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Abstract: For testing a linear hypothesis in a censored regression (or censored

“Tobit”) model, three test criteria and four test statistics based on least absolute

deviations estimates of parameters are proposed and their limiting chi-square dis-

tributions are established. Some consistent estimates of nuisance parameters are

obtained for use in computing the test statistics. A simulation study for small

sample performance of these test statistics is made by using iterative linear pro-

gramming.
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1. Introduction

Assume that in the regression model

Yi = x′
iβ + ei, i = 1, . . . , n, (1.1)

only Y +
i = YiI(Yi ≥ 0) and xi are observable, where I(·) denotes the indicator

function of a set, {xi} is a sequence of known p-vectors, {ei} is a sequence of
non-observable random errors, and β is the unknown p-vector of regression coef-
ficients. In other words, we consider the following model with the non-negativity
constraint on the dependent variables:

Y +
i = (x′

iβ + ei)+, i = 1, . . . , n. (1.2)

Such a model is called the censored regression (or censored “Tobit”) model.
This is an important one among limited dependent variable (LDV) models, for
which the range of the dependent variable is restricted to some subset of the
real line. It is worthwhile to emphasize that many of the important advances in
econometric theory are related to LDV models. For early literature, see Mad-
dala (1983) or Powell (1984) for example. Recently, censored quantile regression
models proposed by Powell (1984, 1986) have attracted a great deal of interest
due to their robustness. For further developments see Pollard (1990), Rao and
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Zhao (1993), Chen and Wu (1994), Fitzenberger (1997), Buchinsky and Hahn
(1998) and Bilias, Chen and Ying (2000), among others. For related applications
see, e.g., Buchinsky (1994), Chamberlain (1994), Chay and Honoré (1998), and
a survey of the subject by Buchinsky (1998).

In the following we make two standard assumptions (see Pollard (1990) for
example).

(A1) e1, e2, . . . are i.i.d. random variables such that the common distribution func-
tion F has zero median and positive derivative f(0) at zero.

(A2) The parameter space B of β is a bounded open subset of Rp (with a closure
B).

Based on the fact that med(Y +
i ) = (x′

iβ)+, Powell (1984) introduced the
least absolute deviations (LAD) estimate β̂n of β, which is a Borel-measurable
solution of the minimization problem

n∑
i=1

∣∣∣Y +
i − (x′

iβ̂n)+
∣∣∣ = min

{ n∑
i=1

∣∣∣Y +
i − (x′

iβ)+
∣∣∣ : β ∈ B

}
. (1.3)

The consistency and asymptotic normality of β̂n have been studied by Powell
(1984), Pollard (1990), Rao and Zhao (1993) and Chen and Wu (1994), among
others.

In this paper we are interested in testing

H0 : H ′(β − b0) = 0 against H1 : H ′(β − b0) �= 0, (1.4)

where H is a known p×q matrix of rank q, and b0 is a known p-vector ( 0 < q ≤ p).
For testing (1.4) in the above semiparametric model, we present three criteria

based on the LAD method. Under some mild conditions we establish the limiting
chi-square distribution of these criteria under H0. In addition, in order that these
results can be used, we give some consistent estimates for nuisance parameters
involved, and suggest four test statistics: 4f̂(0)Mn, 4f̂(0)2Ŵn, R̂n and 4M2

n/Ŵn.
The first three of these tests resemble the likelihood-ratio, the Wald and the score
test in the usual parametric models, respectively.

For solving the minimization problem (1.3), Buchinsky (1994) proposed an
iterative linear programming algorithm. By using this method, we can calculate
the relevant test statistics even a linear constraint is involved. A simple simula-
tion study shows that the chi-square approximations for these test statistics are
pretty good even with moderate sample size, and that the performances of the
first two of them are better than the other two.

