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Abstract: In this paper, we study large deviations of maximum likelihood and re-

lated estimators for hidden Markov models. A hidden Markov model consists of

parameterized Markov chains in a Markovian random environment, with the un-

derlying environmental Markov chain viewed as missing data. A difficulty with

parameter estimation in this model is the non-additivity of the log-likelihood func-

tion. Based on a device used to represent the likelihood function as the L1-norm

of products of Markov random matrices, we investigate the tail probabilities for

consistent estimators in hidden Markov models. The main result is that, under

some regularity conditions, the maximum likelihood estimator is an asymptotically

locally optimal estimator in Bahadur’s sense. The results are applied to several

types of hidden Markov models commonly used in speech recognition, molecular

biology and economics.
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1. Introduction

A hidden Markov model (HMM) is, loosely speaking, a sequence {ξn}∞n=1

of random variables obtained in the following way. First, a realization of a
finite state Markov chain X = {Xn} is created. This chain is sometimes called
the regime and is not observed. Then, conditioned on {Xn}, the ξ-variables
are generated. Usually, the dependency of ξn on X is more or less local, as
when ξn = h(Xn,Xn+1, ηn) for some function h and random sequence {ηn},
independent of X. ξn itself is generally not Markov and may, in fact, have a
complicated dependency structure. A formal definition will be given at the end
of this section.

The combination of rich probability structure and useful statistical analysis
makes hidden Markov models a common tool for modeling dependent random
variables, with applications in areas such as speech recognition (cf. Rabiner and
Juang (1993)), signal processing (cf. Elliott, Aggoun and Moore (1995)), ion
channels (cf. Ball and Rice (1992)), molecular biology (cf. Krogh, Brown, Mian,
Sjolander and Haussler (1994)) and economics (cf. Hamilton (1994)). A good
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summary of these examples can be found in Künsch (2001). The main focus of
these efforts has been state space estimation, algorithms for fitting these models,
and the implementation of likelihood based methods. Sometimes the physical
nature of the problem suggests the use of a hidden Markov model, while in other
cases hidden Markov models simply provide a good fit to the observed data.

An important early work on the inferential problem for hidden Markov mod-
els is the 1966 paper of Baum and Petrie. They established the consistency and
asymptotic normality of the maximum likelihood estimator (MLE) for a hidden
Markov chain in the case where the observation is a deterministic function of
the state space. Based on the results of Furstenberg and Kesten (1960) and
Kingman’s sub-additive ergodic theorem (1976), Leroux (1992) established the
consistency of the MLE for general hidden Markov chains under mild conditions.
By adding a few essential ideas to the penetrating analysis of Baum and Petrie
(1966), Bickel and Ritov (1996) showed that the log likelihood for hidden Markov
models obeys the local asymptotic normality condition of LeCam. Bickel, Ritov
and Rydén (1998) later proved the asymptotic normality of the MLE under some
regularity conditions.

A difficulty with analyzing hidden Markov models is that the likelihood func-
tion can only be expressed in additive form (cf. equation (1.8)). Fuh (1998)
introduced a device used to represent the likelihood function as the L1-norm
of products of Markov random matrices in order to prove the existence of a
consistent sequence of roots of the likelihood equations that is asymptotically ef-
ficient. Fuh (2003) also proved the asymptotic optimality of SPRT and CUSUM
in hidden Markov models. This new representation enables us to apply limiting
theorems in that area, to verify the asymptotic properties of the MLE in hidden
Markov models.

In this paper, we study the properties of efficient parameter estimation for
a general hidden Markov model. In contrast to the existence and construc-
tion of estimates that are optimal according to the asymptotic variance criterion
(cf. Bickel and Ritov (1996); Fuh (1998); Bickel, Ritov and Rydén (1998)), the
optimal criterion will be based on the inaccuracy rate. Thus, let ξ1, ξ2, . . . be a
sequence of random variables, with the distribution determined by a parameter
θ taking values in a parameter space Θ. Let h be a function on Θ into a metric
space Γ with metric d, and assume that it is required to estimate h. For each n,
let Tn = Tn(ξ1, . . . , ξn) be an estimate, and for ε > 0 let

αn := αn(ε, θ) = Pθ{d(Tn, h(θ)) > ε}. (1.1)

Assume that Tn is consistent for h, i.e., αn → 0 as n → ∞ for each ε > 0 and
θ ∈ Θ. In many important situations, αn → 0 exponentially fast. A consistent
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estimator Tn is said to be locally optimal if

lim
ε→0

lim
n→∞

1
ε2n

log αn(ε, θ) = −Ih(θ)
2

, (1.2)

where Ih(θ) is the Fisher information for estimating h. Note that the definition
of local optimality in (1.2) is in the strict sense, the general definition of locally
optimality can be found in Bahadur, Zabell and Gupta (1980) and Shen (2001).

When the ξn are independent and identically distributed random variables,
Bahadur (1960) obtained global and local bounds for the best possible rate by
applying the Neyman-Pearson Lemma. It was also shown by Bahadur (1960)
that, under some regularity conditions, the local bound is attained by the MLE
for small ε. Further investigations along this line were conducted by Bahadur
(1967, 1983), Fu (1973, 1975, 1982), Bahadur, Zabell and Gupta (1980), Rukhin
(1983), Kester (1985) and others. Shen (2001) generalized Bahadur’s efficiency
to general parameter spaces and discussed many recent developments.

Beside the well known results that the MLE for estimation based on indepen-
dent and identically distributed (i.i.d.) observations {ξn, n ≥ 0} is efficient in the
sense of (1.2), Bahadur (1983) generalized it to a finite state Markov chain. It has
remained an open problem whether the MLE has the same optimality properties
when {ξn, n ≥ 0} is a general state Markov chain or a hidden Markov model.
The contribution of this paper is to provide a general framework for HMM, and
to give sufficient conditions for asymptotic optimality of the MLE in the sense
of (1.2) (Theorems 1 and 2). Thus, we answer a long-standing question and we
illustrate the usefulness of the results.

The rest of this paper is organized as follows. We first give a formal defi-
nition of generalized hidden Markov models and provide a representation of the
likelihood function. In Section 2, we give a brief summary of products of Markov
random matrices and prove a large deviation theorem. In Section 3, we define
Kullback-Leibler and Fisher information, and then provide sufficient conditions
such that the MLE is locally optimal. Several examples of hidden Markov mod-
els commonly used in speech recognition, molecular biology and economics are
illustrated in Section 4. Proofs are given in Section 5.

A hidden Markov model is defined as a parameterized Markov chain in a
Markovian random environment (cf. Cogburn (1980)) with the underlying en-
vironmental Markov chain viewed as missing data. This setting generalizes the
hidden Markov models considered by Leroux (1992), Bickel and Ritov (1996),
Fuh (1998) and Bickel, Ritov and Rydén (1998), in order to cover several inter-
esting examples of Gaussian regression and Gaussian autoregression studied by
Rabiner and Juang (1993), Hamilton (1994) and Merhav (1991). We consider
X = {Xn, n ≥ 0} as a Markov chain on a finite state space D = {1, . . . , d}, with
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transition matrix P (θ) = [pxy(θ)]x,y=1,...,d and stationary distribution π(θ) =
(πx(θ))x=1,...,d, where θ ∈ Θ ⊆ Rq denotes an unknown parameter. Suppose that
a random sequence {ξn}∞n=0, taking values in R, is adjoined to the chain such
that {(Xn, ξn), n ≥ 0} is a Markov chain on D × R and, conditioned on the full
X sequence, ξn is a Markov chain with

Pθ{ξn+1 ∈ B|X0,X1, . . . ; ξ1, . . . , ξn} = Pθ(Xn+1 : ξn, B) a.s. (1.3)

for each n and B ∈ B(R), the Borel σ-algebra of R. We further assume the
existence of a transition probability density for the Markov chain {(Xn, ξn), n ≥
0} with respect to a σ-finite measure µ on R such that

Pθ{X1 ∈ A, ξ1 ∈ B|X0 = x, ξ0 = s0} =
∑
y∈A

∫
s∈B

pxy(θ)f(s;ϕy(θ)|s0)dµ(s),

(1.4)
where f(ξk;ϕXk

(θ)|ξk−1) is the conditional density of ξk, given ξk−1 and Xk, with
respect to µ, θ ∈ Θ is the unknown parameter, and ϕy(·) is a function defined on
the parameter space Θ for each y = 1, . . . , d. Here and in the sequel, we assume
that the Markov chain {(Xn, ξn), n ≥ 0} is stationary with probability density
πx(θ)f(·;ϕx(θ)) with respect to µ. Note that in (1.3), we assume that the distri-
bution of the Markov chain ξn depends on ξn−1 and Xn. It can also depend on
ξn−p, . . . , ξn−1 and Xn−p, . . . ,Xn−1,Xn without causing any difficulty. The usual
parameterization for θ ∈ Θ is θ = (p11, . . . , pdd, θ1, . . . , θd) with pxy(θ) = pxy and
ϕy(θ) = θy. Here we consider θ = (θ1, . . . , θq) ∈ Θ ⊆ Rq as the unknown param-
eter, the true parameter value is denoted by θ0. For convenience of notation, we
use πx for πx(θ) and pxy for pxy(θ), respectively.

Definition 1. A process {ξn, n ≥ 0} is called a hidden Markov model if there
is a Markov chain {Xn, n ≥ 0} such that the process {(Xn, ξn), n ≥ 0} satisfies
(1.3) and (1.4).

For given observations ξ0, . . . , ξn from a hidden Markov chain {ξn, n ≥ 0},
the likelihood function is

gn(ξ0, . . . , ξn; θ) =
d∑

x0=1

· · ·
d∑

xn=1

πx0f(ξ0;ϕx0(θ))
n∏

j=1

pxj−1xjf(ξj;ϕxj (θ)|ξj−1).

