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Abstract: It is common in a parametric bootstrap to select the model from the data,

and then treat it as it were the true model. Kilian (1998) illustrates that ignoring

the model uncertainty may seriously undermine the coverage accuracy of bootstrap

confidence intervals for impulse response estimates which are closely related with

multi-step-ahead prediction intervals. In this paper, we propose different ways of

introducing the model selection step in the resampling algorithm. We present a

Monte Carlo study comparing the finite sample properties of the proposed method

with those of alternative methods in the case of prediction intervals.
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1. Introduction

An important question in empirical time series analysis is how to predict the
future values of an observed time series on the basis of its recorded past, and
more specifically how to calculate prediction intervals. A traditional approach
to this question assumes that the series {Xt}t∈Z

follows a linear finite dimension
model with a known error distribution, e.g., a Gaussian autoregressive-moving
average ARMA(p, q) model as in Box and Jenkins (1976). In such a case, if the
orders p and q are known, a maximum likelihood procedure could be employed
for estimating the parameters to plug in the linear predictors. In addition, some
bootstrap approaches have been proposed to avoid the use of a specified error
distribution, see e.g., Stine (1987) and Thombs and Schucany (1990) for AR(p)
models, and Pascual, Romo and Ruiz (2001) for ARMA(p, q) models. But those
bootstrap proposals assume that p and q are known. Alonso, Peña and Romo
(2002) show that the AR(∞)-sieve bootstrap provides consistent prediction in-
tervals for a general class of linear models that includes stationary and invertible
ARMA processes. This procedure selects an approximating autoregressive model
AR(p̂) from the data, and then uses the selected order as if it were the true order;
however, this approach ignores the variability involved in model selection that
can be a considerable part of the overall uncertainty.

In practice, having observed a sample of size n, the model, and particularly p
and q, are unknown. Thus, we should select a model from the data. Many model
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selection procedures have been proposed, e.g., the final prediction error (FPE) of
Akaike (1969), the Akaike (1973) information criterion (AIC) or its bias-corrected
version (AICC) of Hurvich and Tsai (1989, 1991) and the Bayesian information
criterion of Schwarz (1978), see Bhansali (1993) for a review.

For finite autoregressive models, Massaroto (1990) and Grigoletto (1998),
propose to take into account model uncertainty as follows: first, to obtain p̂ by
a consistent model selection procedure, then generate bootstrap resamples from
the estimated AR(p̂) and to re-estimate in each resample the order by the same
method used for p̂. Thus, their prediction intervals consider the sampling vari-
ability caused by model selection method. Essentially the same algorithm was
suggested by Kilian (1998) in the context of generating impulse response confi-
dence intervals, the so called endogenous lag order bootstrap. It is well known
that consistent model selection procedures (as the BIC) tend to select more par-
simonious orders. In fact, Grigoletto (1998) and Kilian (1998) recommend use of
the less parsimonious AIC procedure. Hjorth (1994) suggests the following: first,
estimating an AR(pmax) from the data, where pmax is the greatest order consid-
ered, and then proceed as in the previous approach. Although this last proposal
avoids the dependence on p̂, it could be influenced by the high variability of the
pmax estimated parameters. In Section 4, Monte Carlo simulations reveal that
the version with p̂ is generally preferable to the one with pmax.

Since the previous endogenous order bootstrap could be affected by the initial
estimated order, we propose a way of introducing the sampling variability of the
model selection procedure that does not depend, or is less dependent, on p̂. This
approach is to construct a probability function for p based on the values of the
objective function of the above mentioned information criterions (AIC, AICC, or
BIC). Once we have an estimated distribution F̂p, we generate resamples from
the estimated AR(p∗) with the p∗ i.i.d. F̂p, and then we proceed as in standard
bootstrap approaches. In our Monte Carlo study, the results show that the
proposed approach outperforms the endogenous lag order bootstrap of Kilian
(1998).

The remainder of the paper is organized as follows. In Section 2 we extend
the endogenous lag order method of Kilian (1998) applied to sieve bootstrap
prediction intervals and we introduce the proposal based on information criteria.
In Section 3 we present a theoretical justification of the proposed methods and
in Section 4 we present the results of a Monte Carlo study comparing the finite
sample properties of the proposed method with those of alternative methods. All
proofs are given in an Appendix.

2. Proposed Approaches

2.1. The sieve endogenous order bootstrap

Let {Xt}t∈Z
be a real valued, stationary process with expectation E [Xt] =
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µX that admits a one-sided infinite-order autoregressive representation:

+∞∑
j=0

φj(Xt−j − µX) = εt, φ0 = 1, t ∈ Z, (1)

with coefficients {φj}+∞
j=0 satisfying

∑+∞
j=0 φ

2
j <∞. This representation motivates

the AR(∞)-sieve bootstrap, first proposed by Kreiss (1988, 1992) and extended
by Paparoditis (1996), Bühlmann (1997) and Inoue and Kilian (2002). The
method proceeds as follows.

1. Given a sample {X1, . . . ,Xn}, select the order p̂ of the autoregressive approx-
imation by the AICC criterion.

The AICC criterion of −n log(σ2) + 2(p+ 1)n/(n− p− 2) is a bias-corrected
version of AIC that has a more extreme penalty for large-order models to coun-
teract the overfitting nature of AIC (see, Hurvich and Tsai (1989, 1991)). An
advantage of using AICC (in finite AR processes) is that the value of the maxi-
mum cut-off pmax has virtually no effect on the model chosen by this criterion,
while for many of the other criteria increasing the value of pmax leads to increased
overfitting of the model, see Hurvich and Tsai (1989). Other order selection cri-
teria (such as BIC) could be used but we prefer AICC, assuming the view that
the true model is complex and not of finite dimension.

2. Construct some estimators of the autoregressive coefficients (φ̂1, . . . , φ̂p̂). Fol-
lowing Kreiss (1992) and Bühlmann (1997) we take the Yule-Walker estimates.

3. Compute the residuals ε̂t =
∑p̂

j=0 φ̂j(Xt−j − X̄), φ̂0 = 1, t ∈ (p̂+ 1, . . . , n).
4. Define the empirical distribution function of the centred residuals F̂ε̃(x) =

(n− p̂)−1 ∑n
t=p̂+1

1{ε̃t≤x}, where ε̃t = ε̂t − ε̂ (·) and ε̂ (·) = (n− p̂)−1 ∑n
t=p̂+1

ε̂t.

5. Draw a resample ε∗t of n− p̂ i.i.d. observations from F̂ε̃.
6. Define X∗

t by the recursion:

p̂∑
j=0

φ̂j(X∗
t−j − X̄) = ε∗t , (2)

where the starting p̂ observations are equal to X̄.

