Statistica Sinica 14(2004), 127-154

ON BAHADUR EFFICIENCY OF THE MAXIMUM
LIKELTHOOD ESTIMATOR IN HIDDEN MARKOV MODELS

Cheng-Der Fuh

Academia Sinica, Taipei

Abstract: In this paper, we study large deviations of maximum likelihood and re-
lated estimators for hidden Markov models. A hidden Markov model consists of
parameterized Markov chains in a Markovian random environment, with the un-
derlying environmental Markov chain viewed as missing data. A difficulty with
parameter estimation in this model is the non-additivity of the log-likelihood func-
tion. Based on a device used to represent the likelihood function as the Li-norm
of products of Markov random matrices, we investigate the tail probabilities for
consistent estimators in hidden Markov models. The main result is that, under
some regularity conditions, the maximum likelihood estimator is an asymptotically
locally optimal estimator in Bahadur’s sense. The results are applied to several
types of hidden Markov models commonly used in speech recognition, molecular
biology and economics.
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1. Introduction

A hidden Markov model (HMM) is, loosely speaking, a sequence {&,}5°
of random variables obtained in the following way. First, a realization of a
finite state Markov chain X = {X,,} is created. This chain is sometimes called
the regime and is not observed. Then, conditioned on {X,}, the {-variables
are generated. Usually, the dependency of &, on X is more or less local, as
when &, = h(X,, Xn+1,m,) for some function h and random sequence {n,},
independent of X. &, itself is generally not Markov and may, in fact, have a
complicated dependency structure. A formal definition will be given at the end
of this section.

The combination of rich probability structure and useful statistical analysis
makes hidden Markov models a common tool for modeling dependent random
variables, with applications in areas such as speech recognition (cf. Rabiner and
Juang (1993)), signal processing (cf. Elliott, Aggoun and Moore (1995)), ion
channels (cf. Ball and Rice (1992)), molecular biology (cf. Krogh, Brown, Mian,
Sjolander and Haussler (1994)) and economics (cf. Hamilton (1994)). A good
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summary of these examples can be found in Kiinsch (2001). The main focus of
these efforts has been state space estimation, algorithms for fitting these models,
and the implementation of likelihood based methods. Sometimes the physical
nature of the problem suggests the use of a hidden Markov model, while in other
cases hidden Markov models simply provide a good fit to the observed data.

An important early work on the inferential problem for hidden Markov mod-
els is the 1966 paper of Baum and Petrie. They established the consistency and
asymptotic normality of the maximum likelihood estimator (MLE) for a hidden
Markov chain in the case where the observation is a deterministic function of
the state space. Based on the results of Furstenberg and Kesten (1960) and
Kingman’s sub-additive ergodic theorem (1976), Leroux (1992) established the
consistency of the MLE for general hidden Markov chains under mild conditions.
By adding a few essential ideas to the penetrating analysis of Baum and Petrie
(1966), Bickel and Ritov (1996) showed that the log likelihood for hidden Markov
models obeys the local asymptotic normality condition of LeCam. Bickel, Ritov
and Rydén (1998) later proved the asymptotic normality of the MLE under some
regularity conditions.

A difficulty with analyzing hidden Markov models is that the likelihood func-
tion can only be expressed in additive form (cf. equation (1.8)). Fuh (1998)
introduced a device used to represent the likelihood function as the Li-norm
of products of Markov random matrices in order to prove the existence of a
consistent sequence of roots of the likelihood equations that is asymptotically ef-
ficient. Fuh (2003) also proved the asymptotic optimality of SPRT and CUSUM
in hidden Markov models. This new representation enables us to apply limiting
theorems in that area, to verify the asymptotic properties of the MLE in hidden
Markov models.

In this paper, we study the properties of efficient parameter estimation for
a general hidden Markov model. In contrast to the existence and construc-
tion of estimates that are optimal according to the asymptotic variance criterion
(cf. Bickel and Ritov (1996); Fuh (1998); Bickel, Ritov and Rydén (1998)), the
optimal criterion will be based on the inaccuracy rate. Thus, let £1,&2,... be a
sequence of random variables, with the distribution determined by a parameter
0 taking values in a parameter space ©. Let h be a function on © into a metric
space I' with metric d, and assume that it is required to estimate h. For each n,
let T, = T, (&1, - .., &) be an estimate, and for e > 0 let

= an(e,0) = Py{d(Th, h(9)) > eV (1.1)

Assume that T, is consistent for h, i.e., a,, — 0 as n — oo for each ¢ > 0 and
f € ©. In many important situations, a,, — 0 exponentially fast. A consistent
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estimator 7T, is said to be locally optimal if

In(0)
5

o
lim lim_ 5 log am(e,6) = —

(1.2)

where Ij,(6) is the Fisher information for estimating h. Note that the definition
of local optimality in (1.2) is in the strict sense, the general definition of locally
optimality can be found in Bahadur, Zabell and Gupta (1980) and Shen (2001).

When the &, are independent and identically distributed random variables,
Bahadur (1960) obtained global and local bounds for the best possible rate by
applying the Neyman-Pearson Lemma. It was also shown by Bahadur (1960)
that, under some regularity conditions, the local bound is attained by the MLE
for small €. Further investigations along this line were conducted by Bahadur
(1967, 1983), Fu (1973, 1975, 1982), Bahadur, Zabell and Gupta (1980), Rukhin
(1983), Kester (1985) and others. Shen (2001) generalized Bahadur’s efficiency
to general parameter spaces and discussed many recent developments.

Beside the well known results that the MLE for estimation based on indepen-
dent and identically distributed (i.i.d.) observations {&,,n > 0} is efficient in the
sense of (1.2), Bahadur (1983) generalized it to a finite state Markov chain. It has
remained an open problem whether the MLE has the same optimality properties
when {{,,n > 0} is a general state Markov chain or a hidden Markov model.
The contribution of this paper is to provide a general framework for HMM, and
to give sufficient conditions for asymptotic optimality of the MLE in the sense
of (1.2) (Theorems 1 and 2). Thus, we answer a long-standing question and we
illustrate the usefulness of the results.

The rest of this paper is organized as follows. We first give a formal defi-
nition of generalized hidden Markov models and provide a representation of the
likelihood function. In Section 2, we give a brief summary of products of Markov
random matrices and prove a large deviation theorem. In Section 3, we define
Kullback-Leibler and Fisher information, and then provide sufficient conditions
such that the MLE is locally optimal. Several examples of hidden Markov mod-
els commonly used in speech recognition, molecular biology and economics are
illustrated in Section 4. Proofs are given in Section 5.

A hidden Markov model is defined as a parameterized Markov chain in a
Markovian random environment (cf. Cogburn (1980)) with the underlying en-
vironmental Markov chain viewed as missing data. This setting generalizes the
hidden Markov models considered by Leroux (1992), Bickel and Ritov (1996),
Fuh (1998) and Bickel, Ritov and Rydén (1998), in order to cover several inter-
esting examples of Gaussian regression and Gaussian autoregression studied by
Rabiner and Juang (1993), Hamilton (1994) and Merhav (1991). We consider
X ={X,,n > 0} as a Markov chain on a finite state space D = {1,...,d}, with
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transition matrix P(0) = [pyy(6)]ey=1,...a and stationary distribution m(f) =
(72(0))z=1,...a, where § € © C R? denotes an unknown parameter. Suppose that
a random sequence {§,}72, taking values in R, is adjoined to the chain such
that {(X,,&,),n > 0} is a Markov chain on D x R and, conditioned on the full
X sequence, &, is a Markov chain with

Pg{fn_H S B|X0,X1, - ;617 . 7§n} = Pg(Xn+1 : fn, B) a.s. (13)

for each n and B € B(R), the Borel o-algebra of R. We further assume the
existence of a transition probability density for the Markov chain {(X,,&,),n >
0} with respect to a o-finite measure u on R such that

Py{X1 € A&, € B|Xo = 2,6 =s0} = ) / Pay(0)f (s50y(6)]s0)dp(s),
yeA seB
(1.4)

where f(&x; px, (0)|€k—1) is the conditional density of &, given &,_; and X}, with
respect to p1, @ € © is the unknown parameter, and ¢, (-) is a function defined on
the parameter space © for each y = 1,...,d. Here and in the sequel, we assume
that the Markov chain {(X,,,&,),n > 0} is stationary with probability density
m2(0) f(; 92(0)) with respect to . Note that in (1.3), we assume that the distri-
bution of the Markov chain &, depends on &,_1 and X,. It can also depend on
En—ps - én—1 and X, ..., X1, X, without causing any difficulty. The usual
parameterization for § € © is 0 = (p11,...,Pdd, 01, - - - ,04) with pyy(0) = pyy and
¢y (0) = 6,. Here we consider § = (61,...,6,) € © C R as the unknown param-
eter, the true parameter value is denoted by §°. For convenience of notation, we
use m, for m,(0) and p,, for py,(6), respectively.