(1.5)
For a given column vector x = (x1, . . . , xd)t ∈ Rd, the L1-norm of x is

‖x‖ =
∑d

i=1 |xi|. The likelihood function (1.5) can be represented as

gn(ξ0, . . . , ξn; θ) = ‖Mn · · ·M1M0π‖, (1.6)
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where, for k = 1, . . . , n,

M0 = M0(θ) =




f(ξ0;ϕ1(θ)) 0 · · · 0
...

. . .
...

...
0 0 · · · f(ξ0;ϕd(θ))


 , (1.7)

Mk = Mk(θ) =




p11f(ξk;ϕ1(θ)|ξk−1) · · · pd1f(ξk;ϕ1(θ)|ξk−1)
...

. . .
...

p1df(ξk;ϕd(θ)|ξk−1) · · · pddf(ξk;ϕd(θ)|ξk−1)


 , (1.8)

π = π(θ) =
(

π1, . . . , πd

)t

. (1.9)

2. Large Deviations for Products of Random Matrices

In the limit theory for products of Markov random matrices, a large devia-
tion theorem can be found in Bougerol (1988) when the underlying Markov chain
satisfies an uniform ergodicity condition. It is clear from the cocycle representa-
tion in V.1. of Bougerol and Lacroix (1985) that the limit theorems for products
of random matrices are based on those for Markov chains. In fact, the proof
of Bougerol’s results is based on the perturbation theory for operators devel-
oped by Nagaev (1957) for Markov chains. Since Nagaev’s representation theory
and Bougerol’s results work only for one dimensional deterministic functionals
on uniformly ergodic Markov chains, we need more. Therefore, we give a brief
summary of the extension of Nagaev’s representation theory for Markov random
walks satisfying the w-uniformly ergodicity condition (defined below), and pro-
vide propositions related to the large deviations theorem that can be used to
prove Bahadur efficiency of the MLE in hidden Markov models.

Since {(Xn, ξn), n ≥ 0} considered in (1.3) and (1.4) is a Markov chain on a
general state space D × R, by abusing the notation a little, we let {Xn, n ≥ 0}
be a Markov chain on a general state space D with σ-algebra D, irreducible
with respect to a maximal irreducibility measure on (D,D) and aperiodic. The
transition probability kernel will be denoted by P (·, ·). Let w : D → [1,∞) be
a measurable function, and let B be the Banach space of measurable functions
h : D → C (:= set of complex numbers) with |h|w := supx |h(x)|/w(x) < ∞.
We assume the following conditions on the Markov chain: {Xn, n ≥ 0} has an
invariant probability measure π such that

∫
w(y)dπ(y) < ∞, and for every h ∈ B

we have

lim
n→∞ sup

x∈D

{ |E(h(Xn)|X0 = x) − ∫ h(y)dπ(y)|
w(x)

: x ∈ D, |h| ≤ w

}
= 0, (2.1)
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sup
x∈D

{
E[w(X1)|X0 = x]/w(x)

}
< ∞, (2.2)

sup
x∈D

{
E[|h(X1)|2w(X1)|X0 = x]/w(x)

}
< ∞. (2.3)

Condition (2.1) says that the chain is w-uniformly ergodic, and this implies that
there exist γ > 0 and 0 < ρ < 1 such that for all h ∈ B and n ≥ 1,

sup
x∈D

|E[h(Xn)|X0 = x] −
∫

h(y)dπ(y)|/w(x) ≤ γρn|h|w. (2.4)

(pp.382-383 and Proposition 16.1.3 of Meyn and Tweedie (1993).) When w is 1,
this reduces to the classical uniformly ergodic condition.

Let Gl(d,R) be the set of invertible d× d matrices with real entries, and let
M be a function from D × D to Gl(d,R). For A ∈ Gl(d,R), define

M0 = A, M1 = M(X0,X1), . . . , Mn+1 = M(Xn,Xn+1), and Tn = Mn · · ·M1M0.

(2.5)
The system {(Xn, Tn), n ≥ 0} is said to consist of products of Markov random
matrices on D × Gl(d,R) (cf. Bougerol (1988)). Let Px denote the probability
of {(Xn, Tn), n ≥ 0} with X0 = x and M0 = I, the identity matrix, and let Ex

denote the expectation under Px. We say that two non-zero vectors u, v ∈ Rd

have the same direction if for some λ ∈ R, u = λv. This defines an equivalence
relation Γ on Rd−{0}. The set of directions in Rd is the projection space P (Rd)
defined as the quotient space Rd − {0}/Γ. For u ∈ Rd − {0}, ū denotes its
direction, i.e., the class in P (Rd).

For given {(Xn, Tn), n ≥ 0} as in (2.5), M ∈ Gl(d,R) and ū ∈ P (Rd), let
M · ū = Mu and define W0 = (X0, ū),W1 = (X1,M1 · ū), . . . ,Wn = (Xn, Tn · ū).
Then, W0, . . . ,Wn is a Markov chain on the state space D×P (Rd), with transition
kernel P((x, ū), A×B) := Ex(IA×B(X1,M1 ·ū)) for all x ∈ D, ū ∈ P (Rd), A ∈ D,
and B ∈ B(P (Rd)), the Borel σ-algebra of P (Rd). Under Condition K given
below, it follows from a simple modification of Lemma 3.5 of Bougerol (1988)
that the Markov chain {Wn, n ≥ 0} has an invariant probability measure m on
D × P (Rd). Let Px,ū denote the probability of {Wn, n ≥ 0} with W0 = (x, ū),
and let Ex,ū denote the expectation under Px,ū.

Definition 2. (i) A subset Ω of Gl(d,R) is said to be contracting if there
exists a sequence {Mn, n ≥ 0} in Ω for which ||Mn||−1Mn converges to a rank
1 matrix, where ‖Mn‖ = sup{||Mu||;u ∈ Rd, ‖u|| = 1}. A product of Markov
random matrices {(Xn, Tn), n ≥ 0} on D × Gl(d,R) is said to be contracting
if π{x ∈ D; Ωx is contracting} = 1, where Ωx is the smallest closed semigroup
in Gl(d,R) which contains the support of Px((X1,M1) ∈ D × ·), and π is the
invariant measure of {Xn, n ≥ 0}.
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(ii) A product of Markov random matrices {(Xn, Tn), n ≥ 0} on D×Gl(d,R)
is strongly irreducible if for all p with 1 ≤ p < d, there does not exist a family of
p-dimensional linear subspaces of Rd, V1(x), . . . , Vk(x) such that V (x) = V1(x)∪
· · · ∪ Vk(x) and TnV (X0) = V (Xn), Px a.s. for all n = 1, 2, . . . .

Let χ(M) = sup(log ‖M‖, log ‖M−1‖). The following Condition K will be
assumed throughout this section.
K1. The underlying Markov chain {Xn, n ≥ 0} satisfies conditions (2.1)−(2.3).
K2. There exist a,B > 0, such that Ex(exp{aχ(M1)}) ≤ B for all x ∈ D.
K3. The system {(Xn, Tn), n ≥ 0} is strongly irreducible and contracting.

Definition 3. Given a > 0, for any continuous functions ϕ : D×P (Rd) → C, de-
fine |ϕ|w := sup{|ϕ(x, ū)|/w(x) : x ∈ D, ū ∈ P (Rd)}, and ma(ϕ) := sup{|ϕ(x, ū)
−ϕ(x, v̄)|/δ(ū, v̄)a;x∈D, ū, v̄ ∈P (Rd)}, where δ(ū, v̄) := | sin{angle(ū, v̄)}|. De-
fine H(a) as the set of Hölder continuous functions ϕ on D × P (Rd) for which
‖ϕ‖a = |ϕ|w + ma(ϕ) is finite.

For a Hölder continuous function ϕ ∈ H(a), let x ∈ D, ū ∈ P (Rd), α ∈ C,

and M1 ∈ Gl(d,R), and define linear operators Pα, P on the space H(a) as

Pαϕ(x, ū) = Ex{eα log ‖M1u‖ϕ(X1,M1 · ū)}, Pϕ(x, ū) = Ex{ϕ(X1,M1 · ū)}.
(2.6)

By an argument similar to the spectral decomposition theorem for operators
given by Bougerol (1988), and that given by Fuh (1999) for w-uniformly ergodic
Markov chains, we have that Pα and P are bounded linear operators on the
Banach space H(a) with norm ‖ · ‖a. Moreover, there exists a sufficiently small
η > 0 such that for |α| ≤ η, and with ρ defined as in (2.4), the spectrum of Pα

lies inside the two circles

C1 = {z : |z − 1| = (1 − ρ)/3}, C2 = {z : |z| = ρ + (1 − ρ)/3}.
Hence, by the spectral decomposition theorem in Bougerol (1988), H(a) =
H1(a) ⊕ H2(a), and there exists 0 < δ ≤ η such that for |α| ≤ δ, H1(a) is
one-dimensional and

Pαπαh = λ(α)παh for h ∈ H(a), (2.7)

where λ(α) is the eigenvalue of Pα with a corresponding eigenspace H1(a) and
πα is the parallel projection of H(a) onto the subspace H1(a) in the direction of
H2(a). Let h1 ∈ H(a) be the constant function h1 ≡ 1, and let r((x, ū); θ) =
(παh1)(x, ū). From (2.7), it follows that r(·;α) is an eigenfunction of Pα as-
sociated with the eigenvalue λ(α); i.e., r(·;α) generates the one-dimensional
eigenspace H1(a). The following proposition generalizes Proposition 3.8 in
Bougerol (1988). Since the proof is similar, it will not be repeated here.
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Proposition 1. Let {(Xn, Tn), n ≥ 0} be a product of Markov random matrices
defined in (2.5) and assume it satisfies condition K. Then there exists δ > 0 such
that for |α| < δ, Pα = λ(α)Nα + Qα, and
(i) λ(α) is the unique eigenvalue of the maximal modulus of Pα;
(ii) Nα is a rank-one projection such that NαQα = QαNα = 0;
(iii) the mappings λ(α), Nα and Qα are analytic, and log λ(α) is strictly convex

for |α| < δ;
(iv) |λ(α)| > (2 + ρ)/3 and for each p ∈ N, there exists c > 0 such that for each

n ∈ N ,

‖ dp

dαp
Qn

α‖a ≤ c(
1 + 2ρ

3
)n;

(v) let γ = limn→∞(1/n)Ex log ||Tn|| be the upper Lyapunov exponent. Then

γ =
∂λ(α)

∂α
|α=0 =

∫
Ex,ū(log ‖M1u‖/||u||)dm(x, ū).