In practice we generate an AR(p̂) resample using (2) with sample size equal
to n+ 100 and then discard the first 100 observations.

Up to this step, the resampling plan coincides with the sieve bootstrap, and
is valid for bootstrapping statistics defined as functionals of an m-dimensional
distribution function (see details in Section 3.3 of Bühlmann (1997)). In the next
step we introduce the endogenous lag order selection.
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7. Given the bootstrap replication {X∗
1 , . . . ,X

∗
n}, select the order p̂ ∗ of the au-

toregressive approximation as in step 1.

The steps 1 to 7 are not effective for bootstrap prediction, because the algo-
rithm does not replicate the conditional distribution of XT+h given the observed
data. But, if we proceed as do Cao, Febrero-Bande, González-Manteiga, Prada-
Sánchez and Garćıa-Jurado (1997) in fixing the last p observations, in our case
the last p̂ ∗ observations, we can obtain resamples of the future values X∗

T+h given
X∗

T−p∗+1 = XT−p∗+1, . . . ,X
∗
T = XT .

The next step is performed in order to introduce the variability associated to
the estimation of the parameters in the predictions (3). Notice that the algorithm
with steps 1-6 and 8 is similar to the procedure proposed by Paparoditis (1996),
who estimate the distribution of a vector of autoregressive and moving average
parameters, which is more than we need in our case. We only need consistent
estimators, φ̂ ∗

j , of the autoregressive parameters (see Proposition 2 below).

8. Compute the estimation of the autoregressive coefficients (φ̂ ∗
1 , . . . , φ̂

∗
p̂ ∗) as in

step 2.
9. Compute future bootstrap observations by the recursion

X∗
T+h − X̄ = −

p̂ ∗∑
j=1

φ̂ ∗
j (X∗

T+h−j − X̄) + ε∗t , (3)

where h > 0, and X∗
t = Xt, for t ≤ T .

Finally, the bootstrap distribution, F ∗
X∗

T+h
, of X∗

T+h is used to approximate
the unknown distribution of XT+h given the observed sample. As usual, a Monte
Carlo estimate F̂ ∗

X∗
T+h

is obtained by repeating the steps 5 to 9 B times. The
(1 − α)% prediction interval for XT+h is given by

[Q∗(α/2), Q∗(1 − α/2)] , (4)

where Q∗(·) = F̂ ∗−1
X∗

T+h
(·) are the quantiles of the estimated bootstrap distribution.

The consistency of the intervals in (4) follows from Lemma 2, Proposition 2,
Proposition 3 and Theorem 1, presented in Section 3.

Notice that, if we omit step 7 and use p̂ ∗ = p̂ in step 8 and the recursion
(3), the resampling plan coincides with the sieve bootstrap prediction algorithm
of Alonso, Peña and Romo (2002). The two approaches will be compared in the
Monte Carlo study of Section 4.

Notice that the previous algorithm constructs two types of bootstrap repli-
cates based on (forward) residuals ε̂t. The first type has n observations and they
are used to obtain bootstrap estimates of the model parameters. The second
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type of replicates fixes the p̂∗ bootstrap observations, (X∗
T−p̂∗+1

, . . . ,X∗
T ), equal

to the last p̂∗ original observations, (XT−p̂∗+1, . . . ,XT ), which are then used to
compute the bootstrap forecast through (3). This allows us to obtain predictions
conditional on the observed data. The second type of replicates includes the fix
p̂∗ plus the new h observations.

This procedure differs from the proposal of Thombs and Schucany (1990)
which fixes the last p bootstrap observations, i.e., X∗

T−p+1 = XT−p+1, . . . ,X
∗
T =

XT , and obtains the bootstrap observations X∗
1 , . . . ,X

∗
T−p using backward resid-

uals and the backward representation of finite AR models. As before, bootstrap
forecasts are computed using (3) and the forward residuals. In Thombs and
Schucany’s proposal, a replicate has n + h observations. Two main criticisms
apply to Thombs and Schucany’s procedure: (i) if the forward errors are non-
Gaussian then the backward errors are not independent, so it is necessary to
modify the original Thombs and Schucany procedure (see, Breidt, Davis and
Dunsmuir (1995)); (ii) its use is restricted to models with finite backward repre-
sentation (i.e., it excludes models with nontrivial moving average components).

2.2. The sieve exogenous order bootstrap

In this subsection we present a different way of introducing the sampling vari-
ability of the model selection procedure. First, we describe the general algorithm
and then we present a possible implementation based on information criteria. Let
{Xt}t∈Z

be as in the previous subsection, and let IC(p) be the objective function
of some model selection method. Assume that we have a probability distribution
estimator F̂p of the random variable p̂ = argmin0≤p≤pmax {IC(p)}, i.e., we have
estimates of

pr{p̂ = p} , for 0 ≤ p ≤ pmax. (5)

The characterization of the asymptotic limit of (5) is a standard way of studying
the consistency of information criteria in finite autoregressive models, see, e.g.,
Theorem 1 of Shibata (1976). A method for obtaining an approximation of (5)
will be presented below and it constitutes the first step of the sieve exogenous
order bootstrap.

The sieve exogenous order bootstrap modifies the previous steps as follows:

2a. Construct estimators of the coefficients for the pmax +1 autoregressive mod-
els: (φ̂ (p)

1 , . . . , φ̂
(p)
p ), for 1 ≤ p ≤ pmax, and φ̂ (p)

0 = 1, for 0 ≤ p ≤ pmax.

3a. Compute the residuals for the model with p = p̂ as ε̂t =
∑p̂

j=0 φ̂
(p̂)
j (Xt−j −

X̄), t ∈ (p̂+ 1, . . . , n).
4a. Define the empirical distribution functions of the centred residuals F̂ε̃(x) =

(n−p̂)−1 ∑n
t=p̂+1

1{ε̃t≤x}, where ε̃t = ε̂t−ε̂ (·), and ε̂ (·) = (n−p̂)−1 ∑n
t=p̂+1

ε̂t.
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4b. Draw a random value p∗ from F̂p.

Notice that, given the probabilities in (5), the variability of p̂ enters exoge-
nously to the bootstrap algorithm.

5a. Draw a resample ε∗t of n− p∗ i.i.d. observations from F̂ε̃.
6a. Define X∗

t by the recursion:

p∗∑
j=0

φ̂
(p∗)
j (X∗

t−j − X̄) = ε∗t , (6)

where the starting p∗ observations are equal to X̄.