Definition 1. A process {{,,n > 0} is called a hidden Markov model if there
is a Markov chain {X,,,n > 0} such that the process {(Xy,&,),n > 0} satisfies
(1.3) and (1.4).

For given observations &, ...,&, from a hidden Markov chain {{,,n > 0},
the likelihood function is

d d n
gn(os- &1 0) = D - > T [ (605 020 (0)) T Payora; £ (&5 0, (0)1€5-1)-
rn=1

zo=1 j=1
(1.5)
For a given column vector = (z1,...,24)" € R? the Li-norm of z is
|z|| = L, |2]. The likelihood function (1.5) can be represented as

gn(&oy .-, &n30) = || My, - - - My Myr||, (1.6)
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where, for k =1,...,n,
f&oser(0)) 0 .- 0
My = My(0) = : PR : ; (1.7)
0 0 - f(&o;pa(f))
p1uf (s 01(0)|Ek—1) -+ parf(Ees 1(0)[Ex—1)
My, = My(0) = : : . (18)

p1af € pa@)Eat) - paaf (s 0al6)]€r1)
T=m(f) = (7r1, . ,7Td> . (1.9)

2. Large Deviations for Products of Random Matrices

In the limit theory for products of Markov random matrices, a large devia-
tion theorem can be found in Bougerol (1988) when the underlying Markov chain
satisfies an uniform ergodicity condition. It is clear from the cocycle representa-
tion in V.1. of Bougerol and Lacroix (1985) that the limit theorems for products
of random matrices are based on those for Markov chains. In fact, the proof
of Bougerol’s results is based on the perturbation theory for operators devel-
oped by Nagaev (1957) for Markov chains. Since Nagaev’s representation theory
and Bougerol’s results work only for one dimensional deterministic functionals
on uniformly ergodic Markov chains, we need more. Therefore, we give a brief
summary of the extension of Nagaev’s representation theory for Markov random
walks satisfying the w-uniformly ergodicity condition (defined below), and pro-
vide propositions related to the large deviations theorem that can be used to
prove Bahadur efficiency of the MLE in hidden Markov models.

Since {(X,,&n),n > 0} considered in (1.3) and (1.4) is a Markov chain on a
general state space D x R, by abusing the notation a little, we let {X,,n > 0}
be a Markov chain on a general state space D with o-algebra D, irreducible
with respect to a maximal irreducibility measure on (D, D) and aperiodic. The
transition probability kernel will be denoted by P(-,-). Let w : D — [1,00) be
a measurable function, and let B be the Banach space of measurable functions
h : D — C (:= set of complex numbers) with |h|, := sup, |h(z)|/w(z) < oo.
We assume the following conditions on the Markov chain: {X,,n > 0} has an
invariant probability measure 7 such that [ w(y)dn(y) < oo, and for every h € B

we have
le sup { [E(h(Xn)|Xo =) — [ hy)dr(y)] cx €D, |h < w} =0, (2.1)
=0 reD w(x)
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sup {E[w(X1)|X0 = a:]/w(a:)} < 00, (2.2)
€D
sup {E[\h(X1)|2w(X1)|X0 = $]/w(z)} < 0. (2.3)
€D

Condition (2.1) says that the chain is w-uniformly ergodic, and this implies that
there exist v > 0 and 0 < p < 1 such that for all h € B and n > 1,

sup [ B[A(Xn)|Xo = 2] = /h(y)dﬂ(y)l/w(ﬂf) < 0" Pl (2.4)
TE
(pp-382-383 and Proposition 16.1.3 of Meyn and Tweedie (1993).) When w is 1,
this reduces to the classical uniformly ergodic condition.

Let Gi(d, R) be the set of invertible d x d matrices with real entries, and let
M be a function from D x D to Gl(d, R). For A € Gi(d, R), define

My=A, My = M(Xo,X1),..., Mpy1 = M(Xy, Xp41), and T, = M, - - - M1 M.
(2.5)
The system {(X,,,T,),n > 0} is said to consist of products of Markov random
matrices on D x Gl(d, R) (cf. Bougerol (1988)). Let P, denote the probability
of {(Xn,Tn),n > 0} with Xg =z and My = I, the identity matrix, and let E,
denote the expectation under P,. We say that two non-zero vectors u,v € R?
have the same direction if for some A € R, u = Av. This defines an equivalence
relation T" on R?—{0}. The set of directions in R? is the projection space P(R%)
defined as the quotient space R? — {0}/I. For u € R? — {0}, @ denotes its
direction, i.e., the class in P(RY).
For given {(X,,Ty),n > 0} as in (2.5), M € Gi(d,R) and @ € P(R%), let
M -4 = Mu and define Wy = (Xo, %), W1 = (X1, My - @),..., W, = (X, T, - @).
Then, Wy, ..., W, is a Markov chain on the state space D x P(R?), with transition
kernel P((z, @), AxB) := E;(I4xp5(X1, My-u)) forallz € D, u € P(RY), A€ D,
and B € B(P(RY)), the Borel o-algebra of P(R?). Under Condition K given
below, it follows from a simple modification of Lemma 3.5 of Bougerol (1988)
that the Markov chain {W,,,n > 0} has an invariant probability measure m on
D x P(R%). Let P,z denote the probability of {W,,n > 0} with Wy = (=, @),
and let &, i denote the expectation under Py 3.

Definition 2. (i) A subset Q of Gi(d, R) is said to be contracting if there
exists a sequence {M,,n > 0} in Q for which ||M,||~' M, converges to a rank
1 matrix, where | M, | = sup{||Mul|;u € R? |lu|| = 1}. A product of Markov
random matrices {(X,,7T,),n > 0} on D x Gi(d, R) is said to be contracting
if 7{z € D;Q, is contracting} = 1, where (2, is the smallest closed semigroup
in Gl(d, R) which contains the support of P,((X1,M;) € D x -), and 7 is the
invariant measure of {X,,n > 0}.
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(i) A product of Markov random matrices {(X,,,T},),n > 0} on D x Gl(d, R)
is strongly irreducible if for all p with 1 < p < d, there does not exist a family of
p-dimensional linear subspaces of R, Vi (), ..., Vi(x) such that V(z) = Vi(z) U
~-UVi(z) and T,V (Xo) = V(X,), Py as. foralln=1,2,....

Let x(M) = sup(log ||[M||,log ||M~1]|). The following Condition K will be
assumed throughout this section.
K1. The underlying Markov chain {X,,,n > 0} satisfies conditions (2.1)—(2.3).
K2. There exist a, B > 0, such that E,(ezp{ax(M;)}) < B for all z € D.
K3. The system {(X,,7,),n > 0} is strongly irreducible and contracting.

Definition 3. Given a > 0, for any continuous functions ¢ : D x P(R?) — C, de-
fine ||y := sup{|o(z,@)|/w(z) : x € D,u € P(R?)}, and my(p) := sup{|p(z, @)
—(x,0)|/d(w,v)% x € D,u,v € P(RY)}, where §(u,v) := |sin{angle(@,v)}|. De-
fine H(a) as the set of Holder continuous functions ¢ on D x P(R?) for which
[€lla = lelw + ma(p) is finite.