The following large deviation result will be used to prove the local optimality
of the MLE in hidden Markov models. The proof is similar to that in Theorem 4.3
of Bougerol (1988) and will not be repeated here. In the following propositions,
recall that q is the dimension of the Euclidean space in which the parameter
space Θ resides, and consider α ∈ R.

Proposition 2. For each j = 1, . . . , q, let {(Xn, T
(j)
n ), n ≥ 0} be a product of

Markov random matrices on D × Gl(d,R) satisfying condition K. Then there
exist A,B > 0 such that, for any initial value x, unit vector u and 0 < ε < B,

lim
n→∞

1
n

logPx,ū{log ‖T (j)
n u‖ − nγj > nε} = ϕj(ε), (2.8)

where ϕj(ε) = − sup0<α<A

(
αε − log λj(α) + αγj

)
< 0, λj(α) is the eigenvalue

defined in (2.7) and γj is the upper Lyapunov exponent of {(Xn, T
(j)
n ), n ≥ 0}.

Proposition 3. For each j = 1, . . . , q, let {(Xn, T
(j)
n ), n ≥ 0} be a product of

Markov random matrices on D × Gl(d,R) satisfying condition K. Assume the
transition probability P (·, ·) for the Markov chain Xn has a density with respect
to the Haar measure of Gl(d,R). Denote W

(j)
n as the induced Markov chain on

D × Gl(d,R). Let f : D × Gl(d,R) → R be an additive functional such that
Em exp(af(W (j)

1 )) < ∞ for some a > 0, and for each j = 1, . . . , q, where m is
the stationary distribution on D × P (Rd). Denote µj = Emf(W (j)

1 ). Then there
exist A,B > 0 such that, for any initial value x, unit vector u and 0 < ε < B,

lim
n→∞

1
n

logPx,ū{
n∑

k=0

f(W (j)
k ) − nµj > nε} = ηj(ε), (2.9)
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where ηj(ε) = − sup0<α<A(αε − log λj(α) + αµj) < 0.

Proof. We first show that if {Xn, n ≥ 0} is a Markov chain as in the second
paragraph of this section, then given Xn takes values on the whole real line R,
the induced Markov chain {Tn · ū} satisfies the Doeblin’s condition.

By means of the Iwasawa decomposition of Gl(d,R) (cf. Lemma 6.1.1 of
Bougerol and Lacroix (1985)), we have that any matrix M in Gl(d,R) can be
written as M = s(M)k(M), where k(M) is orthogonal and S(M) is lower trian-
gular with positive diagonal entries. Let S be the set of s(M), and let K be the
set of k(M) for all M ∈ Gl(d,R).

The existence of the transition probability density of the Markov chain
{Xn, n ≥ 0} with respect to the Lebesgue measure implies that Mk has a density
p(u) with respect to the Haar measure mG on Gl(d,R), for each k = 1, . . . , n.
Let mS be the measure on S, and let mK be the measure on K. Let µ′ be
the stationary measure of (Xk,Mk) on R × Gl(d,R). For any ε > 0, there is
a measure µ̃ on R × Gl(d,R), dµ̃(R × M)/dmG = p̃(M), such that p̃(M) ≤ c,
var(µ′, µ̃) < ε/2 and the support of µ̃(R × ·) is contained in some compact set Γ
of Gl(d,R). Without loss of generality, we can assume that KΓK = Γ.

It is well known (cf. p.407 in Helgason (1962)) that under suitable norming
of mG and mS , mG(dM) = mG(d(sk)) = mS(ds)mK(dk). Then, we have

P{(x, ū), R × B} = µ′{(R,M) : M · ū ∈ B}
=
∫

B
p(M · ū)dmG ≤

∫
B

p̃(M · ū)dmG + ε/2

=
∫

B

∫
S∩C

p̃(sk · ū)dmSdmK +ε/2 ≤ cmS(S ∩ C)mK(B) + ε/2.

Since Γ is compact, mS(S ∩ C) < ∞. This implies that the desired Doeblin’s
condition holds if Xn takes values on the whole real line R. Also by A1, {Xn, n ≥
0} is a w-uniformly ergodic Markov chain. Combining these two properties, the
Markov chain {Wn, n ≥ 0} is v-uniformly ergodic, with v : D×Gl(d,R) → [1,∞)
and v(x, ū) = w(x).

Denote M
(j)
1 = M (j)(X0,X1) with M (j) ∈ Gl(d,R) for each j = 1, . . . , q. For

all x ∈ D, ū ∈ P (Rd) with ‖u‖ = 1, and α ∈ Cq (by a slight abuse of notation).
For a bounded measurable function g, we define linear operators Qα, Q on the
Banach space B with norm | · |v as

Qαg(x, ū) = Ex{e(α1,...,αq)(g(X1,M
(1)
1 ·ū),...,g(X1,M

(q)
1 ·ū))t},

(2.10)
Qg(x, ū) = Ex{g(X1,M

(1)
1 · ū), . . . , g(X1,M

(q)
1 · ū)}.

Recall that Ex is the expectation defined on D × P (Rd) with initial distribution
(x, π). Since {Wn, n ≥ 0} is v-uniformly ergodic for some v : D × Gl(d,R) →
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[1,∞), by an argument similar to (2.6) through (2.7), we can let λ1(α) be
the eigenvalue of Qα with corresponding one-dimensional eigenspace, such that
Lemma 1 still holds for Qα and λ1(α). The rest of the proof follows by an
argument similar to Theorem 4.3 of Bougerol (1988), and is omitted.

3. Main Results

Let {ξn, n ≥ 0} be the hidden Markov model defined in Section 1. Given a
Markov chain Zn := (Xn, ξn) as defined in (1.3) and (1.4), let D′ := D × R and
Mk be the random matrix from D′×D′ to Gl(d,R), as defined in (1.7) and (1.8).
Let Tn = Mn · · ·M1M0; then, {(Zn, Tn), n ≥ 0} is a product of Markov random
matrices on D′ × Gl(d,R) as defined in Section 2. Since M0 is fixed, we simply
let Pz := Pθ

z denote the probability of {(Zn, Tn), n ≥ 0} with Z0 = z, and let
Ez := Eθ

z denote the expectation under Pz.
For ū ∈ P (Rd), M ∈ Gl(d,R), and π = π(θ) = (π1, . . . , πd)t ∈ Sd−1, the unit

sphere with respect to the L1-norm ‖ · ‖ in Rd, we have

log ‖Tnπ‖ = log
‖Tnπ‖
‖Tn−1π‖ + · · · + log

‖T0π‖
‖π‖ . (3.1)

Define
W0 = (Z0, T0π), W1 = (Z1, T1π), . . . ,Wn = (Zn, Tnπ). (3.2)

Then, W0, . . . ,Wn is a Markov chain on the state space E := D′ × P (Rd) with
the transition kernel

P((z, ū), A × B) := Pθ((z, ū), A × B) := Ez(IA×B(Z1,M1u)) (3.3)

for all z ∈ D′, ū ∈ P (Rd), A ∈ D × B(R), and B ∈ B(P (Rd)), the Borel σ-
algebra of P (Rd). Note that the initial distribution of W0 depends on Z0 only,
and Z0 has the stationary distribution πxf(ξ;ϕx(θ)) as its initial distribution.
We note that Pz := P(·, ·) in (3.3) depends only on z and let Ez := E(z,ū) denote
the expectation under Pz. By (1.4), the Markov chain {(Xn, ξn), n ≥ 0} has
transition density pxy(θ)f(s;ϕy(θ)|s0) with respect to µ. Therefore, the induced
transition probability P(·, ·) has a probability density p(·, ·) with respect to µ.
Under condition K in Section 2, it follows from Lemma 3.5 of Bougerol (1988)
that the Markov chain Wn has an invariant probability measure m := mθ on
E. Note that m is a product measure on D′ × P (Rd), and the first component
has probability density πxf(ξ;ϕx(θ)) with respect to µ. Now, for M ∈ Gl(d,R),
let σ : E × E → R be σ((z0, ū), (z1,Mu)) = log(‖Mu‖/‖u‖); then for π = π(θ)
defined in (1.9),

log ‖Tnπ‖ = σ(Wn−1,Wn) + · · · + σ(W0,W1) + σ(W0,W0) (3.4)
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is an additive functional of the Markov chain {Wn, n ≥ 0}, where σ(W0,W0) =
log(‖T0π‖/‖π‖).