At this point, in the endogenous order bootstrap, we perform step 7, i.e., we
select the order p̂∗. Note that this is not necessary in the exogenous approach.
Moreover, we reduce the computational cost by skipping step 7 with respect to
the endogenous order bootstrap.

7a. Estimate the autoregressive coefficients (φ̂ ∗
1 , . . . , φ̂

∗
p∗) as in step 2.

8a. Compute the future bootstrap observations by the recursion X∗
T+h − X̄ =

−∑p∗
j=1 φ̂

∗
j (X∗

T+h−j − X̄) + ε∗T+h, where h > 0, and X∗
t = Xt, for t ≤ T .

As before, the bootstrap distribution of X∗
T+h is used to approximate the

unknown distribution of XT+h given the observed sample, and steps 4b - 8a are
repeated B times in order to obtain F̂ ∗

X∗
T+h

.

Next, we develop a way of obtaining an estimator or an approximation of
the probabilities (5). This constitutes the first step of the sieve exogenous order
bootstrap.

Information criterion function order distribution. This approach is re-
lated to the Bayesian way of accounting for model uncertainty, see, e.g., Section
6 of Kass and Raftery (1995). Assume that pmax + 1 autoregressive models are
being considered and a sample X of size n, has been observed. Then the posterior
probability of model AR(p) is

pr {X ∼ AR(p)|X} =
pr {X|X ∼ AR(p)} pr {X ∼ AR(p)}∑pmax

i=0 pr {X|X ∼ AR(i)} pr {X ∼ AR(i)} , (7)

where X ∼ AR(p) denotes that X follows an AR(p) model. Particularly, X ∼
AR(0) is equivalent to assuming that {Xt}t∈Z

is a white noise process. If we divide
the numerator and denominator of (7) by pr {X|X ∼ AR(0)} pr {X ∼ AR(0)},
we obtain

pr {X ∼ AR(p)|X} =
αpBp0∑pmax

i=0 αiBi0
, (8)
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where Bp0 = pr {X|X ∼ AR(p)} /pr {X|X ∼ AR(0)} is called the Bayes factors
for AR(p) against AR(0), and αp = pr{X ∼ AR(p)}/pr{X ∼ AR(0)} is called
the prior odds for model AR(p) against model AR(0); here B00 = α0 = 1.

Once we have (8), we calculate the posterior distribution function of XT+h

that takes into account the model uncertainty as

FXT+h
(x) =

pmax∑
p=0

F
(p)
XT+h

(x)pr {X ∼ AR(p)|X} , (9)

where F (p)
XT+h

(x) is the distribution function of XT+h calculated assuming that
{Xt}t∈Z

is an AR(p) process.
Notice that using (8) in step 4b allows us to obtain an approximation to (9).

On the other hand, in the endogenous order bootstrap, we obtain an approxima-
tion of FXT+h

(x) =
∑pmax

p=0 F
(p)
XT+h

(x)pr {p̂∗ = p|X∗ ∼ AR(p̂)}.
Since calculating the pmax Bayes factors involved in (8) is computationally

arduous, and we do not have a priori information about the underlying model,
here we use the approximation Bp0 ≈ exp(Sp0) (as recommend Kass and Raftery
(1995)), where Sp0 is the Schwarz criterion, given by

Sp0 = Lp − L0 − 1
2
p log n, (10)

where L0 and Lp are the log-likelihood of model AR(0) and AR(p) evaluated at
φ̂0 and (φ̂0, φ̂1, . . . , φ̂p), respectively. Notice that Sp0 could be obtained by a
simple linear transformation of the consistent BIC(p) objective function. Then
(8) could be approximated by:

pr {AR(p)|X} ≈ αp exp(−1/2BIC(p))∑pmax
i=0 αi exp(−1/2BIC(i))

, (11)

where BIC(i) = n log(2πσ̂2
i )+i log n and σ̂2

i is an estimate of the residual variance
in the AR(i) model. The first summand in BIC(i) is −2Lp. In our case, we
consider that the pmax + 1 models are equally probable a priori, so αi = 1 for
0 ≤ i ≤ pmax.

A word of caution about the approximation of Bayes factor, Bp0, by exp(Sp0).
It is based on the following result: (Sp0−logBp0)/ logBp0 → 0. Thus, Sp0 may be
viewed as a rough approximation to the logarithm of the Bayes factor (see, e.g.,
Kass and Wasermann (1995)). On the other hand, the quality of this approx-
imation is not important in our asymptotic results. Notice that the exogenous
bootstrap can be interpreted as a procedure that selects an order p∗ taking into
account the estimated weights (probabilities) pr {X ∼ AR(p)|X} defined in (11),
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and then builds resamples following an AR(p∗) model. To establish the asymp-
totic validity of the exogenous bootstrap we only need that estimated weights
have a convenient limit, see our Proposition 1 and Remark 1.

Buckland, Burnham and Augustin (1997) propose a similar approach in the
context of Poisson regression, line transient sampling and survival models, but
they do not provide a theoretical justification of the proposed bootstrap methods.
Also, they recommend using AIC(p) instead of BIC(p) at (11).

In the Monte Carlo study of Section 4, the sieve exogenous order boot-
strap based on (8), with the above approximation, performs reasonably well.
We present the results with the AICC model selection procedure, but additional
simulations studies (available on request to the authors) illustrate that the sieve
exogenous order bootstrap based on (8) with the BIC procedure performs simi-
larly.

The consistency of the intervals at (4) using (11) follows from Lemma 2,
Proposition 1, Proposition 2 and Theorem 1 in Section 3.

A related approach was proposed by LeBlanc and Tibshirani (1996) in the
cases of regression and classification for combining predictors, but they use as
weights (or probabilities) Lk/

∑K
i=1 Li where Lk is the likelihood for model k,

and the K considered models have the same dimension.

3. Consistency Results

The asymptotic validity of the proposed intervals depends on the limiting
behavior of the distribution F ∗

X∗
T+h

and it is sufficient to establish convergence
in the conditional distribution of the bootstrap version X∗

T+h to XT+h. Notice
that the proposed bootstrap procedures have three main steps: (i) obtaining or
selecting p∗, (ii) obtaining the estimates φ̂ ∗

p∗ in order to have information about
the distribution of φ̂p, and (iii) computing the future values X∗

T+h.
We now consider the precise assumptions about the stationary process

{Xt}t∈Z
required to prove our results:

Assumption A1. Xt =
∑+∞

j=0 ψjεt−j , ψ0 = 1 (t ∈ Z) with {εt}t∈Z a sequence of
independent random variables with E[εt] ≡ 0, and E[|εt|s] <∞ for some s ≥ 4.