For a Hélder continuous function ¢ € H(a), let z € D, 4 € P(RY), a € C,
and M; € Gl(d, R), and define linear operators P,, P on the space H(a) as

Pop(@,8) = Byfe Ml (X, My @)}, Po(e, @) = By{(Xa, My - @)},

(2.6)

By an argument similar to the spectral decomposition theorem for operators

given by Bougerol (1988), and that given by Fuh (1999) for w-uniformly ergodic

Markov chains, we have that P, and P are bounded linear operators on the

Banach space H(a) with norm || - [|,. Moreover, there exists a sufficiently small

1 > 0 such that for |a| < n, and with p defined as in (2.4), the spectrum of P,
lies inside the two circles

Ci={z:lz=1 =1 =p)/3}, Co={z:ls|=p+(1—p)/3}.

Hence, by the spectral decomposition theorem in Bougerol (1988), H(a) =
Hi(a) @ Ha(a), and there exists 0 < ¢ < n such that for |a| < 9§, Hi(a) is
one-dimensional and

Pymoh = MNa)mgh for h € H(a), (2.7)

where \(«) is the eigenvalue of P, with a corresponding eigenspace Hj(a) and
7o 18 the parallel projection of H(a) onto the subspace Hi(a) in the direction of
Hy(a). Let hy € H(a) be the constant function h; = 1, and let r((x,u);0) =
(moh1)(x,w). From (2.7), it follows that r(-;«) is an eigenfunction of P, as-
sociated with the eigenvalue A(«a); i.e., r(-;a) generates the one-dimensional
eigenspace Hi(a). The following proposition generalizes Proposition 3.8 in
Bougerol (1988). Since the proof is similar, it will not be repeated here.
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Proposition 1. Let {(X,,,T,),n > 0} be a product of Markov random matrices

defined in (2.5) and assume it satisfies condition K. Then there exists 6 > 0 such

that for |a| < 9, Py = Ma)Nq + Qq, and

(i) M) is the unique eigenvalue of the mazimal modulus of P,;

(ii) Ng is a rank-one projection such that NoQo = QaNo = 0;

(iii) the mappings A(«), Ny and Q are analytic, and log () is strictly convex
for |a| < 6;

(iv) M) > (24 p)/3 and for each p € N, there exists ¢ > 0 such that for each
n €N,

dar 1+2p
_ n < n.
||daan||a - C( 3 ) )
v) let v = lim, o (1/n)E; log ||T,|| be the upper Lyapunov exponent. Then
(v) let g y
O« .
3= 2o = [ & ation [ Myull/lul im(e, ).

The following large deviation result will be used to prove the local optimality
of the MLE in hidden Markov models. The proof is similar to that in Theorem 4.3
of Bougerol (1988) and will not be repeated here. In the following propositions,
recall that ¢ is the dimension of the Euclidean space in which the parameter
space O resides, and consider a € R.

Proposition 2. For each j = 1,...,q, let {(Xn,T,gj)),n > 0} be a product of
Markov random matrices on D x Gl(d, R) satisfying condition K. Then there
exist A, B > 0 such that, for any initial value x, unit vector v and 0 < ¢ < B,

.1 ;
Jim_—log Py {log | T ull —nv; > ne} = (), (2.8)

where pj(e) = —SUPgcqea (az—: —log \j(a) + a’yj> < 0, \j(a) is the eigenvalue
defined in (2.7) and v; is the upper Lyapunov exponent of {(Xn,Tygj)),n > 0}.

Proposition 3. For each j = 1,...,q, let {(Xn,Tygj)),n > 0} be a product of
Markov random matrices on D x Gl(d, R) satisfying condition K. Assume the
transition probability P(-,-) for the Markov chain X, has a density with respect
to the Haar measure of Gl(d, R). Denote W,gj) as the induced Markov chain on
D x Gl(d,R). Let f : D x Gl(d,R) — R be an additive functional such that
Em exp(af(Wl(]))) < oo for some a > 0, and for each j = 1,...,q, where m is
the stationary distribution on D x P(RY). Denote p; = mf(Wl(])). Then there
exist A, B > 0 such that, for any initial value x, unit vector v and 0 < ¢ < B,

.1 - j
Jim —log Poal Y (W) —nuy > ne} = (), (2.9)
k=0
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where 1;(e) = —supgcq<al(ae —log Aj(a) + ap;) < 0.

Proof. We first show that if {X,,,n > 0} is a Markov chain as in the second
paragraph of this section, then given X, takes values on the whole real line R,
the induced Markov chain {7}, - u} satisfies the Doeblin’s condition.

By means of the Iwasawa decomposition of GI(d, R) (cf. Lemma 6.1.1 of
Bougerol and Lacroix (1985)), we have that any matrix M in Gl(d, R) can be
written as M = s(M)k(M), where k(M) is orthogonal and S(M) is lower trian-
gular with positive diagonal entries. Let S be the set of s(M), and let K be the
set of k(M) for all M € Gl(d, R).

The existence of the transition probability density of the Markov chain
{X,,n > 0} with respect to the Lebesgue measure implies that M, has a density
p(u) with respect to the Haar measure mg on Gl(d, R), for each k = 1,...,n.
Let mg be the measure on S, and let my be the measure on K. Let u’ be
the stationary measure of (X%, My) on R x Gl(d,R). For any ¢ > 0, there is
a measure i on R x Gl(d,R), di(R x M)/dmg = p(M), such that p(M) < ¢,
var(y/, 1) < €/2 and the support of fi(R X -) is contained in some compact set I’
of Gi(d, R). Without loss of generality, we can assume that K['K =T.

It is well known (cf. p.407 in Helgason (1962)) that under suitable norming
of mg and mg, mg(dM) = mg(d(sk)) = mg(ds)mg(dk). Then, we have

P{(z,u),R x B} =p/{(R,M): M -u € B}
:/p(M.a)deg/ﬁ(M-a)de+s/2
B B

= / / p(sk - w)dmgdmi+e/2 < emg(SNC)my(B) +¢/2.
BJSNC

Since I' is compact, mg(S N C) < oo. This implies that the desired Doeblin’s
condition holds if X, takes values on the whole real line R. Also by A1, {X,,,n >
0} is a w-uniformly ergodic Markov chain. Combining these two properties, the
Markov chain {W,,,n > 0} is v-uniformly ergodic, with v : D x Gi(d, R) — [1,00)
and v(x,u) = w(x).

Denote Ml(j) = MU)(Xy, X;) with MY € GI(d, R) for each j = 1,...,q. For
all z € D, @ € P(RY) with ||u|| = 1, and o € C? (by a slight abuse of notation).
For a bounded measurable function g, we define linear operators ), () on the
Banach space B with norm |- |, as

Qag(x, ﬂ) _ gz{e(al""’a‘I)(g(Xl’Ml(l)'ﬂ)""’g(Xl’Ml(q)'ﬂ))t}

)

) @ (2.10)
Qg(xva):(‘:m{g(XlaMl a)vvg(XlaMlq Q_L)}

Recall that &, is the expectation defined on D x P(R?) with initial distribution
(x,m). Since {W,,,n > 0} is v-uniformly ergodic for some v : D x Gl(d, R) —
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[1,00), by an argument similar to (2.6) through (2.7), we can let Ai(a) be
the eigenvalue of @), with corresponding one-dimensional eigenspace, such that
Lemma 1 still holds for @, and Ai(«). The rest of the proof follows by an
argument similar to Theorem 4.3 of Bougerol (1988), and is omitted.

3. Main Results

Let {£,,n > 0} be the hidden Markov model defined in Section 1. Given a
Markov chain Z,, := (X,,,&,) as defined in (1.3) and (1.4), let D’ := D x R and
Mj, be the random matrix from D’ x D’ to Gi(d, R), as defined in (1.7) and (1.8).
Let T,, = M,, - -- M1 My; then, {(Z,,T,),n > 0} is a product of Markov random
matrices on D’ x Gl(d, R) as defined in Section 2. Since M, is fixed, we simply
let P, := PY denote the probability of {(Z,,T,),n > 0} with Zy = z, and let
E, .= Eg denote the expectation under P,.