It is known that Kullback-Leibler divergence K(θ′, θ) is a major quan-
tity for the development of Bahadur efficiency. When {ξn} are indepen-
dent and identically distributed random variables, it is easy to see that
K(θ′, θ) =

∫
pθ′(ξ) log(pθ′(ξ)/pθ(ξ))dξ, the usual Kullback-Leibler information

number. For the case of a hidden Markov chain {ξn, n ≥ 0}, for given obser-
vations ξn from {ξn, n ≥ 0}, Rabiner and Juang (1993) defined a generalized
Kullback-Leibler divergence K(θ0, θ) as H(θ0, θ0) − H(θ0, θ) with H(θ0, θ) =
limn→∞ n−1Eθ0(log gn(ξ0, . . . , ξn; θ)). See also pp.134-136 in Leroux (1992). By
the ergodic theorem for products of Markov random matrices, it is easy to see
that H(θ0, θ) is just the upper Lyapunov exponent γ for {(Zn, Tn), n ≥ 0} under
the parameter θ0. Therefore, the Kullback-Leibler information number can be
defined as

K(θ0, θ) :=
∫

Ez

(
log

‖M1(θ0)M0(θ0)π(θ0)‖
‖M1(θ)M0(θ)π(θ)‖

)
dmθ0(w), (3.5)

where Ez is the expectation for the induced Markov chain Wn starting at z. Recall
that W0 = w = (z,M0π) from definition (3.2), and M0(θ),M1(θ) and π(θ) are
defined in (1.7)−(1.9).

Suppose that Θ is an open set in Rq. Based on the definition of Bahadur
(1967) and Shen (2001), a parameter space Θ̄ is a suitable compactification of Θ
if Θ is dense in Θ̄. A continuity condition (cf. condition A3 on Shen (2001)) for
the likelihood function on the boundary of the parameter space is also assumed
to hold. The following conditions will be used throughout the rest of this paper.

C1. The true parameter θ0 is an interior point of Θ, and the transition probabil-
ity matrix [pxy(θ)] is ergodic (irreducible, aperiodic and positive recurrent)
for all θ ∈ Θ. Moreover, the Markov chain {(Xn, ξn), n ≥ 0} has an invari-
ant measure and satisfies conditions (2.1)−(2.3), and M0(θ),M1(θ) defined
in (1.7) and (1.8) are invertible Pθ almost surely, for all θ ∈ Θ.

C2. θ is identifiable, i.e., for each θ, θ′ ∈ Θ, θ �= θ′, and all n = 1, 2, . . .,
gn(ξ0, . . . , ξn; θ) and gn(ξ0, . . . , ξn; θ′) are not equal µ-a.s.

C3. For each θ ∈ Θ, there exists u = u(θ) > 0 such that for all x ∈ D,

sup
(x,ξ0)∈D×R

Eθ

([
sup

η∈Nh(θ)

g1(ξ0, ξ1; η)
g1(ξ0, ξ1; θ)

]u
|Z0 = (x, ξ0)

)
< ∞,

where Nh(θ) is a h-neighborhood of θ and Eθ(·|Z0 = (x, ξ0)) denotes the
expectation defined under Pθ in (1.3) with initial state (x, ξ0) ∈ D × R.
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C4. For all x ∈ D, ξ0, ξ1 ∈ R, θ ∈ Θ, and for i, j, k = 1, . . . , q, the partial
derivatives ∂l/∂θi, ∂2l/∂θi∂θj , ∂3l/∂θi∂θj∂θk exist and are continuous in θ,

where l(ξ0, ξ1; θ) = log g(ξ0, ξ1; θ), and

Emθ
(
∂ log g1(ξ0, ξ1; θ)

∂θi
) =

∫
Ez

(
∂ log ‖M1(θ)M0(θ)π(θ)‖

∂θi

)
dmθ(w) = 0,

where Emθ
is defined as the expectation under Pmθ

in (3.3), with the initial
measure as the stationary probability measure mθ. For all x, y ∈ D, θ →
pxy(θ) and θ → πx(θ) have two continuous derivatives for θ ∈ Θ.

C5. For all θ ∈ Θ, the Fisher information matrix

I(θ) = (Iij(θ)) =
(
Emθ

[(
∂ log g1(ξ0, ξ1; θ)

∂θi

)(
∂ log g1(ξ0, ξ1; θ)

∂θj

)])
(3.6)

=
(∫

Ez

[(
∂ log ‖M1(θ)M0(θ)π(θ)‖

∂θi

)(
∂ log ‖M1(θ)M0(θ)π(θ)‖

∂θj

)]
dmθ(w)

)

is positive definite in a neighborhood of θ0.
Let mi(θ, ξ, u) = supη{| ∂l

∂ηi
| : d(η, θ) < u} and mij(θ, ξ, u) = supη{| ∂2l

∂ηi∂ηj
| :

d(η, θ) < u}.
C6. There exist u = u(θ0) > 0 and t = t(θ0) > 0 such that, for all z =

(x, ξ0) ∈ D × R and ξ1 ∈ R, supz∈D×R Eθ exp(tmi(θ0, ξ, u)|Z0 = z) <

∞, supz∈D×R Eθ exp(tmij(θ0, ξ, u)|Z0 = z) < ∞, for i, j = 1, . . . , q. Fur-
thermore, Nh(θ0) is non-empty and there exists a measurable function
w(·, ·|θ0) such that

sup
z∈D×R

Eθ( sup
θ∈Nh(θ0)

| ∂3l

∂θi∂θj∂θk
||Z0 = z) < w(ξ0, ξ1; θ0) (3.7)

for all i, j, k = 1, . . . , q. The moment generating function of w exists when
θ0 obtains.

Discussion of Assumptions:
1. We consider hidden Markov chains with a finite state space; therefore, the re-

quirement that [pxy(θ)] be ergodic is equivalent to requiring that there exists
r > 0, for all x, y ∈ D, θ ∈ Θ, such that pr

xy(θ) ≥ γ(θ) > 0, where pr
xy(θ)

denotes the rth step transition. For simplicity, we assume r = 1 throughout
this paper. That {(Xn, ξn), n ≥ 0} satisfies (2.1)−(2.3), the w-uniform er-
godicity condition, is quite general and covers several examples of Gaussian
autoregression presented in Section 4. The reader is referred to Meyn and
Tweedie (1993) for more details about w-uniformly ergodic Markov chains.
The invertible condition is a technicality. C2 is the identifiability condition
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for hidden Markov chains, which can be relaxed to the condition given by
Leroux (1992). For the case where ξn is a deterministic function of Xn, the
reader is referred to Ito, Amari and Kobayashi (1992) for necessary and suf-
ficient conditions. C3 and C6 are Bahadur-type moment conditions for large
deviations of the MLE. C4 amounts to standard smoothing conditions. To be
more specific, for fixed θ′ ∈ Θ, and for i, j = 1, . . . , q, the partial derivatives
∂K(θ, θ′)/∂θi, ∂2K(θ, θ′)/∂θi∂θj exist and are continuous in θ. The reader is
referred to Shen (2001) for the case of general parameter spaces.

2. In order to define the Fisher information (3.6), we need to verify that the
score function ∂ log g1(ξ0, ξ1; θ)/∂θ is in L2(Pmθ

) for θ ∈ Nh(θ0) := a h-
neighborhood of θ0, since the definition is based on the law of large numbers
for products of Markov random matrices developed from Proposition 2. That
is, we need to verify that, for θ ∈ Nh(θ0),

Emθ

(
∂ log g1(ξ0, ξ1; θ)

∂θ

)2

< ∞. (3.8)

A sufficient condition for (3.8) to hold is that

sup
ū∈Sd−1

sup
(x,ξ0)∈D′

Eθ

([
∂ log

∑d
x,y=1 νxf(ξ0;ϕx(θ))pxyf(ξ1;ϕy(θ)|ξ0)

∂θ

]2

|W0 = ((x, ξ0), ū)
)

< ∞,

for θ ∈ Nh(θ0). By definitions at (1.8) and (1.10), this reduces to

sup
(x,ξ0)∈D′

Eθ

([
∂ log

∑d
x,y=1νxf(ξ0;ϕx(θ))pxyf(ξ1;ϕy(θ)|ξ0)

∂θ

]2
|Z0 =(x, ξ0)

)
<∞,

for θ ∈ Nh(θ0). From condition C3, simple calculation shows that

sup
(x,ξ0)∈D′

Eθ0

([
sup

|θ−θ0|<h
max

y,y′∈D

f(ξ1;ϕy(θ)|ξ0)
f(ξ1;ϕy′(θ)|ξ0)

]2
|Z0 = (x, ξ0)

)
< ∞ (3.9)

is a sufficient condition.

Remark 1. Let p(ξ1|ξ0, ξ−1, . . . ; θ) be the conditional probability of ξ1 given
ξ0, ξ−1, . . ., and Pθ(X0 = ·|ξ0, ξ−1, . . . ; θ) be the filtered probabilities given ξ0, ξ−1,
. . .. The Kullback-Leibler distance is K(θ0, θ) = H(θ0, θ0) − H(θ0, θ) with
H(θ0, θ) the relative entropy, intuitively defined as

H(θ0, θ) = Eθ0(log p(ξ1|ξ0, ξ−1, . . . ; θ))

= Eθ0

(
log

d∑
x=1

d∑
y=1

f(ξ1|ξ0;ϕy(θ))pxyPθ(X0 = x|ξ0, ξ−1, . . . ; θ)
)

= Eθ0(log ‖M1(θ)Pθ(X0 = x|ξ0, ξ−1, . . . ; θ)‖).
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This shows that the definition of H(θ0, θ) is the expectation under the stationary
distribution Pθ(X0 = ·|ξ0, ξ−1, . . . ; θ), that is, Tn(θ)π, when run under a process
having parameter θ0. A similar interpretation can be made for (3.5), where
the Kullback-Leibler information number is defined under mθ0, the stationary
distribution of the Markov chain Wn = ((Xn, ξn), Tnπ) defined in (3.2) and (3.3).
Note that Tn(θ)π itself does not form a Markov chain, but {((Xn, ξn), Tnπ), n ≥
0} is a Markov chain. It is worth mentioning that only ξn appears in Tnπ, in which
it reflects the nature of hidden Markov models. We also note that the Markov
chain {Wn, n ≥ 0} with stationary distribution mθ0 as its initial distribution
involves the entire past {ξ0, ξ−1, . . .}.
Remark 2. A similar interpretation can be made for the Fisher information I(θ)
in (3.6). Note that I(θ) is defined as the expected value under the stationary
distribution mθ0 of the Markov chain {Wn, n ≥ 0}. This is the key idea for the
representation at (3.6), since the log likelihood function is an additive functional
of the Markov chain {Wn, n ≥ 0}, as shown in (1.6)−(1.9) and (3.4). See Lemma
2 in Section 5 for the approximation of K(θ′, θ) by I(θ) as θ′ → θ.