Assumption A2. Ψ(z) =
∑+∞

j=0 ψjz
j is bounded away from zero for |z| ≤ 1,

and
∑+∞

j=0 j
r|ψj | <∞ for some r ∈ N.

Notice that Assumptions A1 and A2 are satisfied by stationary and invertible
ARMA(p,q) processes which have an exponential decay of the coefficients {ψj}+∞

j=0

(cf. Bühlmann (1997)).
Since the model selection procedures have a different asymptotic behaviour

for finite and for (nontrivial) infinite autoregressive processes (see, e.g., Theorems
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3.1 and 4.1 of Pötscher (1990)), we present the theoretical results for two types
of linear models.

Assumption A3. {Xt}t∈Z
does not degenerate to a finite order AR process.

Assumption A4. {Xt}t∈Z
is an AR(p0) process for some finite p0.

Assumption B. 0 ≤ p = p(n) ≤ pmax(n), where pmax(n) → ∞, pmax(n) =
o(n1/2) as n → ∞, and φ̂p = (φ̂1,n, . . . φ̂p,n)′ satisfy the empirical Yule Walker
equations Γ̂pφ̂p = −γ̂p, where Γ̂p = [R̂(i− j)]1≤i,j≤p, γ̂p = (R̂(1), . . . , R̂(p))t, and
R̂(j) = n−1 ∑n−|j|

t=1 (Xt − X̄)(Xt+|j| − X̄).

Notice that our Assumption B differs from Assumption B in Bühlmann
(1997) and from Assumption 1(d) in Inoue and Kilian (2002), since in our case
we restrict the behaviour of pmax(n) instead of restricting p(n).

Assumption C. The model selection criterion has convergence rate Cn, i.e., it
satisfies the following condition:

C−1
n max

0≤p≤pmax(n)
|pr {p̂ = p} − πp| = O(1), (12)

where p̂ = argmin0≤p≤pmax {IC(p)} is the selected order, πp = limn→∞ pr {p̂ = p}
and Cn is a non-random sequence.

Zhang (1993) establishes that AIC and BIC have convergence rate O(n−1/2)
in the case of linear regression models and i.i.d. errors. In Lemma 3, Proposition
2 and 3 and Theorem 1 we suppose the model selection criterion has convergence
rate Cn = O((n/ log n)−δ) for some δ > 0.

We present the results for the order selection method proposed by Shibata
(1980):

Sn(p) = (n+ 2p)σ̂2
p,n, (13)

where σ̂2
p,n = n−1 ∑n−1

t=pmax
(Xt+1 + φ̂1,nXt + · · ·+ φ̂p,nXt+1−p)2. This order selec-

tion is a version of the final prediction error (FPE), and has a close relation to
asymptotically efficient methods like AIC and AICC.

The following two lemmas characterize the asymptotic behavior of the se-
lected order sequence {p̂(n)}. Lemma 1 is a consequence of Theorem 3.1, The-
orem 4.1 and Remark 5.2 of Pötscher (1990), and Lemma 2 is the analogous to
Corollary 4.1 of Shibata (1980), based on Theorem 3.1 of Karagrigoriou (1997).

Lemma 1. Suppose that A1 with s = 4, A2 with r = 1, and B hold. Then, the
random sequence p̂ = p̂(n) that minimizes Sn(p), satisfies
1. under Assumption A3, {p̂(n)} is a divergent sequence;
2. under Assumption A4, pr {p̂(n) ≥ p0} → 1 as n→ ∞.
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Let Ln(p) = pσ2/n + ‖φp − φ‖Γ, where φp = (φ1,n, . . . , φp,n)′ are the the-
oretical Yule-Walker statistics (the index n in φi,n is used to differentiate φi,n

and the i-th autoregressive parameter φi), let ‖x‖A = (x′Ax)1/2, let Γ be the
infinite dimensional covariance matrix and φ the infinite dimensional vector of
autoregressive parameters. Also, denote by {p0(n)} the non-random sequence
that minimizes Ln(p), and let {pε(n)} be the non-random sequence defined by
{pε(n)} = min {p : Ln(p)/Ln(p0(n)) ≤ 1 + ε}.

Lemma 2. Suppose that A1 with s = 16, A2 with r = 1, A3 and B hold. Then,
for any ε > 0, the random sequence p̂ = p̂(n) that minimizes Sn(p) satisfies

pr {p̂(n) ≥ pε(n)} → 1, as n→ ∞. (14)

Now we use Sn(p) in (11) instead of BIC(p). In the following proposition we
establish that if {Xt}t∈Z

is A3 and we select a random order p = p(n) taking into
account the probability function defined by (11), then the probability of selecting
p in any finite set is zero in comparison with the probability of p = p̂.

Proposition 1. Suppose that A1 with s = 16, A2 with r = 1, A3 and B hold.
Then for any positive integer C, 0 < C < +∞, we have∑C

c=1 prSn
{p = c}

prSn
{p = p̂} → 0 in probability, (15)

where prSn
denotes (11) calculated with Sn, i.e., prSn

{p = c} = {exp(−0.5(n+2c)
σ̂2

c,n)}/{∑pmax
p=0 exp(−0.5(n + 2p)σ̂2

p,n)}.
Remark 1. Analogously, if {Xt}t∈Z

satisfies A4, we can establish that, for any
1 ≤ c < p0, the probability of selecting p in {1, . . . , c} is zero in comparison with
the probability of p = p̂. This is a direct consequence of Lemma 1(2) and that
σ2

c > σ2 holds for c < p0, where σ2
c is the c-step ahead error prediction variance.

Remark 2. Proposition 1 holds for any divergent sequence {p(n)} such that
p(n) = o(n1/2). Also notice that, if {Xt}t∈Z

satisfies A3, (15) implies that for

any 0 < C < +∞, prSn
{p ≤ C} P−→ 0, and similarly if {Xt}t∈Z

verifies A4, for

any 0 < c < p0, prSn
{p ≤ c} P−→ 0 as n→ ∞.

Proposition 2. Suppose that A1 with s = 16, A2 with r > 2, A3, B with
pmax = o((n/ log(n))1/(2r+2)) and C with Cn = o((n/ log(n))−k/(2r+2)), for some
k > 3, hold. Additionally, we suppose the random sequence {p(n)} satisfies (14).
Then max1≤j≤pmax(n) |φ̂∗j,n − φj,n| −→ 0 in probability.