For @ € P(R%), M € GI(d,R), and m = 7(0) = (71, ...,7g)" € S?1, the unit

sphere with respect to the Li-norm || - || in R?, we have
[Tl [ Tom |
log || T, 7|| = log —m——— + -+ - + log . (3.1)
" [Tl [l
Define
WO = (ZQ,T()T('), W1 = (Zl,Tlﬂ'), ey Wn = (Zn,TnT(') (32)

Then, Wy, ..., W, is a Markov chain on the state space F := D' x P(R?) with
the transition kernel

P((z,@),A x B) :=P%((2,7),A x B) := E.(Inxp(Z1, Miu))  (3.3)

for all z € D', w € P(RY), A € D x B(R), and B € B(P(R%), the Borel o-
algebra of P(R?). Note that the initial distribution of W, depends on Z; only,
and Zy has the stationary distribution 7, f(&; ¢,(0)) as its initial distribution.
We note that P, := P(-,-) in (3.3) depends only on z and let &, := &, ) denote
the expectation under P,. By (1.4), the Markov chain {(X,,&,),n > 0} has
transition density pgy(6)f(s; ¢y (0)|so) with respect to p. Therefore, the induced
transition probability P(-,-) has a probability density p(-,-) with respect to p.
Under condition K in Section 2, it follows from Lemma 3.5 of Bougerol (1988)
that the Markov chain W, has an invariant probability measure m := mgy on
E. Note that m is a product measure on D’ x P(R?), and the first component
has probability density m,f(&; ¢, (6)) with respect to u. Now, for M € Gl(d, R),
let 0 : E X E — R be o((20,u), (21, Mu)) = log(||[Mul|/|lu|); then for 7 = 7(0)
defined in (1.9),

log HTnT('H = O'(Wn_l, Wn) + -+ O'(Wo, Wl) + O'(Wo, Wo) (34)
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is an additive functional of the Markov chain {W,,,n > 0}, where o(Wpy, Wy) =
tog(| T/l ).

It is known that Kullback-Leibler divergence K(¢',6) is a major quan-
tity for the development of Bahadur efficiency. When {¢,} are indepen-
dent and identically distributed random variables, it is easy to see that
K(0',0) = [pg(&)log(pe(€)/pe(&))dE, the usual Kullback-Leibler information
number. For the case of a hidden Markov chain {&,,n > 0}, for given obser-
vations &, from {{,,n > 0}, Rabiner and Juang (1993) defined a generalized
Kullback-Leibler divergence K (6°,0) as H(#°,0°) — H(#°,0) with H(0°,0) =
lim,, 0o 1 Ego(log gn (€0, - . - ,&n3 0)). See also pp.134-136 in Leroux (1992). By
the ergodic theorem for products of Markov random matrices, it is easy to see
that H (6", 0) is just the upper Lyapunov exponent v for {(Z,,T}),n > 0} under
the parameter Y. Therefore, the Kullback-Leibler information number can be
defined as

/5 ( | M:(6°) Mo (6°) 7 (6°)
[[M1(6) Mo (0)7(0)]]

where &, is the expectation for the induced Markov chain W,, starting at z. Recall
that Wy = w = (2, Mor) from definition (3.2), and My(0), M1(6) and 7(6) are
defined in (1.7)—(1.9).

Suppose that © is an open set in RY. Based on the definition of Bahadur

)dmgo (w), (3.5)

(1967) and Shen (2001), a parameter space O is a suitable compactification of ©
if © is dense in ©. A continuity condition (cf. condition A3 on Shen (2001)) for
the likelihood function on the boundary of the parameter space is also assumed
to hold. The following conditions will be used throughout the rest of this paper.

C1. The true parameter #° is an interior point of ©, and the transition probabil-
ity matrix [pyy ()] is ergodic (irreducible, aperiodic and positive recurrent)
for all # € ©. Moreover, the Markov chain {(X,,&,),n > 0} has an invari-
ant measure and satisfies conditions (2.1)—(2.3), and My(0), M;(0) defined
in (1.7) and (1.8) are invertible P? almost surely, for all 6 € ©.

C2. 0 is identifiable, i.e., for each 6,6 € ©, 6§ # ¢, and all n = 1,2,...,

gn(&o, -, &n;0) and g, (o, - .-, &n; 0') are not equal p-a.s.
C3. For each 0 € ©, there exists u = u(#) > 0 such that for all x € D,

sup £ [ sup MF|ZOZ(%§O)><OO7

(z,£0)eDXR neEN, () 91 (50751, )

where Ny (0) is a h-neighborhood of # and Ey(-|Zy = (x,&)) denotes the
expectation defined under P in (1.3) with initial state (z,&y) € D x R.
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C4. For all x € D, &,& € R, 0 € O, and for 4,5,k = 1,...,q, the partial

C5.

~—

C6.

derivatives 9l1/00;, 01/ 00;00;, 231/ 00;00;00), exist and are continuous in 6,
where [(£o,€1;0) = log g(&o,&1;0), and

dlog g1(&0,&150) Olog || M1 (0) Mo (0)m(0)|
laef : ):/5Z( laei

gme( )dmg(w) = O,
where &, is defined as the expectation under P,,, in (3.3), with the initial
measure as the stationary probability measure mgy. For all z,y € D, § —
Pay(0) and § — 7,(6) have two continuous derivatives for § € ©.

For all 6 € ©, the Fisher information matrix

— (1:(0)) = (5m6 Kaloggl(fo,fl;@)) (3108;91(50751;9))}) (3.6)

B dlog ||M1(9)M0?90;W(9)|| dlog ||ﬂ4819(Jé)M0(9)W(9)||
-(/&l( 20, I 99, ) dmate)

is positive definite in a neighborhood of °.

Let m;(0,&,u) = supn{|8%li :d(n,0) < u} and m;;(0,€,u) = supn{|%2al%| :
d(n,0) < u}.

There exist u = u(f) > 0 and t = #(#°) > 0 such that, for all z =
(z,&0) € D x R and & € R, sup,cpyp Egexp(tm;(0°,&,u)|Zy = 2) <
00, SUp,epxr Eoexp(tmi;(0°,&,u)|Zy = z) < oo, for i,j = 1,...,q. Fur-
thermore, Nj(6°) is non-empty and there exists a measurable function
w(-,-|0%) such that

931
sup Ep( sup | 120 = 2) < w(&o,&;6°) (3.7)

2€DxR 0E N, (69) 00,0000,

for all 4,5,k =1,...,q. The moment generating function of w exists when
6 obtains.

Discussion of Assumptions:

1. We consider hidden Markov chains with a finite state space; therefore, the re-
quirement that [ps,(0)] be ergodic is equivalent to requiring that there exists
r > 0, for all z,y € D, 6 € ©, such that p; (0) > v() > 0, where pf, (0)
denotes the rth step transition. For simplicity, we assume r = 1 throughout
this paper. That {(X,,&,),n > 0} satisfies (2.1)—(2.3), the w-uniform er-
godicity condition, is quite general and covers several examples of Gaussian

autoregression presented in Section 4. The reader is referred to Meyn and
Tweedie (1993) for more details about w-uniformly ergodic Markov chains.
The invertible condition is a technicality. C2 is the identifiability condition
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for hidden Markov chains, which can be relaxed to the condition given by
Leroux (1992). For the case where &, is a deterministic function of X,,, the
reader is referred to Ito, Amari and Kobayashi (1992) for necessary and suf-
ficient conditions. C3 and C6 are Bahadur-type moment conditions for large
deviations of the MLE. C4 amounts to standard smoothing conditions. To be
more specific, for fixed 6/ € ©, and for 7,7 = 1,...,q, the partial derivatives
0K (0,0')/00;, 9> K (0,0")/00,00; exist and are continuous in @. The reader is
referred to Shen (2001) for the case of general parameter spaces.

2. In order to define the Fisher information (3.6), we need to verify that the
score function 9log g1(£o,&1;0)/00 is in La(Pp,) for 0 € Nup(0°) := a h-
neighborhood of #°, since the definition is based on the law of large numbers
for products of Markov random matrices developed from Proposition 2. That
is, we need to verify that, for 8 € N, (6°),

3108;91(50751;9)>2
Emyg ( 20 < 00
A sufficient condition for (3.8) to hold is that

( [8 log 30 1 v (€05 02(0))pay f (€13 0y (8)]60) } 2
00

(3.8)

sup sup &
ueSi-1 (x,60)eD’

Wo = ((2.60).m)) <
for 6 € N (6%). By definitions at (1.8) and (1.10), this reduces to

([8 log Zi,y:ﬂ/xf(fo; Pz (9))pzyf(£1§ Py (9)‘50):| 2
00

sup Fjy

‘ZO = ($7 60)) < oo,
(:C,fo)ED’

for 6 € Nj,(6%). From condition C3, simple calculation shows that

sup Ego ({ max M

sup
(I7§0)€D/

2
Z = .
000w/ €D f(§1;<ﬂy’(9)\§o)] %= (@6) <o (39)

is a sufficient condition.