For the estimation of h(θ), a real valued function of the unknown parameter
θ, let ∆(ε, θ) ≡ {θ′ : θ′ ∈ Θ, |h(θ′) − h(θ)| > ε}. If ∆(ε, θ) is not empty, define
b(ε, θ) ≡ inf{K(θ′, θ) : θ′ ∈ ∆(ε, θ)}, where K(θ′, θ) is defined in (3.5). If ∆(ε, θ)
is empty, define b(ε, θ) = ∞.

For each i, j = 1, . . . , q, let [Iij(θ)] = [Iij(θ)]−1 which exists by condition C5.
Let h be a real-valued smooth function from Θ to R, and let Ih(θ) be the Fisher
information matrix for estimating h(θ). It is easy to see that

Ih(θ) =
( q∑

i,j=1

∂h(θ)
∂θi

Iij(θ)
∂h(θ)
∂θj

)−1

.

Theorem 1. For a hidden Markov chain as at (1.3) and (1.4), let θ ∈ Θ be the
unknown parameter, let h be a real-valued smooth function from Θ to R, and let
Tn be a consistent estimate of h(θ). Then if b(ε, θ) = (1/2)Ih(θ)ε2 + o(ε2) as
ε → 0, we have

lim
ε→0

lim inf
n→∞

1
ε2n

log Pθ(|Tn − h(θ)| ≥ ε) ≥ −Ih(θ)
2

. (3.10)

Our main result shows that the maximum likelihood estimator of h(θ) can
actually attain the lower bound in (3.10).

Theorem 2. For a hidden Markov chain as at (1.3) and (1.4) satisfying C1−C6,
let θ ∈ Θ be the unknown parameter, let h be a real-valued smooth function from
Θ to R, and let θ̂n be the MLE of θ. Then

lim
ε→0

lim
n→∞

1
ε2n

log Pθ(|h(θ̂n) − h(θ)| ≥ ε) = −Ih(θ)
2

. (3.11)
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Remark 3. If h is a real-valued measurable function from Θ to R and if θ̂n is
the MLE of θ, then (3.11) can be replaced by

lim
ε→0

lim
n→∞

1
nb(ε, θ)

log Pθ(|h(θ̂n) − h(θ)| ≥ ε) = −1. (3.12)

Hence h(θ̂n) is asymptotically locally optimal in the sense of Bahadur, Zabell
and Gupta (1980) and Bahadur (1983).

4. Examples

Several types of hidden Markov models fit within the framework of (1.3) and
(1.4). In this section, we apply Theorem 2 to these models, to include Markov
chains, i.i.d. hidden Markov models, and Gaussian autoregression.

Example 1. Markov Chains
When ξn is equal to xn in (1.3), one has a Markov chain. For the finite state

space case, Bahadur (1983) investigated the local optimality for the maximum
likelihood estimator θ̂n. Consider the following characterization of the canoni-
cal measure K(θ̂n, θ), where K(θ′, θ) is defined as

∑
x∈D πx(θ′)

∑
y∈D pxy(θ′) log

(pxy(θ′)/pxy(θ)). Bahadur showed that if lim supε→0 lim supn→∞ (1/εn) log Pθ

(K(θ̂n, θ) ≥ ε) ≤ −1 then, for each measurable function h from Θ to R, h(θ̂n) is
locally optimal. Our conditions C1−C6 differ slightly from assumptions (i)−(iii)
on p.279 of Bahadur (1983) and we obtain the same result in terms of I(θ)
for small ε, where I(θ) =

∑
x,y∈D(πx(θ)/pxy(θ))(∂pxy(θ)/∂θ)2 for θ ∈ Θ ⊆ R.

Note that conditions C1−C6 require that the Markov chain be ergodic under
the true parameter θ0, and that the transition probabilities pxy(θ) satisfy some
smoothness and moment conditions. The sufficient condition (3.9) reduces to the
standard Markov chain condition.

Example 2. i.i.d. Hidden Markov Chains
When the ξn at (1.3) are conditionally independent given X, one has the

so-called mixture model with a Markov regime. Let Xn be a two-state ergodic
Markov chain and, conditional on Xn, let the ξn have normal densities with means
and variances µ1 = 2, µ2 = 0, σ2

1 = σ2
2 = 1. Suppose C2 holds. The requirement

pxy(θ) > 0 for all x, y = 1, 2, and for all θ ∈ Θ is a sufficient condition of C1.
By simple calculation, C3 reduces to Ee2ξ < ∞. By using similar arguments,
C4−C6 also hold in this case.

When the pxy are known for x, y = 1, 2, µ2 = 0, σ2
1 = σ2

2 = 1, and µ1 is the
only unknown parameter, (3.9) reduces to

sup
x∈D

Eθ0

([
sup

|θ−θ0|<h
max

y,y′∈D

f(ξ1;ϕy(θ))
f(ξ1;ϕy′(θ))

]2
|X0 = x

)
< ∞, (4.1)
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which holds for the normal mixture. Then the Fisher information I(µ1) is equal
to Emµ1

[
∑2

x=1 πxpx1(ξ1 − µ1)ϕ(ξ1 − µ1)/g1(ξ1;µ1)]2, where ϕ(·) is the standard
normal density and g1(ξ1;µ1) =

∑2
x,y=1 πxpxyϕ(ξ1 − µx). In general, for a finite

ergodic Markov chain Xn, let f(·;ϕx(θ)) be a Lebesgue density on R1 for each
x, and assume that f is continuous and positive with limξ→±∞ f(ξ;ϕx(θ)) = 0,∫∞
−∞ fα(ξ;ϕx(θ))dξ < ∞ for some α < 1, and that f(·;ϕx(θ)) has at least three

continuous derivatives and is bounded. Suppose the identifiability condition C2
holds. By an argument similar to the one above, conditions C1, C3−C6 hold,
so Theorem 2 implies that, for each smooth function h from Θ to R, the MLE
h(θ̂n) of h(θ) is locally optimal for each θ ∈ Θ.

Example 3. Gaussian Autoregression
We start with a simple scalar-valued fourth-order autoregression around one

of two constants µ1 or µ2:

ξn − µxn = ϕ1(ξn−1 − µxn−1) + ϕ2(ξn−2 − µxn−2) + ϕ3(ξn−3 − µxn−3)
+ϕ4(ξn−4 − µxn−4) + εn, (4.2)

where εn ∼ N(0, σ2) and θ = (ϕ1, . . . , ϕ4, µ1, µ2, σ
2) is the unknown parameter.

This model was studied by Hamilton (1989) in order to analyze the behavior of
U.S. real GNP. The likelihood function for given Xn = xn, n ≥ 0, is

f(ξn|xn; θ) =
1√
2πσ

exp
(
− [(ξn − µxn) −

4∑
k=1

ϕk(ξn−k − µxn−k
)]2/2σ2

)
. (4.3)

Assume that all the roots of 1 −∑4
k=1 ϕkz

k = 0 are outside the unit circle, and
that there exists a constant c > 0 such that σ2 > c. Suppose the identifiability
condition C2 holds. Suppose pxy(θ) > 0 for all x, y ∈ D, for all θ ∈ Θ, and that
the condition C1 holds when w(x) = x2. It is easy to see that conditions C3−C6
are satisfied in this model. Condition (3.9) reduces to

sup
(x,ξ0)∈D′

Eθ0

([
sup

|θ−θ0|<h
max

y,y′∈D

f(ξ1;ϕy(θ)|ξ0)
f(ξ1;ϕy′(θ)|ξ0)

]2
|Z0 = (x, ξ0)

)
< ∞. (4.4)

Since the maximum over x and y is applied to a finite set D, and f defined in
(4.3) is a normal density, it is easy to check that (4.4) is satisfied in model (4.2).
Although the random variables ξn depend on ξn−1 and Xn only in Theorem 2,
the result can be extended to depend on ξn−p, . . . , ξn−1 and Xn−p, . . . ,Xn−1,Xn

without any difficulty. Therefore, the MLE in model (4.2) is locally optimal.
When ξn = Xn in (4.2) and µ1 = µ2 = µ, one has the classical autoregressive

model with unknown parameters θ = (ϕ1, . . . , ϕ4, σ
2). The Fisher information

matrix is

I(θ) =

(
σ−2Γ 0

0 2(σ4)−1

)
,
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where Γ = (γi−j)4×4 for 1 ≤ i, j ≤ 4, with γk = EXnXn+k.
Engel and Hamilton (1990) considered switching autoregression model in

which both the mean vector and the variance-covariance matrix were functions
of the state: ξn|xn ∼ N(µxn ,Ωxn), for xn = 1, 2, where θ = (µ1, µ2,Ω1,Ω2) are
the unknown parameters. In this case, the likelihood function for given Xn = xn,
n ≥ 0, is

f(ξn|xn; θ) =
1

2π|Ωxn |1/2
exp

(−(ξn − µxn)′Ω−1
xn

(ξn − µxn)
2

)
,

where |Ωx| denotes the determinant of Ωx. Suppose C2 holds. Assume there
exists a constant c such that 0 < c < |Ωx| for each x = 1, 2, and suppose that
µ1, µ2 are in R; simple calculation shows that conditions C1, C3−C6 are satisfied.