Remark 3. Notice that Lemma 2 (Proposition 1) and Proposition 2 imply that
the endogenous (exogenous based on (11)) sieve bootstrap provides consistent
estimators of the theoretical Yule-Walker statistics when {Xt}t∈Z

satisfies A3.
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Remark 4. The statement of Proposition 2 holds when {Xt}t∈Z
satisfies A4,

since the proof of Theorem 3.1 and 3.2 of Bühlmann (1995) can be modified
in order to avoid the assumption that p → ∞. Notice that under A4 we have
max1≤j≤pmax |φ̂j,n − φj,n| = Oa.s.((log(n)/n)1/2) and φj,n = φj = 0 for j > p0.

Remark 5. Theorem 3.1 and 3.3 of Paparoditis (1996) and Theorem 1 of Inoue
and Kilian (2002) establish a stronger result than our Proposition 2 (both papers
deal with the distribution of the increasing size vector of statistics φ̂p), but they
impose the condition

∑∞
j=1 |φj |(1 + η)j <∞ for some η > 0, whereas A1 implies∑∞

j=1 j
r|φj | <∞ with r > 0.

Lemma 3. Suppose that A1 with s = 16, A2 with r > 2, B with pmax =
o((n/ log(n))1/(2r+2)) and C with Cn = o((n/ log(n))−k/(2r+2)), for some k > 3,
hold. Additionally, we suppose the random sequence {p̂(n)} satisfies (14). Then

max
1≤p≤pmax(n)

∣∣∣σ̂2 ∗
p,n − σ2

p,n

∣∣∣ −→ 0 in probability , (16)

where σ̂2 ∗
p,n = n−1 ∑n−1

t=pmax
(X∗

t+1 + φ̂∗1,nX
∗
t + · · ·+ φ̂∗p,nX

∗
t+1−p)

2 and σ2
p,n = E[n−1∑n−1

t=pmax
(Xt+1 + φ1,nXt + · · · + φp,nXt+1−p)

2].

Remark 6. Lemma 3 holds when {Xt}t∈Z satisfies A4, following arguments
similar to those in Remark 4.

Proposition 3. Suppose that A1 with s = 16, A2 with r > 2, A3, B with
pmax = o((n/ log(n))1/(2r+2)) and C with Cn = o((n/ log(n))−k/(2r+2)), for some
k > 3, hold. Additionally, we suppose the random sequence {p̂(n)} satisfies (14).
Then the random sequence p̂∗ = p̂∗(n) that minimizes S∗

n(p) = (n + 2p)σ̂2 ∗
p,n is a

divergent sequence.

Remark 7. Under A4, by Lemma 1(2) and Remark 6, we can establish an
analogous result to Proposition 3, i.e., p̂∗ = p̂∗(n) that minimizes S∗

n(p) satisfies
pr {p̂(n) ≥ p0} → 1 as n→ ∞, since now we have that σ2

c > σ2 for 0 < c < p0.

Theorem 1. Suppose that A1 with s = 16, A2 with r > 2, B with pmax =
o((n/ log(n))1/(2r+2)) and C with Cn = o((n/ log(n))−k/(2r+2)), for some k > 3,
hold. Additionally, we suppose the random sequence {p̂(n)} satisfies (14). Then

X∗
T+h|(X∗

T =XT ,...,X∗
T−p∗(n)

=XT−p∗(n))
d∗−→ XT+h|XT

−∞
, in probability . (17)

Remark 8. Under A4, by Lemma 1(2) and Remark 4, we can establish an
analogous result to Theorem 1 since

∑+∞
j=p(n)∗+1 |φj | is trivially oP (1). Notice that

these results generalize the approaches of Masarotto (1990), Grigoletto (1998)
and Kilian (1998), since here we only need an order selection method that satisfies
pr{p̂ ≥ p0} → 1 to obtain (17).
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4. Simulations Results

We compare the different sieve bootstrap approaches described in the previ-
ous section for the following models:

Model 1: (1 + 0.7B − 0.2B2)Xt = εt.

Model 2: Xt = (1 + 0.7B − 0.2B2)εt.

As in Cao et al. (1997) and Pascual, Romo and Ruiz (2001), we used the
following error distributions Fε: the standard normal, a shifted exponential dis-
tribution with zero mean and scale parameter equal to one, and a contaminated
distribution 0.9 F1 + 0.1 F2 with F1 ∼ N (−1, 1) and F2 ∼ N (9, 1). We took
sample sizes n = 25, 50 and 100, leads h = 1 to h = 5, and nominal coverage
1 − α = 0.95.

To compare the different prediction intervals, we use mean coverage and
length, and the proportions of observations lying to the left and to the right of
the interval. These quantities are estimated as follows.
1. For a combination of model, sample size and error distribution, simulate a

series and generate R = 1, 000 future values XT+h.
2. For each bootstrap procedure obtain the (1 − α)% prediction interval by (4)

based on B = 1, 000 bootstrap resamples.
3. The coverage for each method is estimated as CM = #{Q∗

M (α/2) ≤ Xr
T+h ≤

Q∗
M (1−α/2)}/R, whereXr

T+h, r = 1, . . . , R, are the R future values generated
in first step, Q∗

M (·) are the quantiles of the estimated bootstrap distribution
and M ∈ {S, EnS1, EnS2, ExS}.
In steps 1 and 2 we obtain the “theoretical” and bootstrap interval lengths

using LT = X
(�R(1−α/2)�)
T+h − X

(�Rα/2�
T+h ), where X(·)

T+h denotes an element in the
ordered sample and LM = Q∗

M (1 − α/2) − Q∗
M(α/2). Finally, steps 1 to 3 are

repeated S = 1, 000 times to obtain CM,i, LM,i with i = 1, . . . , S, and we calculate
the estimates

C̄M = S−1
∑

CM,i,

se(C̄M ) =
(
S−1(S − 1)−1

∑
(CM,i − C̄M )2

)1/2
,

(18)
L̄M = S−1

∑
LM,i,

se(L̄M ) =
(
S−1(S − 1)−1

∑
(LM,i − L̄M )2

)1/2
.

The different sieve bootstrap are as follows: S, the sieve bootstrap without in-
troducing model uncertainty; EnS1, the endogenous sieve bootstrap using p̂ in
steps 2 - 6; EnS2, the endogenous sieve bootstrap using pmax in steps 2 - 6; ExS,
the exogenous sieve bootstrap using the AICC information criterion expressions
(11) in step 1a.
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In Tables 1 and 2, we present the results of (18) and the estimated above
and below coverage for Model 1 and Gaussian and exponential errors, using the
least squares estimators for autoregressive parameters, the three sample sizes,
nominal coverage 95%, and lead times h = 1 and 5. Also, we include the results
for standard Gaussian forecast intervals based on the Box-Jenkins (BJ) approach
assuming the known order p (q) of Model 1 (2). Notice that, in Table 1, where the
error distribution is Gaussian, the results of BJ could be interpreted as bench-
marks. In Alonso, Peña and Romo (2003) we present the remaining simulation
results.