In Section 2, the tests and their limiting distributions are presented. Proofs
of the main theorems are given in Section 3, along with the statements of some
auxiliary lemmas (whose proofs are relegated to the Appendix). Some simulation
results are presented in Section 4.
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2. Methods and Main Results

To test (1.4), consider

Mn := inf
H′(b−b0)=0

n∑
i=1

∣∣∣(x′
ib)+ − Y +

i

∣∣∣ − inf
b

n∑
i=1

∣∣∣(x′
ib)+ − Y +

i

∣∣∣ , (2.1)

where infima are taken over all b ∈ B with and without the constraint H ′(b −
b0) = 0, and assumed to be attained at β∗

n and β̂n respectively.
As mentioned above, we appeal to an iterative linear programming method,

noting that the linear constraint in the first minimization does not affect its linear
programming nature.

Let β be the true parameter, and take µi := x′
iβ and Sn :=

∑n
i=1 I(µi >

0)xix′
i. Throughout the paper, it is always assumed that Sn0 is positive definite

for some n0 and that n ≥ n0, so S−1
n exists. In addition to Mn, we also study the

Wald-type test criterion Wn := (β̂n − b0)′H(H ′S−1
n H)−1H ′(β̂n − b0) and Rao′s

score-type test criterion Rn := ξ(β∗
n)′S−1

n ξ(β∗
n), with ξ(b) :=

∑n
i=1 I(x′

ib >

0) sgn(x′
ib − Y +

i )xi =
∑n

i=1 I(x′
ib > 0) sgn(x′

ib − Yi)xi. Note that Sn depends
on the unknown parameter β, so that Wn and Rn are not test statistics.

To study the limiting distribution of Mn,Wn and Rn under H0, we further
assume the following.

(A3) For any σ > 0, there exists a finite α > 0 such that
∑n

i=1 ||xi||2I(||xi|| >

α) < σλ(Sn) for large n, where λ(Sn) denotes the smallest eigenvalue of Sn.

(A4) For any σ > 0, there exists δ > 0 such that
∑n

i=1 ||xi||2I(|µi| ≤ δ) < σλ(Sn)
for large n.

(A5) λ(Sn)(log n)−2 → ∞ as n → ∞.

Note that the above conditions are weaker than those appearing in the lit-
erature, see, e.g., Pollard (1990).

Write xin := S
−1/2
n xi and Hn := S

−1/2
n H(H ′S−1

n H)−1/2. Then
∑n

i=1 I(µi >

0)xinx′
in = Ip and H ′

nHn = Iq, where Iq is the identity matrix of order q.

Theorem 2.1. Suppose that (A1)−(A5) are satisfied. If β is the true parameter
and H0 holds, then

4f(0)Mn = ||
n∑

i=1

I(µi > 0) sgn(ei) H ′
nxin||2 + op(1), (2.2)

4f(0)2Wn = ||
n∑

i=1

I(µi > 0) sgn(ei) H ′
nxin||2 + op(1), (2.3)

Rn = ||
n∑

i=1

I(µi > 0) sgn(ei) H ′
nxin||2 + op(1). (2.4)
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Consequently, 4f(0)Mn, 4f(0)2Wn and Rn have the same limiting central chi-
square distribution with q degrees of freedom.

In order for the above results to be useful in testing the hypothesis H0 against
H1, some consistent estimates of Sn and f(0) (under H0) should be obtained.
We say that Ŝn is a consistent estimate of the matrix Sn if S

−1/2
n ŜnS

−1/2
n →

Ip in probability as n → ∞. Take Ŝn :=
∑n

i=1 I(x′
iβ̂n > 0)xix′

i as an es-
timate of Sn and, with h = hn > 0, hn → 0, estimate f(0) by f̂n(0) :=(
h

∑n
i=1 I(x′

iβ̂n > 0)
)−1 ∑n

i=1 I(x′
iβ̂n > 0) I(0 < Y +

i − x′
iβ̂n ≤ h). Note that

this is similar to that suggested by Powell (1984).
Write dn := max1≤i≤n ||xin||.

Theorem 2.2. Assume that (A1)−(A5) are satisfied and β is the true parame-
ter. Then Ŝn is a consistent estimate of Sn. Further, if

hn → 0, dn/hn → 0, (2.5)

hn

n∑
i=1

I(x′
iβ > 0) → ∞ as n → ∞, (2.6)

lim
n→∞

n∑
i=1

I(|x′
iβ| ≤ δn)/

n∑
i=1

I(x′
iβ > 0) = 0 for any δn > 0, (2.7)

then f̂n(0) → f(0) in probability as n → ∞.