Remark 1. Let p(&1/€0,£-1,-..;0) be the conditional probability of & given
€0,€-1,. .., and Py(Xo = +[€0,&—1, - . . ; 0) be the filtered probabilities given &y, &1,

The Kullback-Leibler distance is K (0°,0) = H(6°,6°) — H(#°,0) with
H(6°,0) the relative entropy, intuitively defined as

H(6°,0) = Ego(log p(&11€0,6-1, .- 50))

d d
= Eyo (1082 D> F(&l€os oy (0))pay Po(Xo = €0, €1, - ;9))

rz=1y=1
= Ego(log | M1(0) Py (Xo = 2[§0, E-1, -5 0)]])-
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This shows that the definition of H (6, ) is the expectation under the stationary
distribution Py(Xo = +|&0,&-1,...;0), that is, T,,(6)7, when run under a process
having parameter . A similar interpretation can be made for (3.5), where
the Kullback-Leibler information number is defined under mgo, the stationary
distribution of the Markov chain W,, = ((X,,&,), T,,w) defined in (3.2) and (3.3).
Note that T}, () itself does not form a Markov chain, but {((X,, &), Tam),n >
0} is a Markov chain. It is worth mentioning that only &, appears in T,,7, in which
it reflects the nature of hidden Markov models. We also note that the Markov
chain {W,,n > 0} with stationary distribution mgo as its initial distribution
involves the entire past {£o,&_1,...}.

Remark 2. A similar interpretation can be made for the Fisher information I(6)
n (3.6). Note that I(f) is defined as the expected value under the stationary
distribution mgo of the Markov chain {W,,,n > 0}. This is the key idea for the
representation at (3.6), since the log likelihood function is an additive functional
of the Markov chain {W,,,n > 0}, as shown in (1.6)—(1.9) and (3.4). See Lemma
2 in Section 5 for the approximation of K(¢',6) by 1(6) as 8’ — 6.

For the estimation of h(f), a real valued function of the unknown parameter
0, let Ae,0) ={0" : 0 € ©, |h(¢) — h(0)| > e}. If A(e, ) is not empty, define
b(e,0) = inf{K(0',0) : 0/ € A(e,0)}, where K(¢',0) is defined in (3.5). If A(e, 0)
is empty, define b(e,0) = 0o

For each 4,7 = 1,...,q, let [I"/(0)] = [I;;(#)] " which exists by condition C5.
Let h be a real-valued smooth function from © to R, and let I}, (6) be the Fisher
information matrix for estimating h(@). It is easy to see that

0=( 3 o)

,j=1

Theorem 1. For a hidden Markov chain as at (1.3) and (1.4), let 6 € © be the
unknown parameter, let h be a real-valued smooth function from © to R, and let
T, be a consistent estimate of h(f). Then if b(e,0) = (1/2)1,(0)e? + o(¢?) as
e — 0, we have

lim hmlnf—logPQUT _ h( )| > 6) > _Ih(e)‘

e—0 n—oo 2

(3.10)

Our main result shows that the maximum likelihood estimator of h(f) can
actually attain the lower bound in (3.10).

Theorem 2. For a hidden Markov chain as at (1.3) and (1.4) satisfying C1—C6,
let 0 € © be the unknown parameter, let h be a real-valued smooth function from
O to R, and let 0,, be the MLE of 6. Then

lim lim —logP9(|h( W) — h(0)] > ¢) = _L6)

e—0n—oo 2

(3.11)
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Remark 3. If h is a real-valued measurable function from © to R and if én is
the MLE of 6, then (3.11) can be replaced by

1 .
lim lim ———log F, n) — >¢e)=—1. 12
lim timy = log Py([h(6,) ~ h(0)] > <) (312)

Hence h(6,,) is asymptotically locally optimal in the sense of Bahadur, Zabell
and Gupta (1980) and Bahadur (1983).

4. Examples

Several types of hidden Markov models fit within the framework of (1.3) and
(1.4). In this section, we apply Theorem 2 to these models, to include Markov
chains, i.i.d. hidden Markov models, and Gaussian autoregression.

Example 1. Markov Chains

When &, is equal to x,, in (1.3), one has a Markov chain. For the finite state
space case, Bahadur (1983) investigated the local optimality for the maximum
likelihood estimator 6,. Consider the following characterization of the canoni-
cal measure K (6,,,0), where K (#,6) is defined as Y ,cp 72 (6') > yep Pay(0') log
(P2y(0")/pay(8)). Bahadur showed that if limsup,_, limsup,_ . (1/en)log Py
(K(0,,,0) > &) < —1 then, for each measurable function h from © to R, h(6,) is
locally optimal. Our conditions C1—C6 differ slightly from assumptions (i)—(iii)
on p.279 of Bahadur (1983) and we obtain the same result in terms of I(6)
for small e, where I(0) = Y, e p(m2(0)/Pey(0))(Opay(0)/060)* for 6 € © C R.
Note that conditions C1—C6 require that the Markov chain be ergodic under
the true parameter #°, and that the transition probabilities Day(0) satisfy some
smoothness and moment conditions. The sufficient condition (3.9) reduces to the
standard Markov chain condition.

Example 2. i.i.d. Hidden Markov Chains

When the &, at (1.3) are conditionally independent given X, one has the
so-called mixture model with a Markov regime. Let X, be a two-state ergodic
Markov chain and, conditional on X, let the &,, have normal densities with means
and variances y; = 2, s = 0, 07 = 03 = 1. Suppose C2 holds. The requirement
Pay(0) > 0 for all z,y = 1,2, and for all # € O is a sufficient condition of CI.
By simple calculation, C3 reduces to Fe* < oo. By using similar arguments,
C4—C6 also hold in this case.

When the p;, are known for z,y = 1,2, pus = 0, 0? =03 =1, and yuy is the
only unknown parameter, (3.9) reduces to

<[ f(&504(0))

sup Fygo
zeD

sup max

2
10—00|<h vv' €D f(&1; gpy/(e))] [ Xo = 95) < 09, (4.1)
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which holds for the normal mixture. Then the Fisher information I(u;) is equal
to Em,, (S22 meper (€1 — m1)p(€r — p1)/g1(€x; 11)]%, where o(-) is the standard
normal density and g1(&1;p1) = Zi,y:l TaPayP(§1 — f1z). In general, for a finite
ergodic Markov chain X,,, let f(-;¢.(6)) be a Lebesgue density on R! for each
x, and assume that f is continuous and positive with limg_ 4o f(&¢2(0)) =0,
J200 FH(& 9z (0))dE < oo for some a < 1, and that f(-;p,(0)) has at least three
continuous derivatives and is bounded. Suppose the identifiability condition C2
holds. By an argument similar to the one above, conditions C1, C3—C6 hold,
so Theorem 2 implies that, for each smooth function A from © to R, the MLE
h(B,,) of h(8) is locally optimal for each 6 € ©.
Example 3. Gaussian Autoregression

We start with a simple scalar-valued fourth-order autoregression around one
of two constants p1 or us:

&n — Han = P1(6n-1 = Hapy) + P2(§n—2 — Han_s) + 03(En—3 — Han_s)
+904(§n—4 - :urn74) + €n, (4'2)
where ¢, ~ N(0,02) and 0 = (¢1,. .., ¢4, ju1, 2, 02) is the unknown parameter.

