + t2

dt =
∫ ∞

−∞
ea(e

s,¯̄ux∓d�) es√
(¯̄ux ∓ d�)2 + e2s

ds. (27)

To see why, let α equal one of ¯̄ux ± d�, and note that α 	= 0 by the choice of d�.
Then, since 0 < ea(e

s,α) ≤ 1 for s ∈ R, the integrand on the right-hand side of
(27) is O(e−|s|) as s → −∞. In addition, since ea(t,α) = O(t−ψ) as t → ∞, the
integrand on the right-hand side of (27) is O(e−ψs) as s→ ∞. Consequently the
tails of the integrand on the right-hand side of (27) vanish exponentially, making
it easier to integrate numerically.

In computing (27), the lower and upper tails of the integrand are handled
differently. This is because successful truncation of the upper tail requires addi-
tional information about the decay rate of ea(t,α) as t → ∞. With α = ¯̄ux ± d�,
(27) may be written as∫ −Lα

−∞
ea(e

s ,α)+s

√
α2 + e2s

ds+ I1(α) + I2(α), (28)

the presence of I2(α) following from the fact that∫ ∞

U

ea(e
s,α)+s

√
α2 + e2s

ds ≡
∫ 1/U

0

ea(e
1/s ,α)−1/s

s2
√
α2 + e2/s

ds
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for U > 0. Now, note that∫ −L

−∞
ea(e

s ,α) es√
α2 + e2s

ds ≤
∫ ∞

L

e−s√
α2 + e−2s

ds = tanh−1
(

1√
α2e2L + 1

)
for L > 0. Hence, taking L equal to (12), the first term in (28) is bounded above
by γ and thus I1(α) + I2(α) approximates (27) to within γ. The result now
follows by noting that N (gx,Dd�) is simply a weighted sum of two such terms.

Proof of Proposition 2. Because M(¯̄ux + it) is the Fourier transform of
�T (s) = e¯̄uxsF ′(s),

M(¯̄ux + it) =
∫ ∞

−∞
eits�T (s)ds=2

∫ ∞

0
cos(ts)�e(s)ds+ 2i

∫ ∞

0
sin(ts)�o(s)ds,

the second line implying that ξR(t)=2
∫∞
0 cos(ts)�e(s)ds and ξI(t)=2

∫∞
0 sin(ts)

�o(s)ds.
Consider first ξR(t) = 2

∫∞
0 cos(ts)�e(s)ds = 2�{

∫∞
0 eits�e(s)ds}. By re-

sults in Wong (1989, §IV.2), the asymptotic expansion for �e(s) as s ↓ 0 implies

ξR(t) ∼
γe,0 cos

(παe
2

)
Γ(αe)

tαe
+
γe,1 cos

(
π(αe+1)

2

)
Γ(αe + 1)

tαe+1
+o(t−(αe+1)), t→ ∞.

Similarly, as t→ ∞,

ξI(t) ∼
γo,0 sin

(παo
2

)
Γ(αo)

tαo
+
γo,1 sin

(
π(αo+1)

2

)
Γ(αo + 1)

tαo+1
+ o(t−(αo+1)).

Thus, ξI(t) and ξR(t) are of constant sign as t→ ∞. Moreover, it can be shown
that

ξI(t)
ξR(t)

∼


±∞ αe > αo > 0
γo,0 sin(πα2 )Γ(α)+γo,1 sin(π(α+1)

2 )Γ(α+ 1)t−1+o(t−1)

γe,0 cos(πα2 )Γ(α)+γe,1 cos(π(α+1)
2 )Γ(α+ 1)t−1+o(t−1)

. αe=αo=α>0

0 0 < αe < αo.

The limit in the case where αe = α0 depends on the structure of the expansions
for �e(s) and �o(s), and in particular on the coefficient sequences γk,j, j ≥ 0,
k = e, o. In the present situation, the only important implication is that a unique
limit exists, whether or not it is finite. These observations, combined with the
fact that ξI(t) and ξR(t) become of constant sign as t → ∞, now imply that

arctan
(∣∣∣∣ ξI(t)ξR(t)

∣∣∣∣) ∼


π
2 αe > αo > 0

θ0 αe = αo = α > 0

0 0 < αe < αo,

where θ0 ∈ [−π/2, π/2]. The stated result now follows from (18).
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