Remark 2.1. Condition (2.6) involves the unknown parameter β. In general, it
cannot be used to choose hn. However, it is easy to show that if all the conditions
of Theorem 2.2 hold except (2.6), then Condition (2.6) is equivalent to

hn

n∑
i=1

I(x′
iβ̂n > 0) → ∞, in probability as n → ∞. (2.8)

Moreover, Condition (2.8) can be tested computationally.

Now define Ŵn := (β̂n−b0)′H(H ′Ŝ−1
n H)−1H ′(β̂n−b0) and R̂n := ξ(β∗

n)′Ŝ−1
n

ξ(β∗
n), and use 4f̂(0)Mn, 4f̂(0)2Ŵn, R̂n and 4M2

n/Ŵn as test statistics for testing
H0 against H1.

As consequences of Theorems 2.1 and 2.2, we have the following.

Corollary 2.1. Assume the conditions of Theorem 2.2. Under H0 we have
4f̂(0)Mn = 4f̂(0)2Ŵn + op(1) = ||∑n

i=1 I(µi > 0) sgn(ei)H ′
nxin||2 + op(1)

L→ χ2
q,

as n → ∞.
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Corollary 2.2. Assume the conditions of Theorem 2.1 are satisfied. Under H0

we have R̂n = ||∑n
i=1 I(µi > 0) sgn(ei)H ′

nxin||2 + op(1)
L→ χ2

q, as n → ∞, and

4M2
n/Ŵn

L→ χ2
q , as n → ∞.

3. Proof of Theorems

Suppose 0 < q < p and let K be a p × (p − q) matrix of rank (p − q) such
that H ′K = 0. Write Kn := S

1/2
n K(K ′SnK)−1/2, so K ′

nKn = Ip−q, H ′
nHn = Iq

and H ′
nKn = 0.

The following are direct corollaries of (A3), (A4) and (A5).

(A3′) For any σ > 0, there exists α > 0 such that
∑n

i=1 ||xin||2I(||xi|| > α) < σ

for large n.
(A4′) For any σ > 0, there exists δ > 0 such that

∑n
i=1 ||xin||2I(|µi| ≤ δ) < σ for

large n.
(A3′′) For any σ > 0, there exists α > 0 such that

∑n
i=1 ||K ′xi||2I(||K ′xi|| >

α) < σλ(K ′SnK) for large n.
(A4′′) For any σ > 0, there exists δ > 0 such that

∑n
i=1 ||K ′xi||2I(|µi| ≤ δ) <

σλ(K ′SnK) for large n.
(A5′′) λ(K ′SnK)(log n)−2 → ∞ as n → ∞.

(Refer to the following Remark 3.1.)

Write γ := b− β,

Gn(γ) :=
n∑

i=1

(|(x′
ib)+ − Y +

i | − |(x′
iβ)+ − Y +

i |)

=
n∑

i=1

(|(µi + x′
iγ)+ − Yi| − |µ+

i − Yi|), (3.1)

and take γ̂n := β̂n − β = arg minGn(γ), ζ̂n := S
1/2
n γ̂n.

In light of (3.1) and Rao and Zhao (1993), we have the following.

Lemma 3.1. Assume that (A1)−(A5) are satisfied and β is the true
parameter. Then

2f(0)S1/2
n γ̂n =

n∑
i=1

I(µi > 0) sgn(ei)xin + op(1), (3.2)

Gn(γ̂n) = −f(0)γ̂′
nSnγ̂n + op(1)

= −(4f(0))−1||
n∑

i=1

I(µi > 0) sgn(ei)xin||2 + op(1). (3.3)
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Suppose H ′(b − b0) = 0 and H ′(β − b0) = 0. It is easily seen that there
exists a unique η ∈ Rp−q such that b− β = Kη. Write

G∗
n(η) :=

n∑
i=1

(∣∣∣(x′
ib)+ − Y +

i

∣∣∣ − ∣∣∣(x′
iβ)+ − Y +

i

∣∣∣)

=
n∑

i=1

(∣∣∣(µi + x′
iKη)+ − Yi

∣∣∣ − ∣∣∣µ+
i − Yi

∣∣∣) , η ∈ Rp−q, (3.4)

and set β∗
n − β := Kη̂n, η̂n = arg min G∗

n(η). Replacing xi in Lemma 3.1 by
K ′xi, and noticing that (A3)−(A5) imply (A3′′)−(A5′′), we have the following.