This model was studied by Hamilton (1989) in order to analyze the behavior of
U.S. real GNP. The likelihood function for given X,, = z,, n > 0, is

4
f&nlzn; 0) = exp ( —[(6n — pa,) — Z o (En—k — Nrn—k)]2/202)- (4.3)
k=1

1
V2mo
Assume that all the roots of 1 — Y 4_; pr2" = 0 are outside the unit circle, and
that there exists a constant ¢ > 0 such that o2 > ¢. Suppose the identifiability
condition C2 holds. Suppose py(0) > 0 for all z,y € D, for all § € ©, and that
the condition C1 holds when w(x) = 22. It is easy to see that conditions C3—C6
are satisfied in this model. Condition (3.9) reduces to

([ f(&15904(0)1€0)

sup FEjyo
(Ivéo ) EDI

\G—S;%)ih yy/eD f(&1 0y (0)]0)
Since the maximum over x and y is applied to a finite set D, and f defined in
(4.3) is a normal density, it is easy to check that (4.4) is satisfied in model (4.2).
Although the random variables &, depend on &, 1 and X,, only in Theorem 2,
the result can be extended to depend on &,_p,...,§,—1 and X, ..., X1, X,
without any difficulty. Therefore, the MLE in model (4.2) is locally optimal.

When §, = X, in (4.2) and pu1 = po = p, one has the classical autoregressive
model with unknown parameters § = (¢1,...,@4,0%). The Fisher information
matrix is

r|z0 _ (x,§0)> oo (4.4)
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where I' = (7;—j)axa for 1 < i, 5 < 4, with v, = EX;, X1 4.

Engel and Hamilton (1990) considered switching autoregression model in
which both the mean vector and the variance-covariance matrix were functions
of the state: &,|x, ~ N(pg,, Rz, ), for , = 1,2, where 0 = (1, p2, Q1,2) are
the unknown parameters. In this case, the likelihood function for given X,, = z,,
n >0, is

)

1 —\Sn T Mxy /Q;]' n — Uz,
o — E RS

where |Q;| denotes the determinant of Q,. Suppose C2 holds. Assume there

exists a constant ¢ such that 0 < ¢ < |€,| for each x = 1,2, and suppose that

11, o are in R; simple calculation shows that conditions C1, C3—C6 are satisfied.
In general, let &1, ...,&, be a sample from the model

p—1
fn = Z ainfn—k + O-:Engn, (45)
k=1

where €, is a normal random variable with zero mean and unit variance, and
az = (al,...,a271 0,) are the unknown parameters. In this case, the likelihood

function is

Flealas,) = (2mos, )12 exp { = o (6 —Zzlkskf}
Tn =1

Assume that all the roots of 1 — >0 _, akzF = 0 are outside the unit circle, and

that there exists a constant ¢ with 0 < ¢ < 0'926 for x = 1,...,d. Suppose the
identifiability condition C2 holds. By a simple calculation, conditions C1 and
(C3—C6 hold so Theorem 2 implies that, for each smooth function A from © to

R, the MLE h(6,,) of h(f) is locally optimal for each 6 € ©.

5. Proof of the Main Results

By (1.6), the analysis of likelihood estimation for hidden Markov models
is reduced to that of products of Markov random matrices. In order to apply
the large deviations result of Propositions 2 and 3 obtained in Section 2, it is
necessary to check whether conditions C1—C6 imply conditions K1—K3. The
proof of the following proposition is included here for completeness.

Proposition 4. Consider a hidden Markov chain as at (1.3) and (1.4) and that
satisfies C1—C6, and let 6 € © be the unknown parameter. The induced product
of Markov random matrices {(Zn,Ty),n > 0} satisfies conditions K1—K3.

Proof. First, we note that C1 implies K1. Because each component pu, f(&x;
0y (0)[€k—1) in My has X1 = « and X}, = y, and § is a Markov chain with
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transition probability density f(&x; @y (0)€k—1), for each k = 1,...,n, M} is a
Markov random matrix with the underlying Markov chain {(X,,&,),n > 0}
having transition probability (1.3). It is easy to see that the moment conditions
C3 and C6 imply condition K2.

Next we need to verify K3. Because the Markov chain {X,,,n > 0} is ergodic
(C1), there exists an r > 0 such that p}, (¢) > 0 for all z,y € D and for all § € ©,
where pi, () denotes the rth step transition probability. We have taken r = 1
to have pgy(f#) > 0 for all z,y € D and for all § € ©. Conditioned on X,
f(&k; 0y (0)[€k—1) is a transition probability density and hence is nonnegative for
any 6 € ©. Therefore, the strongly irreducible condition is satisfied.

It is known that for all # € O, the product of random matrices {(Z,,T,),n >
0} on D' x Gl(d, R) is contracting if there exists a matrix M in the smallest closed
semigroup in Gl(d, R) which contains the support of P(D’ x -), and such that
M has a unique largest absolute eigenvalue. (This is an easy generalization of
Corollary TV. 2.2 of Bougerol and Lacroix (1988).) Since the dimension of the
matrix is finite and f(&1; ¢, (6)]&o) is a conditional transition probability density,
we have that for all § € ©, there exists & € R, with f(&1594(0)|60) > 0 for
all y € D. Let Qg = [pay(8)f(&1504(0)|€0)]. Based on the assumption that the
transition probability matrix [p.,(0)] of {X,,n > 0} is positive for all § € O,
and according to the Perron-Frobenius theorem for a positive matrix, (Jy has a
unique largest eigenvalue. This implies that {(Z,,T,),n > 0} on D’ x Gi(d, R)
is contracting for all € ©.

Proof of Theorem 1. This follows from Theorem 4.1 of Bahadur, Gupta and
Zabell (1983) and the expansion of b(e, #) in terms of I;(6).

In the following, we consider hidden Markov models (1.3) and (1.4) that
satisfy conditions C1—C6. Note that M (7) depends on 6, and we write M ()
or M(0) (mw(0)), respectively, for convenience. By using the definition of Kullback-
Leibler information number at (3.5), a simple application of Jensen’s inequality
and condition C2 yields the following.

Lemma 1. For any 0,0 € ©, K(0',0) > 0 with equality if and only if 8’ = 0.

In the following proofs, for simplicity, we first consider a one-dimensional
parameter § € © C R and h(x) = x. The parallel development when 6 is in a
g-dimensional parameter space © with real valued function h on © is discussed
at the end of this section.

Lemma 2. Let 0,0’ € © C R? and let h be a smooth real-valued function such
that |h(0) — h(¢')| < . Then as e — 0, b(e,0) = (1/2)I,(0)e* + o(e?), where
I,(0) is defined in Theorem 1.
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Proof. Note that in the one dimensional case with h(x) = x, we have I () =
1(9) and b(e, 8) = K (¢',0) with ¢’ = 0 + <.

Recall that Wy, ..., W, is a Markov chain on the state space E := D’ x P(R%)
with the transition kernel P((z, @), A x B) := PY((z,4),A x B) := E,(Iaxp(Z1,
Mu)) for all z € D', @ e P(RY), A e D x B(R) and B € B(P(R%). By (1.4),
the Markov chain {Z,, = (X, &,),n > 0} has transition probability with density
Pay(8) f(s;04(0)|s0) with respect to p. Therefore, the induced transition proba-
bility P?(-,-) of W, has a probability density py(-,-) with respect to x and the in-
variant measure my has a probability density with respect of . With an abuse of
notation, we still denote the last by my. (Note that we write py,(6) (7,(0)) as the
transition probability (stationary distribution) of the Markov chain {X,,,n > 0},
and pg(-,-) (mg(-)) as the transition probability (stationary distribution) of the
Markov chain {W,,,n > 0}.)

The Kullback-Leibler information number at (3.5) is defined in the frame-
work of products of Markov random matrices; therefore, by letting wo = (20, Mo7),
wy = (21, T17), we have

0. 0)

|V (0) Mo (8)(0')] o
/(zo,Mmr 5Z0<log | M. (0) Mo (0)x ()| )me’(ZOaMOW)dM(Zo,MOW)

[ M:.(6") Mo (8")m (6)
/wo /wl 10g< M1 (0) Mo (0) 7 (0)]] >p9/(wo,w1)m9/(w0)du(wl)du(w0), (5.1)

where £, denotes the expectation under P.