Table 1. Simulation results for Model 1, with Gaussian errors.

Lag Sample Method C̄M (se) Cov. (b./a.) L̄M (se)
h n Theoretical 95% 2.50% / 2.50% 3.94

1 25 BJ 90.86 (0.19) 4.60 / 4.54 3.67 (0.02)

S 89.99 (0.24) 4.86 / 5.15 3.81 (0.02)

EnS1 90.85 (0.21) 4.34 / 4.81 3.94 (0.02)

EnS2 87.21 (0.28) 5.84 / 6.95 3.79 (0.03)

ExS 90.42 (0.21) 4.86 / 4.73 3.94 (0.02)

50 BJ 93.13 (0.10) 3.44 / 3.44 3.83 (0.01)

S 91.25 (0.16) 4.15 / 4.60 3.77 (0.02)

EnS1 92.65 (0.13) 3.49 / 3.87 3.92 (0.02)

EnS2 90.41 (0.17) 4.62 / 4.97 3.73 (0.02)

ExS 93.00 (0.12) 3.49 / 3.51 3.95 (0.02)

100 BJ 94.07 (0.07) 2.95 / 2.98 3.86 (0.01)

S 93.17 (0.10) 3.46 / 3.37 3.86 (0.01)

EnS1 93.72 (0.09) 3.17 / 3.10 3.91 (0.01)

EnS2 91.25 (0.12) 4.41 / 4.34 3.65 (0.01)

ExS 93.97 (0.09) 2.95 / 3.08 3.94 (0.01)

h n Theoretical 95% 2.50% / 2.50% 6.46

5 25 BJ 90.43 (0.26) 4.66 / 4.91 6.05 (0.04)

S 89.90 (0.30) 4.89 / 5.21 6.24 (0.05)

EnS1 90.87 (0.28) 4.45 / 4.67 6.40 (0.05)

EnS2 85.39 (0.36) 6.89 / 7.73 5.58 (0.06)

ExS 89.96 (0.25) 5.07 / 4.97 6.10 (0.05)

50 BJ 93.22 (0.16) 3.47 / 3.31 6.19 (0.03)

S 92.26 (0.20) 3.67 / 4.07 6.40 (0.04)

EnS1 93.07 (0.17) 3.28 / 3.64 6.53 (0.04)

EnS2 87.94 (0.27) 5.73 / 6.33 5.72 (0.04)

ExS 92.63 (0.17) 3.71 / 3.66 6.38 (0.04)

100 BJ 93.25 (0.12) 3.48 / 3.26 6.26 (0.02)

S 93.08 (0.13) 3.60 / 3.32 6.33 (0.03)

EnS1 93.83 (0.12) 3.16 / 3.02 6.48 (0.03)

EnS2 89.00 (0.18) 5.60 / 5.40 5.62 (0.03)

ExS 93.62 (0.12) 3.21 / 3.18 6.40 (0.03)
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Table 2. Simulation results for Model 1, with exponential errors.

Lag Sample Method C̄M (se) Cov. (b./a.) L̄M (se)
h n Theoretical 95% 2.50% / 2.50% 3.68

1 25 BJ 91.87 (0.19) 0.27 / 7.86 3.56 (0.03)

S 88.40 (0.39) 6.96 / 4.64 3.74 (0.04)

EnS1 90.38 (0.33) 5.03 / 4.60 3.95 (0.04)

EnS2 87.46 (0.42) 6.28 / 6.26 3.88 (0.05)

ExS 90.75 (0.32) 4.66 / 4.59 4.00 (0.05)

50 BJ 93.58 (0.12) 0.16 / 6.26 3.78 (0.02)

S 90.80 (0.30) 5.13 / 4.08 3.65 (0.03)

EnS1 93.28 (0.22) 2.87 / 3.85 3.83 (0.03)

EnS2 92.83 (0.24) 2.19 / 4.98 3.85 (0.04)

ExS 93.83 (0.20) 2.44 / 3.72 3.87 (0.03)

100 BJ 94.09 (0.07) 0.01 / 5.90 3.82 (0.02)

S 93.25 (0.22) 3.50 / 3.25 3.72 (0.02)

EnS1 94.93 (0.15) 1.89 / 3.19 3.82 (0.02)

EnS2 94.62 (0.16) 0.89 / 4.49 3.72 (0.02)

ExS 95.09 (0.13) 1.83 / 3.09 3.85 (0.02)

h n Theoretical 95% 2.50% / 2.50% 6.69

5 25 BJ 87.92 (0.29) 4.92 / 7.16 5.79 (0.06)

S 88.59 (0.31) 5.74 / 5.67 6.21 (0.07)

EnS1 89.32 (0.29) 5.27 / 5.41 6.33 (0.07)

EnS2 83.82 (0.42) 8.30 / 7.88 5.55 (0.08)

ExS 88.79 (0.29) 5.45 / 5.76 6.20 (0.07)

50 BJ 91.15 (0.19) 3.64 / 5.21 6.11 (0.04)

S 91.46 (0.22) 4.29 / 4.24 6.53 (0.06)

EnS1 92.06 (0.20) 3.90 / 4.04 6.63 (0.06)

EnS2 87.65 (0.29) 6.26 / 6.10 5.81 (0.06)

ExS 91.85 (0.20) 4.05 / 4.10 6.50 (0.06)

100 BJ 92.54 (0.12) 2.92 / 4.54 6.20 (0.03)

S 93.31 (0.14) 3.26 / 3.43 6.61 (0.04)

EnS1 93.74 (0.13) 2.99 / 3.27 6.73 (0.04)

EnS2 89.44 (0.20) 5.24 / 5.32 5.78 (0.04)

ExS 93.38 (0.13) 3.33 / 3.29 6.60 (0.04)

For Model 1 with Gaussian errors, methods EnS1 and ExS have a slightly
better performance than S in terms of mean coverage for all sample sizes and lead
times (up to a 1.5% more of mean coverage for h = 1). Notice that EnS1 and ExS
are near to BJ results. Method EnS2, which corresponds to Hjorth’s proposal,
has lower coverage than method S, revealing that not all ways of introducing
model uncertainty produce the correct effect.

For Model 1 with exponential errors and h = 5, similar results are observed;
for h = 1, EnS1 and ExS have a better performance than S in terms of mean
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coverage (more than 1% in mean coverage in all cases, and up to a 3% in sample
size n = 50). In these cases, BJ cannot be considered as a benchmark, since it
assumes an incorrect error distribution (see its asymmetric proportions of above
and below coverage in fifth column of Table 2).