Lemma 3.2. Assume (A1)−(A5), 0 < q < p, and that H0 holds. Then

2f(0)(K ′SnK)1/2η̂n =
n∑

i=1

I(µi > 0) sgn(ei)K ′
nxin + op(1), (3.5)

G∗
n(η̂n) = −f(0)η̂n(K ′SnK)η̂n

= −(4f(0))−1||
n∑

i=1

I(µi > 0) sgn(ei)K ′
nxin||2 + op(1). (3.6)

Remark 3.1. At (3.1), γ̂n minimizes
∑n

i=1(|(µi + x′
iγ)+ − µi − ei|) and leads

to (3.2). At (3.4), η̂n minimizes
∑n

i=1

(∣∣∣(µi + x′
iKη)+ − µi − ei

∣∣∣) . To obtain
the limiting distribution of η̂n, we need only replace xi by K ′xi and keep µi

unchanged in the conditions and (3.2), just as is done in Lemma 3.2. This is
why (A3′′) has K ′xi appearing in the indicator function while (A4

′′
) has µi in

the indicator function. Derivation of (A3′′) and (A4′′) are routine.

Now, for any given p × 1 unit vector θ, we consider the functions

gn(ζ) :=
n∑

i=1

{I(µi+x′
inζ > 0)sgn(x′

inζ−ei)+I(µi >0) sgn(ei)}x′
inθ, ζ∈Rp, (3.7)

tn(ζ) :=
n∑

i=1

tni(ζ)=
n∑

i=1

sgn(x′
inζ−ei){I(µi+x′

inζ >0)−I(µi > 0)}(x′
inθ). (3.8)

Lemma 3.3. Assume (A1)−(A5). Then for any constant C > 0 and any
unit p-vector θ , we have sup||ζ||≤C |Etn(ζ)| → 0 and sup||ζ||≤C |tn(ζ)| → 0 in
probability, as n → ∞.

Lemma 3.4. Assume (A1)−(A5). Then for any constant C > 0 and any given
unit p-vector θ, sup||ζ||≤C |gn(ζ) − 2f(0)ζ ′θ| → 0 in probability as n → ∞.

The following corollary may be useful elsewhere.
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Corollary 3.1. Assume that (A1)−(A5) are satisfied and β is the true pa-
rameter. Then

∑n
i=1 I(x′

iβ̂n > 0)sgn(x′
iβ̂n − Y +

i )S−1/2
n xi → 0 in probability as

n → ∞.

Now we are in a position to prove the theorems.

Proof of Theorem 2.1. Since max1≤i≤n ||xin|| → 0 (refer to (5.1)) and H ′
nHn =

Iq, by the Lindeberg Theorem we have
∑n

i=1 I(µi > 0) sgn(ei)H ′
nxin

L→ N(0, Iq).
By (2.1), Lemmas 3.1 and 3.2, noting that HnH ′

n + KnK ′
n = Ip, for 0 < q < p

we have

4f(0)Mn = 4f(0)(G∗
n(η̂n) − Gn(γ̂n))

= ||
n∑

i=1

I(µi > 0) sgn(ei)xin||2 − ||
n∑

i=1

I(µi > 0) sgn(ei)K ′
nxin||2 + op(1)

= ||
n∑

i=1

I(µi > 0) sgn(ei)H ′
nxin||2 + op(1),

which proves (2.2) for 0 < q < p. By Lemma 3.1, it is easy to show that (2.2) is
still true with Hn = Ip for q = p.