Let F(0):=||M:(0)Mo(0)7(0)|, F'(8):=0F(0)/00 and F"(0):=0>F(0) /96>,
these exist by C4. Also by condition C4, the derivative mp(-) of my(-) with
respect to 6, and the derivative py(-,-) of py(-,-) with respect to 6 exist. Using
condition C4, we can write a derivative exists of the likelihood function, and
second derivatives exist of my(:) and py(-,-), Taylor expansion of (5.1) as

K(0,6)

= . /wl log [1 + ];((99))6 + - F”((;)) g2+ 0(62)]

[pe(wo, w1) + ph(wo, w1>s +ole >} [me(wo) + m(wo)e + o<e>} dpa(wy)dpa(wo)

)

:/w/w log<1+ 1F"((:) ) ofe )}
)
0

)
x |po (w0, wy +pg<wo,wls+o }me ) + mij(wo)e + ofe >}du<w1>du<wo>

:/wo/wl_ 0, 10 L B0V >]
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« [pg(wo, wt) + ph(wo, wi)e + o(e) | [mg(w) + mh(wo)e + 0(5)} dp(wy ) dpa(wo)

/ 2 22 , 9
:/wo /wl [Ei,((g))pe(wm )+ EFF((;))pG(wO,wl) — 5(?((00))) pe(wo,dwl)
F'(6)

F(H)

s

+&?

p/g(’l,U(], wl)] [7719(11)0) + mé(wo)e} dp(wr)dp(wo) + o(e?)

9 (wo, w1)mg(wo)dp(wi )dp(wp)

g\

(9)
 F(0)
F’(Q))2
F(6
'(0) mi(wo)
) mg(wo)

)) Pl (w0, w1 )ma (wo)dps(wy )dpu(awo) + o)

+

o (wo, w1 )mg(wo)dp(w )dp(wo)

0

Po(wo, w1 )me(wo)dp(w )dpu(wo)

s\@\

S~
N

o] Qo] D

~—

0 1

3

62

_l’_

po(wo, w1)me(wo)dp(wr )dpu(wo)

—~
>

o

H@\S\

g
D

+e?

/.
/.

'11

(0
= J1(0)e + 2J2(9)E - —1(9)52 + J3(0)e? + Ju(0)? + o(?).

0 1

Note that the third equation above comes from a Taylor expansion of the log
function.

To calculate each term in the above equation. By C4 and C6, we can inter-
change integration and differentiation to obtain

J1(0) = Enn [fﬂog(llMl( )Mo (0)7 (6 )H)]

00
— e o (LB UMOMOTOD 1 )
Similarly,
70) = £ [0 = &, e (S 10x 00| = 0
_ o [Olog (|[M:(0)Mo(0)m(0)]]) Olog dmg(wo)
J3(0) =Em _ ! 50 0 899 0 }
o o (LB IMOMOTON) i ) P8l

A simple calculation shows that J4(0) = I(#)e?. Hence, K(¢,0) = (1/2)I(6)e* +
o(e?).

The following lemma proves that the MLE is consistent in the large deviation
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sense under conditions C1—C6. It also implies that the MLE én exists and is
strongly consistent.

Lemma 3. Let 0, be the mazimum likelihood estimator of 8°. Then for any
€ > 0, there exists p, 0 < p < 1, such that for sufficiently large n,

Py(|0, — 0°] > &) < p™. (5.2)

Proof. Let € © := (a,b) and 0 # 0°, set z(£o, &16,0°) := log[gi (&0, £150) /91 (o,
£1;0Y%)]. By an abusing notation, let P, be given by (2.6) with log || Mju|| replaced
by z(£9, €110, 6°), and let A(a) be correspondingly defined at (2.7). Note that A(a)
depends on 6 and 6° here. {W,,n > 0} is v-uniformly ergodic as shown in the
proof of Proposition 3. By C3, C6 and Theorem 4.1 of Ney and Nummelin (1987),
A(«@) is well defined and Proposition 1 still holds for 0 < a < 1. By (2.6) and
(2.7), we have log A(0) = log A(1) = 0. Now, since log A(«) is strictly convex in
[0, 1] by Proposition 1(iii),

logA(a) <0 for 0<a<l. (5.3)

Under the same boundary condition for the parameter space as that in (5.17) of
Bahadur (1960) (or A3 in Shen (2001)), a similar argument as that of Lemma
5.2 in Bahadur (1960) shows that (5.3) holds for # = a or b. So (5.3) holds for
each  # 6° and 0 € © = [a, b].

By C3, there exists a € (0,1) such that E{exp(a supyen, 90 2(€0,£116,0°))}
< 00. Then for each 6 € © with § # 0°, there exists an interval Z(f) containing
6 such that

2* (€0, €110) = sup{z(&o, £1161,60°) : 6, € T(0)}. (5.4)
For each fixed 6, define A\j(c) as before, but with 2*(&,&1]0). Then by using
(5.3), Proposition 1 and Lebesgue’s Dominated Convergence Theorem (in terms
of §) for P, = AMa)Ny + Qu, we have \j(a) < 1 for 0 < o < 1, and such that
Z(0) is open in O.

Now given € > 0, let S. = {§ € ©;]0 — 0°| < e} with S¢ as the compliment
of S;.. We need only consider the case of non-empty S¢. Since S¢ is compact in
O, and 0y ¢ S¢, there exists a finite number of points in S¢, say 61,...,0 such
that S¢ C Z(01) UZ(62) U---UZ(6y), where Z(0) is defined for each 6 # 6° as in
the preceding paragraph.

For fixed n and &, ...,&,, suppose that |6, — 0°] > . Suppose first that
there exists #; € © for which log g, (&, ..., &n; 01) = supgeg 10g gn (o, - - -, &n: 0).
Then

%MWMWWM@ZM%@~KMH
€S

= suplog g, (&, - - -, €n;0) > log gn(&o, - - -, a3 0°).
0O
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Thus

S0 10g gn (€0, -+ €3 0) 2 108 (€ -  €n3 0°). (5.5)
Suppose next that loggn(ﬁo,...,fn;én) # supyce log gn(&o, ..., &n;6). Then
SUPpeo 108 gn (S0, - - -, &ns 0) = max{log gn (8o, -, &nsa), 10ggn(So,---,&nsb)} >
log gn (&0, - - -, &n;0°); hence (5.5) still holds since a and b are included in SE.
Thus |0, — 6°| > ¢ implies (5.5).
Since S¢ C Z(01) UZ(62) U---UZ(0), (5.5) implies

max { sup log gn(fm o &g 9)} > log gn(éOa ooy & ‘90)' (56)
1<j<k \ 9ez(0;)

Now, for any 6, by (3.4) and (5.4), we have SUPger(9) log gn (o, .-, &n;0) —
log gn (o, - -+, €3 0°) < 004 2%(€5-1,&|0). Consequently, (5.6) implies that

(g, 10 > (. .
Joax, { ;z (5z—17£z|0])} >0 (5.7)

Let AY) denote the event that Y1 2%(&i—1,&l6;) > 0. Then (5.7) is equiv-

alent to U;‘-”:lA,(f). Therefore, by (5.4)—(5.7), we have

P{16, — 6°] > e} < iP(A,({)). (5.8)

J=1

It follows from the definition of AY ), (5.4) and Proposition 3, that P(Aglj )) <
[)\Zj ()], If po = max{Aj, (a),...,Aj (@)}, po < 1 and the right hand side of
(5.8) does not exceed kpj. Choose a p such that pg < p < 1. Then kpj < p" for
all sufficient large n, and we have the proof.

The following lemma relates the behavior of the maximum likelihood esti-
mator 6, to that of the score function.