In general, let ξ1, . . . , ξn be a sample from the model

ξn =
p−1∑
k=1

ak
xn

ξn−k + σxnεn, (4.5)

where εn is a normal random variable with zero mean and unit variance, and
ax = (a1

x, . . . , ap−1
x , σx) are the unknown parameters. In this case, the likelihood

function is

f(ξn|axn) = (2πσxn)−1/2 · exp
{
− 1

2σ2
xn

(
ξn −

p−1∑
k=1

ak
xn

ξn−k

)2}
.

Assume that all the roots of 1 −∑p
k=1 ak

xzk = 0 are outside the unit circle, and
that there exists a constant c with 0 < c < σ2

x for x = 1, . . . , d. Suppose the
identifiability condition C2 holds. By a simple calculation, conditions C1 and
C3−C6 hold so Theorem 2 implies that, for each smooth function h from Θ to
R, the MLE h(θ̂n) of h(θ) is locally optimal for each θ ∈ Θ.

5. Proof of the Main Results

By (1.6), the analysis of likelihood estimation for hidden Markov models
is reduced to that of products of Markov random matrices. In order to apply
the large deviations result of Propositions 2 and 3 obtained in Section 2, it is
necessary to check whether conditions C1−C6 imply conditions K1−K3. The
proof of the following proposition is included here for completeness.

Proposition 4. Consider a hidden Markov chain as at (1.3) and (1.4) and that
satisfies C1−C6, and let θ ∈ Θ be the unknown parameter. The induced product
of Markov random matrices {(Zn, Tn), n ≥ 0} satisfies conditions K1−K3.

Proof. First, we note that C1 implies K1. Because each component pxyf(ξk;
ϕy(θ)|ξk−1) in Mk has Xk−1 = x and Xk = y, and ξk is a Markov chain with
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transition probability density f(ξk;ϕy(θ)|ξk−1), for each k = 1, . . . , n, Mk is a
Markov random matrix with the underlying Markov chain {(Xn, ξn), n ≥ 0}
having transition probability (1.3). It is easy to see that the moment conditions
C3 and C6 imply condition K2.

Next we need to verify K3. Because the Markov chain {Xn, n ≥ 0} is ergodic
(C1), there exists an r > 0 such that pr

xy(θ) > 0 for all x, y ∈ D and for all θ ∈ Θ,
where pr

xy(θ) denotes the rth step transition probability. We have taken r = 1
to have pxy(θ) > 0 for all x, y ∈ D and for all θ ∈ Θ. Conditioned on X,
f(ξk;ϕy(θ)|ξk−1) is a transition probability density and hence is nonnegative for
any θ ∈ Θ. Therefore, the strongly irreducible condition is satisfied.

It is known that for all θ ∈ Θ, the product of random matrices {(Zn, Tn), n ≥
0} on D′×Gl(d,R) is contracting if there exists a matrix M in the smallest closed
semigroup in Gl(d,R) which contains the support of P(D′ × ·), and such that
M has a unique largest absolute eigenvalue. (This is an easy generalization of
Corollary IV. 2.2 of Bougerol and Lacroix (1988).) Since the dimension of the
matrix is finite and f(ξ1;ϕy(θ)|ξ0) is a conditional transition probability density,
we have that for all θ ∈ Θ, there exists ξ1 ∈ R, with f(ξ1;ϕy(θ)|ξ0) > 0 for
all y ∈ D. Let Qθ = [pxy(θ)f(ξ1;ϕy(θ)|ξ0)]. Based on the assumption that the
transition probability matrix [pxy(θ)] of {Xn, n ≥ 0} is positive for all θ ∈ Θ,
and according to the Perron-Frobenius theorem for a positive matrix, Qθ has a
unique largest eigenvalue. This implies that {(Zn, Tn), n ≥ 0} on D′ × Gl(d,R)
is contracting for all θ ∈ Θ.

Proof of Theorem 1. This follows from Theorem 4.1 of Bahadur, Gupta and
Zabell (1983) and the expansion of b(ε, θ) in terms of Ih(θ).

In the following, we consider hidden Markov models (1.3) and (1.4) that
satisfy conditions C1−C6. Note that M (π) depends on θ, and we write M (π)
or M(θ) (π(θ)), respectively, for convenience. By using the definition of Kullback-
Leibler information number at (3.5), a simple application of Jensen’s inequality
and condition C2 yields the following.

Lemma 1. For any θ′, θ ∈ Θ, K(θ′, θ) ≥ 0 with equality if and only if θ′ = θ.

In the following proofs, for simplicity, we first consider a one-dimensional
parameter θ ∈ Θ ⊆ R and h(x) = x. The parallel development when θ is in a
q-dimensional parameter space Θ with real valued function h on Θ is discussed
at the end of this section.

Lemma 2. Let θ, θ′ ∈ Θ ⊂ Rq and let h be a smooth real-valued function such
that |h(θ) − h(θ′)| < ε. Then as ε → 0, b(ε, θ) = (1/2)Ih(θ)ε2 + o(ε2), where
Ih(θ) is defined in Theorem 1.



ON BAHADUR EFFICIENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR 145

Proof. Note that in the one dimensional case with h(x) = x, we have Ih(θ) =
I(θ) and b(ε, θ) = K(θ′, θ) with θ′ = θ + ε.

Recall that W0, . . . ,Wn is a Markov chain on the state space E := D′×P (Rd)
with the transition kernel P((z, ū), A × B) := Pθ((z, ū), A × B) := Ez(IA×B(Z1,
M1u)) for all z ∈ D′, ū ∈ P (Rd), A ∈ D × B(R) and B ∈ B(P (Rd)). By (1.4),
the Markov chain {Zn = (Xn, ξn), n ≥ 0} has transition probability with density
pxy(θ)f(s;ϕy(θ)|s0) with respect to µ. Therefore, the induced transition proba-
bility Pθ(·, ·) of Wn has a probability density pθ(·, ·) with respect to µ and the in-
variant measure mθ has a probability density with respect of µ. With an abuse of
notation, we still denote the last by mθ. (Note that we write pxy(θ) (πx(θ)) as the
transition probability (stationary distribution) of the Markov chain {Xn, n ≥ 0},
and pθ(·, ·) (mθ(·)) as the transition probability (stationary distribution) of the
Markov chain {Wn, n ≥ 0}.)

The Kullback-Leibler information number at (3.5) is defined in the frame-
work of products of Markov random matrices; therefore, by letting w0 =(z0,M0π),
w1 = (z1, T1π), we have

K(θ′, θ)

=
∫
(z0,M0π)

Ez0

(
log

‖M1(θ′)M0(θ′)π(θ′)‖
‖M1(θ)M0(θ)π(θ)‖

)
mθ′(z0,M0π)dµ(z0,M0π)

=
∫

w0

∫
w1

log
(‖M1(θ′)M0(θ′)π(θ′)‖

‖M1(θ)M0(θ)π(θ)‖
)

pθ′(w0, w1)mθ′(w0)dµ(w1)dµ(w0), (5.1)

where Ez denotes the expectation under P.
Let F (θ) :=‖M1(θ)M0(θ)π(θ)‖, F ′(θ) :=∂F (θ)/∂θ and F ′′(θ) :=∂2F (θ)/∂θ2,

these exist by C4. Also by condition C4, the derivative m′
θ(·) of mθ(·) with

respect to θ, and the derivative p′θ(·, ·) of pθ(·, ·) with respect to θ exist. Using
condition C4, we can write a derivative exists of the likelihood function, and
second derivatives exist of mθ(·) and pθ(·, ·), Taylor expansion of (5.1) as

K(θ′, θ)

=
∫

w0

∫
w1

log
[
1 +

F ′(θ)
F (θ)

ε +
1
2

F ′′(θ)
F (θ)

ε2 + o(ε2)
]

×
[
pθ(w0, w1) + p′θ(w0, w1)ε + o(ε)

][
mθ(w0) + m′

θ(w0)ε + o(ε)
]
dµ(w1)dµ(w0)

=
∫

w0

∫
w1

[
log

(
1 +

F ′(θ)
F (θ)

ε +
1
2

F ′′(θ)
F (θ)

ε2
)

+ o(ε2)
]

×
[
pθ(w0, w1) + p′θ(w0, w1)ε + o(ε)

][
mθ(w0) + m′

θ(w0)ε + o(ε)
]
dµ(w1)dµ(w0)

=
∫

w0

∫
w1

[
F ′(θ)
F (θ)

ε +
1
2

F ′′(θ)
F (θ)

ε2 − 1
2

(
F ′(θ)
F (θ)

)2

ε2 + o(ε2)

]
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×
[
pθ(w0, w1) + p′θ(w0, w1)ε + o(ε)

][
mθ(w0) + m′

θ(w0)ε + o(ε)
]
dµ(w1)dµ(w0)

=
∫

w0

∫
w1

[
ε
F ′(θ)
F (θ)

pθ(w0, w1) +
ε2

2
F ′′(θ)
F (θ)

pθ(w0, w1) − ε2

2

(
F ′(θ)
F (θ)

)2

pθ(w0, dw1)

+ε2 F ′(θ)
F (θ)

p′θ(w0, w1)
][

mθ(w0) + m′
θ(w0)ε

]
dµ(w1)dµ(w0) + o(ε2)

= ε

∫
w0

∫
w1

F ′(θ)
F (θ)

pθ(w0, w1)mθ(w0)dµ(w1)dµ(w0)

+
ε2

2

∫
w0

∫
w1

F ′′(θ)
F (θ)

pθ(w0, w1)mθ(w0)dµ(w1)dµ(w0)

−ε2

2

∫
w0

∫
w1

(
F ′(θ)
F (θ)

)2

pθ(w0, w1)mθ(w0)dµ(w1)dµ(w0)

+ε2
∫

w0

∫
w1

F ′(θ)
F (θ)

m′
θ(w0)

mθ(w0)
pθ(w0, w1)mθ(w0)dµ(w1)dµ(w0)

+ε2
∫

w0

∫
w1

F ′(θ)
F (θ)

p′θ(w0, w1)mθ(w0)dµ(w1)dµ(w0) + o(ε2)

= J1(θ)ε +
1
2
J2(θ)ε2 − 1

2
I(θ)ε2 + J3(θ)ε2 + J4(θ)ε2 + o(ε2).

Note that the third equation above comes from a Taylor expansion of the log
function.