We obtain similar results for Model 2. Notice that in this case, the sieve
approach never uses the correct model. We observe that for h = 1 and all error
distributions, the method S is outperformed by the EnS1 and ExS approaches
that include model variability, in some cases up to a 4% more of mean cover-
age. A global measure of a procedure M ’s improvement by introducing model
uncertainty can be computed as (C̄M − C̄S)/(0.95 − C̄S), where C̄S is the mean
coverage of the bootstrap method without including model uncertainty. These
increases are up to 70%. In almost all cases, both endogenous approaches are
improved by the ExS method, which is always better than S. Again, in the Gaus-
sian case, EnS1 and ExS are near to BJ results. In some cases ExS is superior
to BJ, revealing the importance of parameter estimation variability. In Alonso,
Peña and Romo (2003) we present the simulation results for Model 2.
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Appendix

Proof of Proposition 1. First, note that max1≤c≤C |σ̂2
c,n−σ2

c | P−→ 0 as n→ ∞,
where σ2

c is the c-step ahead error prediction variance. From Lemma 2 we have
that p̂→ ∞ in probability, therefore σ̂2

p̂,n

P−→ σ2 as n→ ∞. On the other hand,
σ2

1 ≥ · · · ≥ σ2
C > σ2, where the last inequality follows from assumption A3.

Then, for all 1 ≤ c ≤ C, we have that σ̂2
c,n − σ̂2

p̂,n

P−→ σ2
c − σ2 > 0.

By (11) we have,

∑C
c=1 prSn

{p = c}
prSn

{p = p̂} =

∑C
c=1 exp

(
−0.5(n + 2c)σ̂2

c,n

)
exp(−0.5(n + 2p̂)σ̂2

p̂,n
)

. (19)

Analyzing the generic term in (19), exp(0.5n(σ̂2
p̂,n

− σ̂2
c,n)+ p̂σ̂2

p̂,n
− cσ̂2

c,n), we
realize that the term n(σ̂2

p̂,n
− σ̂2

c,n) = OP (n) and goes to −∞ in probability, as

n→ ∞; and the other terms are oP (n1/2) +OP (1) and go to +∞ in probability,
as n→ ∞. Of course, the first term dominates the second one. Then, the generic
term goes to 0 as n→ ∞.
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Proof of Proposition 2. The vector φ̂
∗
p = (φ̂∗1,n, . . . , φ̂

∗
p,n)′ is defined by the

bootstrap empirical Yule-Walker equations: Γ̂∗
pφ̂

∗
p = −γ̂∗

p, where Γ̂∗
p = [R̂∗(i −

j)]pi,j=1, γ̂∗
p = (R̂∗(1), . . . , R̂∗(p))t, and R̂∗(j) = n−1 ∑n−|j|

t=1 (X∗
t − X̄∗)(X∗

t+|j| −
X̄∗). Then

‖φ̂∗
p − φp‖∞ ≤ ‖Γ−1

p − Γ̂∗−1
p ‖row‖γ̂∗

p‖∞ + ‖Γ−1
p ‖row‖γp − γ̂∗

p‖∞, (20)

where ‖x‖∞ = max1≤i≤p |xi|, and ‖X‖row = max1≤i≤p
∑p

j=1 |Xi,j |.
From assumption A1 and A2, we have that ‖Γp‖row and ‖Γ−1

p ‖row are uni-

formly bounded in p. Since Γ−1
p −Γ̂∗−1

p = Γ−1
p

(
Γ̂∗

p − Γp

)
Γ̂∗−1

p and ‖Γ̂∗
p−Γp‖row ≤

|γ̂∗0 − γ0| + 2‖γ̂∗
p − γp‖1, we can concentrate our attention on this last term. To

get convergence to zero in (20), it is enough to consider the inequation

‖γ̂∗
pmax

− γpmax
‖2
2 ≤ 2

pmax∑
k=1

(R̂∗(k) − E∗[R̂∗(k)])2 + 2
p∑

k=1

(E∗[R̂∗(k)] −R(k))2

= 2(S1 + S2). (21)

We have that S2 = OP ((n/ log n)max{−(2r−3),−(2k−3)}/(2r+2)), since

S2 =
pmax∑
k=1

(
E∗[ε∗ 2

1 ]
pmax∑
p=0

+∞∑
i,j=0

ψ̂p
i,nψ̂

p
j,nδi+k,j Pr∗{p∗=p} − E[ε21]

+∞∑
i,j=0

ψiψjδi+k,j

)2
,

(22)
where δi,j = 1 if i = j, and 0 otherwise, Ψ̂p(z) =

∑+∞
i=0 ψ̂

p
i,nz

i = Φ̂p(z)−1, Φ̂p(z) is
a polynomial of degree p estimated in the original sample, and Pr∗{p∗=p} is the
probability under the exogenous bootstrap. In the following we omit the index
n in ψ̂j,n. We have

S2 ≤ 2
pmax∑
k=1

(
E∗[ε∗ 2

1 ]
pmax∑
p=0

+∞∑
i,j=0

(ψ̂p
i ψ̂

p
j − ψiψj)δi+k,j Pr∗{p∗=p}

)2

+2
pmax∑
k=1

(
(E∗[ε∗ 2

1 ] − E[ε21])
+∞∑
i,j=0

ψiψjδi+k,j

)2
= 2(I1 + I2). (23)

Under Assumption C and (14) we can obtain similar results to Theorem 3.1
and 3.2 of Bühlmann (1995) which allows us to establish that

I1 = OP ((n/ log n)max{−(2r−1),−(2k−3)}/(2r+2)). (24)

Under assumptions A1 and B of this proposition, we can establish
that E∗[ε∗t

2] − E[ε2t ] = OP ((n/ log n)−r/(2r+2)). Therefore,
I2 = oP ((n/ log(n))−(2r−1)/(2r+2)). Finally, from (23) and (24), we have that
S2 = OP ((n/ log n)max{−(2r−3),−(2k−3)}/(2r+2)).
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For the other term in (21) we have S1 = OP ((n/ log n)−(k−2)/(2r+2)), since

S1 ≤
pmax∑
k=0

n−2
n−k∑
t,s=1

+∞∑
i,j,h,l=0

pmax∑
p,q=0

(
ψ̂p∗

i ψ̂
p∗
j ε∗t−iε

∗
t+k−j − ψ̂p

i ψ̂
p
j E∗[ε∗ 2

1 ]δi+k,j

)
(
ψ̂p∗

h ψ̂
p∗
l ε

∗
s−hε

∗
s+k−l − ψ̂q

hψ̂
q
l E

∗[ε∗ 2
1 ]δh+k,l

)
Pr∗{p∗=p}Pr∗{p∗=q} . (25)