Lemma 4. Let 0, be the mazimum likelihood estimator of 0°. Then for any
given § with 0 < § < I(0Y), there exists p < 1 such that for any given & > 0,

Pyo([6n — 0% = €) < P[] = e[1(6°) — 8]) + o (5.9)
for all sufficiently large n, where

1% 5
E — (O'(Wi—la Wi) + o(W;, Wz‘+1))’
= 09

Gn = (5.10)

n 0=00 '
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Proof. Let

n

1 82
—( (Wiit, Wi) + o(Wi, Wz‘+1))

=1(6°) + B

0:00’

S

1
1 n

:_Z §Z 17627 7
n :

where w(-, -;8°) is defined in (3.7). For fixed h > 0, let N}, := {|0 —6°| < h} such
that (3.7) holds for all § € Ny, and §/h > E[w(&_1,&;;0°)]. By C6 which holds for
each § € Ny, and (3.6), I(0°) = —Emg[(82/892)(0(Wo, Wh) + o (W1, Wa))|0 = 0Y],
and it follows from (5.11) and Proposition 3 that there exist 0 < p; < 1 for
i =1,2,3 and all n with

-
Il

(5.11)

) 1)
P(nn el 2) < pl) P(Un S __) S pga P(Cn Z

’ ) < 0j. (5.12)

For given n and {&o,...,&,}, assume that

|6n — 6°] < h, and loggn<a%...,5n;én)::3ugloggn<&h...,§n;0). (5.13)
(S

Since 6,, € Ny, and N}, is open, it follows from (5.13) by Taylor’s expansion that
there exists a 6* with [0* — 0°| < |6, — 0°| < h such that

a ~
0= 551089n(C0, - &nibh)

9 .00 _Oa_ .00
8ﬁwﬁww%w (B~ 0) 555 108 9u &0, - 603 6°)

R o3
- _n0 . n*
+2(0n 0 ) 893 loggn(gm "757170 )
By (5.10) and (5.11), we have

R 1
(0 — OOL(°) + 7] = 6, With |rp] < |1a] + EhC”' (5.14)

Let An = {‘én_eo‘ > h}; B, = {loggn(fm oo 7£n§ én) ?é SUPgeco loggn(fm SERS)
&n;0)} and Cp, = {|n,| + (1/2)h(, > 6} As shown in proof of Lemma 3, each of
the events A, and B,, implies (5.5) and the probability of (5.5) is < pf for all
n large enough by (5.6), (5.7) and (5.8), where py < 1. C,, implies at least one
of the three events whose probabilities are considered in (5.3). Therefore, there
exists a p < 1 and a measurable event F, such that A, U B, U C,, implies E,,
and such that P(E,) < p™ for all sufficiently large n.

For given ¢ > 0, Py(|6, — 0°] > &) < Py(|f, — 0°] > ¢, (&o,...,6n) ¢
E,)+ Py(E,). Hence (5.9) follows from (5.14) and the preceding paragraph.
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Proof of Theorem 2. In the following, for simplicity, we assume the true
parameter 6 belongs to a one dimensional parameter space, and \y(0) = o =
1. By Theorem 1 and Lemma 2, the lower bound —b(g,8) is approximated by
—1(6)e?/2 for small . Next, we want to prove that this is indeed an upper
bound. We choose § with 0 < § < I(#) and write a = I(§) — d. It follows from
(5.10), Proposition 3 and C5 that, given p < 1, the first term on the right hand
side of (5.9) tends to a limit > log p as n — oo, provided € > 0 is sufficiently

small. Lemma 4 then yields

lim supn " log Py(|6, — 6] > ¢)

19
<limsupn tlog Py | — Z —(o(Wi—1,W;) + o(W;, Wit1)) > ea | .
n— o0 n =1 89

By the large deviation result in Proposition 3 for products of Markov random
matrices described in Section 2, there exists A > 0 such that

lim sup 1 log Py(|6,, — 0] > €) < — sup (ae —log Mg(a)), (5.15)
n—oo T O0<a<A
where \g(a) is defined in (2.7). From C4, C6 and Proposition 1(iii), it is easy
to see that \g(«) is analytic in (f,a) € © x R. Let # = 6 + &; by means of
Taylor expansion of #” around # and « around zero, the right hand side of (5.15)
is — SUPgeaca(—log Mg (@), up to o(?). We need to verify
(i) the approximation of the optimal point «g for small ¢, employing the supre-
mum on the right side of (5.15);
(ii) the approximation of Ag/(a) at the optimal point ag for small e, that
is, we want to prove that, for ¢’ in an e-neighborhood N(#) of 6,
lim._o(1/£2) log Mg (ap) = —(1/2)1(6).

For the proof of (i), note that «y is defined as ape — log Ag(a) = inf, (e —
log Ag(«r)). That is, g is the solution of A\j(a)/Ag(cr) = €, where \j(a) denotes
the first derivative of A\gp(c) with respect to a. By C5, X;(0) = 0, and the
smoothness properties of A\gp(«) in Proposition 1(iii), we have as ¢ — 0 that the
optimal o also — 0. By Taylor expansion of ag around 0, Ay (0)ag /Ao (0)+0(e) =
e, which implies that ag = € + o(¢).

(ii) As € — 0, by (i) and Taylor’s expansion of A\g/(cp) for ag around 0, we
have
k‘g (9/, 5)

2!

where k1(0',¢), and k2(6',¢) are the first two cumulants with

dlog (|| M1 ()Mo (8)7(9)])) |H,)
26 )

ko (0
log Apr (o) = k1(6',€)vg + af +o(ad) = ki(0,e)e + 2(2"6) e2 4 o(e?),

ki1(6',¢) = é’m(
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Since ¢ — 0, by Taylor expansion of " around 6, by Lebesgue’s Dominated
Convergence Theorem via C6, and by integrating term by term, (5.16) becomes

9 log(|[ M1 ()Mo (6)7(0)]]) 821Og(IIM( )Mo (0)m(6)]])
Em ( 59 o ) o(*)
2
o 5, (LLELAOMOTODY, | o)
In a similar way, we have
]{32(0/,6):‘/(17” (810g(||M1(8)9 ( ) ( )||)|9:9/)

Through standard computation of additive functionals of the Markov chain W,,,
we have &,,(0? log(||M7(8)Mo(0)7(0)|)/00%) = —1(6), and therefore

lOg/\gl(ao)
9 log (|| M (6) Mo (6)7(6)]]) 9 log (|| M ()Mo (6)7(0)])
= o0 )2+ 58 o0 )
+o(e?)
= —%I(@)e2 + o(?).
Hence
3%7}1—%05—10?;39 (|9 -0 > 5) < —@. (5.18)

To treat the general one-dimensional case, suppose 0,, is the MLE of 6.
Suppose that h(8°) # 0. Choose A > 1. It is easy to see that, for any sufficient
small € > 0, |h(0) — h(0°)| > € implies |6 — 6°] > §, where § = /AR (6°)]. Let
B = {(€0,...,&n) : |1(6,) — h(8)] > €}. Then B, . implies {|d, — 6] > ¢}, and
hence Py(By2) < Py(|6, — 0] > €). Since /e = 1/A|1/(8°)], it follows from (5.18)
that

1(6)
lig i, 5~ log Py (6 W) =hO) 2 ) < —gomrtm (5:19)
Since A > 1 is arbitrary, (5.19) implies
1(6)
I > < —— .
lim Jim o log Py ([h(6.) ~h(0)| =€) < g, (5:20)

By using (5.20) and the lower bound (3.10) in Theorem 1, we have (3.11) for
one dimensional case.
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Now, suppose that © is an open set of the ¢ dimensional Euclidean space of
points, and let § € © be the unknown parameter. To have (3.11), we need to
show that for any smooth function A from © to R,

I1(9)
e

The main difficulty of generalizing (5.20) to (5.21), as noted on pp.251-252
of Bahadur (1960), is in formulating a satisfactory boundary condition on the
parameter space. The reader is referred to p.320 of Bahadur (1967), and p.484
of Shen (2001) for details.

Remark 4. Note that the trick used here is to analyze the right side of (5.15),
which is a slightly different approach from those employed in Bahadur (1960)
and Fu (1973). Bahadur’s proof relies on the tail probability approximation of
the normal distribution (see Lemma 2.4 for details); Fu’s proof is based on the
relationship between the MLE and the score function. In this paper, we have
developed the relation via analytic properties of A\g(«).

Remark 5. In light of (10) and (11) in Bahadur (1983), or (1.10) and (1.11) in
Shen (2001), we have (5.21) if we can show that

o .
lim lim_ ——log Py (|h(0n) — h(0)| > ) < - (5.21)

e—0n—oo

1 .
lim sup lim sup — log Py(K (6,,6) > ¢) < —1. (5.22)
n

e—0 n—oo & -

By using the decomposition of K (6,,6) in terms of I(f,) in Lemma 2, and
the large deviation result in Proposition 3, we have (5.22). Details are omitted.
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