To calculate each term in the above equation. By C4 and C6, we can inter-
change integration and differentiation to obtain

J1(θ) = Em

[
∂ log (‖M1(θ)M0(θ)π(θ)‖)

∂θ

]

= Em

[
Em

(
∂ log (‖M1(θ)M0(θ)π(θ)‖)

∂θ
|(X, π(θ))

)]
= 0.

Similarly,

J2(θ) = Em

[
F ′′(θ)
F (θ)

]
= Em

[
Em

(
F ′′(θ)
F (θ)

|(X, π(θ))
)]

= 0,

J3(θ) = Em

[
∂ log (‖M1(θ)M0(θ)π(θ)‖)

∂θ

∂ log dmθ(w0)
∂θ

]

= Em

[
Em

(
∂ log (‖M1(θ)M0(θ)π(θ)‖)

∂θ
|(X, π(θ))

)
∂ log dmθ(w0)

∂θ

]
= 0.

A simple calculation shows that J4(θ) = I(θ)ε2. Hence, K(θ′, θ) = (1/2)I(θ)ε2 +
o(ε2).

The following lemma proves that the MLE is consistent in the large deviation
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sense under conditions C1−C6. It also implies that the MLE θ̂n exists and is
strongly consistent.

Lemma 3. Let θ̂n be the maximum likelihood estimator of θ0. Then for any
ε > 0, there exists ρ, 0 < ρ < 1, such that for sufficiently large n,

Pθ(|θ̂n − θ0| ≥ ε) < ρn. (5.2)

Proof. Let θ ∈ Θ := (a, b) and θ �= θ0, set z(ξ0, ξ1|θ, θ0) := log[g1(ξ0, ξ1; θ)/g1(ξ0,
ξ1; θ0)]. By an abusing notation, let Pα be given by (2.6) with log ‖M1u‖ replaced
by z(ξ0, ξ1|θ, θ0), and let λ(α) be correspondingly defined at (2.7). Note that λ(α)
depends on θ and θ0 here. {Wn, n ≥ 0} is v-uniformly ergodic as shown in the
proof of Proposition 3. By C3, C6 and Theorem 4.1 of Ney and Nummelin (1987),
λ(α) is well defined and Proposition 1 still holds for 0 < α < 1. By (2.6) and
(2.7), we have log λ(0) = log λ(1) = 0. Now, since log λ(α) is strictly convex in
[0, 1] by Proposition 1(iii),

log λ(α) < 0 for 0 < α < 1. (5.3)

Under the same boundary condition for the parameter space as that in (5.17) of
Bahadur (1960) (or A3 in Shen (2001)), a similar argument as that of Lemma
5.2 in Bahadur (1960) shows that (5.3) holds for θ = a or b. So (5.3) holds for
each θ �= θ0 and θ ∈ Θ̄ := [a, b].

By C3, there exists α ∈ (0, 1) such that E{exp(α supθ∈Nh(θ0) z(ξ0, ξ1|θ, θ0))}
< ∞. Then for each θ ∈ Θ̄ with θ �= θ0, there exists an interval I(θ) containing
θ such that

z∗(ξ0, ξ1|θ) = sup{z(ξ0, ξ1|θ1, θ
0) : θ1 ∈ I(θ)}. (5.4)

For each fixed θ, define λ∗
θ(α) as before, but with z∗(ξ0, ξ1|θ). Then by using

(5.3), Proposition 1 and Lebesgue’s Dominated Convergence Theorem (in terms
of θ) for Pα = λ(α)Nα + Qα, we have λ∗

θ(α) < 1 for 0 < α < 1, and such that
I(θ) is open in Θ̄.

Now given ε > 0, let Sε = {θ ∈ Θ̄; |θ − θ0| < ε} with Sc
ε as the compliment

of Sε. We need only consider the case of non-empty Sc
ε. Since Sc

ε is compact in
Θ̄, and θ0 /∈ Sc

ε, there exists a finite number of points in Sc
ε, say θ1, . . . , θk such

that Sc
ε ⊂ I(θ1) ∪ I(θ2) ∪ · · · ∪ I(θk), where I(θ) is defined for each θ �= θ0 as in

the preceding paragraph.
For fixed n and ξ0, . . . , ξn, suppose that |θ̂n − θ0| ≥ ε. Suppose first that

there exists θ1 ∈ Θ for which log gn(ξ0, . . . , ξn; θ1) = supθ∈Θ log gn(ξ0, . . . , ξn; θ).
Then

sup
θ∈Sc

ε

log gn(ξ0, . . . , ξn; θ) ≥ log gn(ξ0, . . . , ξn; θ̂n)

= sup
θ∈Θ

log gn(ξ0, . . . , ξn; θ) ≥ log gn(ξ0, . . . , ξn; θ0).
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Thus
sup
θ∈Sc

ε

log gn(ξ0, . . . , ξn; θ) ≥ log gn(ξ0, . . . , ξn; θ0). (5.5)

Suppose next that log gn(ξ0, . . . , ξn; θ̂n) �= supθ∈Θ log gn(ξ0, . . . , ξn; θ). Then
supθ∈Θ log gn(ξ0, . . . , ξn; θ) = max{log gn(ξ0, . . . , ξn; a), log gn(ξ0, . . . , ξn; b)} >

log gn(ξ0, . . . , ξn; θ0); hence (5.5) still holds since a and b are included in Sc
ε.

Thus |θ̂n − θ0| ≥ ε implies (5.5).
Since Sc

ε ⊂ I(θ1) ∪ I(θ2) ∪ · · · ∪ I(θk), (5.5) implies

max
1≤j≤k

{
sup

θ∈I(θj)
log gn(ξ0, . . . , ξn; θ)

}
≥ log gn(ξ0, . . . , ξn; θ0). (5.6)

Now, for any θ, by (3.4) and (5.4), we have supθ∈I(θ) log gn(ξ0, . . . , ξn; θ) −
log gn(ξ0, . . . , ξn; θ0) ≤∑n

i=1 z∗(ξi−1, ξi|θ). Consequently, (5.6) implies that

max
1≤j≤k

{ n∑
i=1

z∗(ξi−1, ξi|θj)
}
≥ 0. (5.7)

Let A
(j)
n denote the event that

∑n
i=1 z∗(ξi−1, ξi|θj) ≥ 0. Then (5.7) is equiv-

alent to ∪k
j=1A

(j)
n . Therefore, by (5.4)−(5.7), we have

P{|θ̂n − θ0| ≥ ε} ≤
k∑

j=1

P(A(j)
n ). (5.8)

It follows from the definition of A
(j)
n , (5.4) and Proposition 3, that P(A(j)

n ) ≤
[λ∗

θj
(α)]n. If ρ0 = max{λ∗

θ1
(α), . . . , λ∗

θk
(α)}, ρ0 < 1 and the right hand side of

(5.8) does not exceed kρn
0 . Choose a ρ such that ρ0 < ρ < 1. Then kρn

0 < ρn for
all sufficient large n, and we have the proof.

The following lemma relates the behavior of the maximum likelihood esti-
mator θ̂n to that of the score function.

Lemma 4. Let θ̂n be the maximum likelihood estimator of θ0. Then for any
given δ with 0 < δ < I(θ0), there exists ρ < 1 such that for any given ε > 0,

Pθ0(|θ̂n − θ0| ≥ ε) ≤ Pθ0(|ςn| ≥ ε[I(θ0) − δ]) + ρn (5.9)

for all sufficiently large n, where

ςn =
1
n

n−1∑
i=1

∂

∂θ

(
σ(Wi−1,Wi) + σ(Wi,Wi+1)

)∣∣∣∣
θ=θ0

. (5.10)
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Proof. Let

ηn = I(θ0) +
1
n

n−1∑
i=1

∂2

∂θ2

(
σ(Wi−1,Wi) + σ(Wi,Wi+1)

)∣∣∣∣
θ=θ0

,

(5.11)
ζn =

1
n

n∑
i=1

w(ξi−1, ξi; θ0),

where w(·, ·; θ0) is defined in (3.7). For fixed h > 0, let Nh := {|θ− θ0| < h} such
that (3.7) holds for all θ ∈ Nh, and δ/h > E[w(ξi−1, ξi; θ0)]. By C6 which holds for
each θ ∈ Nh, and (3.6), I(θ0) = −Em0

θ
[(∂2/∂θ2)(σ(W0,W1)+σ(W1,W2))|θ = θ0],

and it follows from (5.11) and Proposition 3 that there exist 0 < ρi < 1 for
i = 1, 2, 3 and all n with

P(ηn ≥ δ

2
) ≤ ρn

1 , P(ηn ≤ −δ

2
) ≤ ρn

2 , P(ζn ≥ δ

h
) ≤ ρn

3 . (5.12)

For given n and {ξ0, . . . , ξn}, assume that

|θ̂n − θ0| < h, and log gn(ξ0, . . . , ξn; θ̂n) = sup
θ∈Θ

log gn(ξ0, . . . , ξn; θ). (5.13)

Since θ̂n ∈ Nh and Nh is open, it follows from (5.13) by Taylor’s expansion that
there exists a θ∗ with |θ∗ − θ0| < |θ̂n − θ0| < h such that

0 =
∂

∂θ
log gn(ξ0, . . . , ξn; θ̂n)

=
∂

∂θ
log gn(ξ0, . . . , ξn; θ0) + (θ̂n − θ0)

∂2

∂θ2
log gn(ξ0, . . . , ξn; θ0)

+
1
2
(θ̂n − θ0)2

∂3

∂θ3
log gn(ξ0, . . . , ξn; θ∗).