Then

E∗[S1] ≤
pmax∑
k=0

n−2
n−k∑
t,s=1

+∞∑
i,j,h,l=0

pmax∑
p,r=0

(
ψ̂r

i ψ̂
r
j ψ̂

r
hψ̂

r
l E

∗[ε∗t−iε
∗
t+k−jε

∗
s−hε

∗
s+k−l]

−ψ̂r
i ψ̂

r
j ψ̂

p
hψ̂

p
l E

∗[ε∗ 2
1 ]2δi+k,jδh+k,l

)
Pr∗{p∗=p}Pr∗{p∗=r} . (26)

Note that we can decompose the sum
∑pmax

k=0

∑pmax
p,r=0(·) into two:

∑pmax

k=0

∑pmax
p=0∑pmax

r=pε(n)(·)=OP (p2Cn),
∑pmax

k=0

∑pmax
r=0

∑pmax

p=pε(n)(·)=OP (p2Cn) (using the Assump-

tion C ), and the sum
∑pmax

r=0

∑pmax

p=pε(n)

∑pmax

r=pε(n)(·) = OP (n−1(n/ log n)1/(2r+2)).

Therefore, S1 = OP ((n/ log n)−(k−2)/(2r+2)).
Finally, we have

p1/2
max‖γ̂∗

pmax
− γpmax

‖2 = OP

(
(n/ log n)max{−(k−3),−(2k−4),−(2r−4)}/(4r+4)

)
,

and the Assumption A2 with r > 2 and Assumption C with k > 3 concludes the
proof.

Proof of Lemma 3. We have that

σ̂2 ∗
p,n = n−1

n−1∑
t=pmax

(
X∗

t+1+φ′pX
∗
t,p

)2
+2n−1

n−1∑
t=pmax

(
X∗

t+1+φ′pX
∗
t,p

)(
φ̂∗p−φp

)′
X∗

t,p

+n−1
n−1∑

t=pmax

(
(
φ̂∗p − φp

)′
X∗

t,p)
2 = S1 + S2 + S3, (27)

where X∗
t,c = (X∗

t , . . . ,X
∗
t+1−p)

′. To establish (16), we prove that S1 goes to σp,n,
and S2 and S3 are asymptotically negligible uniformly in p.

Using the proof of Proposition 2, we obtain that S3 = OP

((n/ log n)−(r−2)/(2r+2)). To prove that S1 goes to σp,n, we have E∗[S1] − σ2
p,n =

OP ((n/ log n)−(r−1)/(2r+2)) and Var ∗[S1] = OP (n−1(n/ log n)1/(2r+2)), using sim-
ilar arguments as in (26). In Alonso, Peña and Romo (2003) we give the details.

Finally, by the Cauchy-Schwarz inequality, we have S2 = OP (n−1/2

(n/ log n)−(r−3)/(4r+4)). Then

|σ̂2 ∗
p,n − σ2

p,n| = OP

(
(n/ log n)max{−(k−3),−(2k−4),−(2r−4)}/(4r+4)

)
,
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and the Assumption A2 with r > 2 and Assumption C with k > 3 concludes the
proof.

Proof of Proposition 3. Suppose that there exists a positive integer C such
that lim

n→∞pr∗{p̂∗(n) ≤ C} > 0. This is equivalent to

lim
n→∞pr∗

{∃p′ = p′(n) ≤ C : S∗
n(p′) ≤ S∗

n(p)
}
> 0. (28)

From Lemma 2 we have that p̂ is a divergent sequence, i.e., for any 0 < C <

+∞ we have that pr {p̂ > C} → 1. Then, (28) and (16) from Lemma 3 implies
that for all ε > 0 we have

lim
n→∞pr∗

{
∃p′ ≤ C : −ε < n+ 2p̂

n
σ2

p̂,n
− n+ 2p′

n
σ2

p′,n

}
> 0. (29)

By assumption A3, we have σ2
C > σ2, and note that σ2

p̂,n

P−→ σ2 and σ2
C ≤

lim infσ2
p′,n ≤ lim supσ2

p′,n ≤ σ2
1. Choose a sufficiently small ε in order to get a

contradiction with (29).

Proof of Theorem 1. We can write XT+h and X∗
T+h as XT+h = −∑+∞

j=1

φjXT+h−j + εT+h, and X∗
T+h = −∑+∞

j=1 φ̂
∗
j,nX

∗
T+h−j + ε∗T+h, where φ̂∗j,n denote

the estimates of φj from a resample of size n, φ̂∗j,n = 0 for j > p∗(n), and X∗
t = Xt

for t ≤ T . For simplicity of notation we present the proof for h = 1.
From Lemma 5.4 of Bühlmann (1997), we have ε∗T+1

d∗−→ εT+1 in probability.
Then by the Slutzky Lemma, it only remains to prove that the difference of the
first terms in X∗

T+1 and XT+1 goes to 0 in probability. This is

−
+∞∑
j=1

(φ̂∗j,n − φj)XT+1−j = −
p∗(n)∑
j=1

(φ̂∗j,n − φj)XT+1−j +
+∞∑

j=p∗(n)+1

φjXT+1−j

= S1 + S2

By similar arguments as in Proposition 2, we have that

S1 = OP ((n/ log n)max{−(k−1),−(2k−2),−(2r−2)}/(4r+4))

and
S2 = oP ((n/ log n)max{−(k−1),−r}/(2r+2)).

Then

−
+∞∑
j=1

φ̂j,nXT+h−j

=
+∞∑
j=1

φjXT+1−j +OP

(
(n/ log n)max{−(k−1),−(2k−2),−(2r−2)}/(4r+4)

)
.
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Using Assumption A1 with r > 1 and Assumption C with k > 1, we obtain
thatX∗

T+1
d∗−→ XT+1 in probability. In Alonso, Peña and Romo (2003) we present

the details.
For general h, it is clear that we can write the difference of first terms inXT+h

and X∗
T+h as a sum of a continuous function f(φ1, . . . , φh−1, φ̂

∗
1,n, . . . , φ̂

∗
h−1,n)

(S1 + S2), and a term similar to S1 + S2. The second terms in XT+h and
X∗

T+h are linear combinations of the corresponding (and independent) errors
(εT+1, . . . , εT+h, ε

∗
T+1, . . . , ε

∗
T+h).
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