By (5.10) and (5.11), we have

(θ̂n − θ0)[I(θ0) + rn] = ςn, with |rn| ≤ |ηn| + 1
2
hζn. (5.14)

Let An = {|θ̂n−θ0| ≥ h}, Bn = {log gn(ξ0, . . . , ξn; θ̂n) �= supθ∈Θ log gn(ξ0, . . .,
ξn; θ)} and Cn = {|ηn| + (1/2)hζn ≥ δ}. As shown in proof of Lemma 3, each of
the events An and Bn implies (5.5) and the probability of (5.5) is ≤ ρn

0 for all
n large enough by (5.6), (5.7) and (5.8), where ρ0 < 1. Cn implies at least one
of the three events whose probabilities are considered in (5.3). Therefore, there
exists a ρ < 1 and a measurable event En such that An ∪ Bn ∪ Cn implies En,
and such that P (En) ≤ ρn for all sufficiently large n.

For given ε > 0, Pθ(|θ̂n − θ0| ≥ ε) ≤ Pθ(|θ̂n − θ0| ≥ ε, (ξ0, . . . , ξn) /∈
En) + Pθ(En). Hence (5.9) follows from (5.14) and the preceding paragraph.
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Proof of Theorem 2. In the following, for simplicity, we assume the true
parameter θ belongs to a one dimensional parameter space, and λ′′

θ(0) = σ2 =
1. By Theorem 1 and Lemma 2, the lower bound −b(ε, θ) is approximated by
−I(θ)ε2/2 for small ε. Next, we want to prove that this is indeed an upper
bound. We choose δ with 0 < δ < I(θ) and write a = I(θ) − δ. It follows from
(5.10), Proposition 3 and C5 that, given ρ < 1, the first term on the right hand
side of (5.9) tends to a limit > log ρ as n → ∞, provided ε > 0 is sufficiently
small. Lemma 4 then yields

lim sup
n→∞

n−1 log Pθ(|θ̂n − θ| ≥ ε)

≤ lim sup
n→∞

n−1 log Pθ

(
1
n

n−1∑
i=1

∂

∂θ
(σ(Wi−1,Wi) + σ(Wi,Wi+1)) ≥ εa

)
.

By the large deviation result in Proposition 3 for products of Markov random
matrices described in Section 2, there exists A > 0 such that

lim sup
n→∞

1
n

log Pθ(|θ̂n − θ| ≥ ε) ≤ − sup
0<α<A

(αε − log λθ(α)), (5.15)

where λθ(α) is defined in (2.7). From C4, C6 and Proposition 1(iii), it is easy
to see that λθ(α) is analytic in (θ, α) ∈ Θ × R. Let θ′ = θ + ε; by means of
Taylor expansion of θ′ around θ and α around zero, the right hand side of (5.15)
is − sup0<α<A(− log λθ′(α)), up to o(ε2). We need to verify
(i) the approximation of the optimal point α0 for small ε, employing the supre-

mum on the right side of (5.15);
(ii) the approximation of λθ′(α) at the optimal point α0 for small ε, that

is, we want to prove that, for θ′ in an ε-neighborhood N(θ) of θ,
limε→0(1/ε2) log λθ′(α0) = −(1/2)I(θ).

For the proof of (i), note that α0 is defined as α0ε − log λθ(α0) = infα(αε −
log λθ(α)). That is, α0 is the solution of λ′

θ(α)/λθ(α) = ε, where λ′
θ(α) denotes

the first derivative of λθ(α) with respect to α. By C5, λ′
θ(0) = 0, and the

smoothness properties of λθ(α) in Proposition 1(iii), we have as ε → 0 that the
optimal α0 also → 0. By Taylor expansion of α0 around 0, λ′′

θ(0)α0/λθ(0)+o(ε) =
ε, which implies that α0 = ε + o(ε).

(ii) As ε → 0, by (i) and Taylor’s expansion of λθ′(α0) for α0 around 0, we
have

log λθ′(α0) = k1(θ′, ε)α0 +
k2(θ′, ε)

2!
α2

0 + o(α2
0) = k1(θ′, ε) ε +

k2(θ′, ε)
2!

ε2 + o(ε2),

where k1(θ′, ε), and k2(θ′, ε) are the first two cumulants with

k1(θ′, ε) = Em

(
∂ log(‖M1(θ)M0(θ)π(θ)‖)

∂θ
|θ=θ′

)
. (5.16)
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Since ε → 0, by Taylor expansion of θ′ around θ, by Lebesgue’s Dominated
Convergence Theorem via C6, and by integrating term by term, (5.16) becomes

Em

(
∂ log(‖M1(θ)M0(θ)π(θ)‖)

∂θ
+

∂2 log(‖M1(θ)M0(θ)π(θ)‖)
∂θ2

ε

)
+ o(ε2)

= 0 + Em

(
∂2 log(‖M1(θ)M0(θ)π(θ)‖)

∂θ2

)
ε + o(ε2).

In a similar way, we have

k2(θ′, ε) = V arm

(
∂ log(‖M1(θ)M0(θ)π(θ)‖)

∂θ
|θ=θ′

)

= Em

(
∂ log(‖M1(θ)M0(θ)π(θ)‖)

∂θ

)2

+ o(ε2). (5.17)

Through standard computation of additive functionals of the Markov chain Wn,
we have Em(∂2 log(‖M1(θ)M0(θ)π(θ)‖)/∂θ2) = −I(θ), and therefore

log λθ′(α0)

= Em

(
∂2 log(‖M1(θ)M0(θ)π(θ)‖)

∂θ2

)
ε2 +

1
2
Em

(
∂ log(‖M1(θ)M0(θ)π(θ)‖)

∂θ

)2

ε2

+o(ε2)

= −1
2
I(θ)ε2 + o(ε2).

Hence

lim
ε→0

lim
n→∞

1
ε2n

log Pθ

(
|θ̂n − θ| ≥ ε

)
≤ −I(θ)

2
. (5.18)

To treat the general one-dimensional case, suppose θ̂n is the MLE of θ.
Suppose that h(θ0) �= 0. Choose λ > 1. It is easy to see that, for any sufficient
small ε > 0, |h(θ) − h(θ0)| > ε implies |θ − θ0| > δ, where δ = ε/λ|h′(θ0)|. Let
Bn,ε = {(ξ0, . . . , ξn) : |h(θ̂n) − h(θ)| > ε}. Then Bn,ε implies {|θ̂n − θ| ≥ ε}, and
hence Pθ(Bn,ε) ≤ Pθ(|θ̂n − θ| ≥ ε). Since δ/ε = 1/λ|h′(θ0)|, it follows from (5.18)
that

lim
ε→0

lim
n→∞

1
ε2n

log Pθ

(
|h(θ̂n) − h(θ)| ≥ ε

)
≤ − I(θ)

2λ2[h′(θ)]2
. (5.19)

Since λ > 1 is arbitrary, (5.19) implies

lim
ε→0

lim
n→∞

1
ε2n

log Pθ

(
|h(θ̂n) − h(θ)| ≥ ε

)
≤ − I(θ)

2[h′(θ)]2
. (5.20)

By using (5.20) and the lower bound (3.10) in Theorem 1, we have (3.11) for
one dimensional case.
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Now, suppose that Θ is an open set of the q dimensional Euclidean space of
points, and let θ ∈ Θ be the unknown parameter. To have (3.11), we need to
show that for any smooth function h from Θ to R,

lim
ε→0

lim
n→∞

1
ε2n

log Pθ

(
|h(θ̂n) − h(θ)| ≥ ε

)
≤ −Ih(θ)

2
. (5.21)

The main difficulty of generalizing (5.20) to (5.21), as noted on pp.251-252
of Bahadur (1960), is in formulating a satisfactory boundary condition on the
parameter space. The reader is referred to p.320 of Bahadur (1967), and p.484
of Shen (2001) for details.

Remark 4. Note that the trick used here is to analyze the right side of (5.15),
which is a slightly different approach from those employed in Bahadur (1960)
and Fu (1973). Bahadur’s proof relies on the tail probability approximation of
the normal distribution (see Lemma 2.4 for details); Fu’s proof is based on the
relationship between the MLE and the score function. In this paper, we have
developed the relation via analytic properties of λθ(α).

Remark 5. In light of (10) and (11) in Bahadur (1983), or (1.10) and (1.11) in
Shen (2001), we have (5.21) if we can show that

lim sup
ε→0

lim sup
n→∞

1
εn

log Pθ(K(θ̂n, θ) ≥ ε) ≤ −1. (5.22)

By using the decomposition of K(θ̂n, θ) in terms of I(θ̂n) in Lemma 2, and
the large deviation result in Proposition 3, we have (5.22). Details are omitted.
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