Since H ′(β − b0) = 0, Wn = (β̂n − β)′H(H ′S−1
n H)−1H ′(β̂n − β). For

0 < q ≤ p we have 4f(0)2Wn = 4f(0)2γ̂ ′
nS

1/2
n HnH ′

nS
1/2
n γ̂n = ||∑n

i=1 I(µi >

0) sgn(ei)H ′
nxin||2 + op(1), and (2.3) is obtained.

To prove (2.4), for 0 < q < p, write ϕ̂n := S
1/2
n Kη̂n = Kn(K ′SnK)1/2η̂n.

By (3.5), 2f(0)ϕ̂n =
∑n

i=1 I(µi > 0)sgn(ei)KnK ′
nxin + op(1). Now x′

iβ
∗
n =

x′
iβ + x′

iKη̂n = µi+x′
inϕ̂n, and S

−1/2
n ξ(β∗

n) =
∑n

i=1 I(µi+x′
inϕ̂n > 0) sgn(x′

inϕ̂n

−ei)xin. Evidently for any ε > 0, we can take a constant C > 0 such that
P (||ϕ̂n|| > C) < ε for n ≥ n0. Then, with Lemma 3.4, I(||ϕ̂n|| ≤ C)||S−1/2

n ξ(β∗
n)

+
∑n

i=1 I(µi > 0) sgn(ei)xin − 2f(0)ϕ̂n|| → 0 in probability, which implies that
S
−1/2
n ξ(β∗

n) = −∑n
i=1 I(µi > 0) sgn(ei)xin +2f(0)ϕ̂n +op(1). Since Ip−KnK ′

n =
HnH ′

n and H ′
nHn = Iq, we have

Rn = ξ′(β∗
n)S−1

n (β∗
n)

= ||(Ip − KnK ′
n)

n∑
i=1

I(µi > 0) sgn(ei)xin||2 + op(1)

= ||
n∑

i=1

I(µi > 0) sgn(ei)H ′
nxin||2 + op(1),

which proves (2.4) for 0 < q < p. It is easily seen that (2.4) is still true with
Hn = Ip when q = p. Theorem 2.1 is proved.

Proof of Theorem 2.2. Since hn/dn → ∞ and dn → 0, there exist cn → ∞
such that hn/(cndn) → ∞ and cndn → 0.
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First we prove the consistency of Ŝn. Recall that ζ̂n = S
1/2
n γ̂n. By Lemma

3.1,
2f(0)ζ̂n

L→ N(0, Ip), and P (||ζ̂n|| ≥ cn) → 0, as n → ∞. (3.9)

We can write S
−1/2
n ŜnS

−1/2
n =

∑n
i=1 I(µi + x′

inζ̂n > 0)xinx′
in and, for any unit

p-vector θ, by (A4′) we have

I(||ζ̂n|| ≤ cn)
∣∣∣θ′ (S−1/2

n ŜnS−1/2
n − Ip

)
θ
∣∣∣

≤ I(||ζ̂n|| ≤ cn)
∣∣∣θ′

n∑
i=1

(I(µi + x′
inζ̂n > 0) − I(µi > 0))xinx′

inθ
∣∣∣

≤
n∑

i=1

I(|µi| ≤ cndn)(x′
inθ)2 → 0, as n → ∞. (3.10)

Then consistency of Ŝn follows from (3.9) and (3.10).
To prove the consistency of f̂n(0), write Nn =

∑n
i=1 I(µi > 0), N̂n =∑n

i=1 I(x′
iβ̂n > 0), f̃n(0) := (hNn)−1 ∑n

i=1 I(x′
iβ̂n > 0)I(0 < ei − x′

inζ̂n ≤ h),
f∗

n(0) := (hNn)−1 ∑n
i=1 I(x′

iβ̂n > 0)I(0 < ei ≤ h), and fn(0) := (hNn)−1 ∑n
i=1

I(µi > 0)I(0 < ei ≤ h). Since x′
iβ̂n = µi + x′

inζ̂n, by (2.7) we have

I(||ζ̂n|| ≤ cn)|N̂n − Nn|/Nn ≤ I(||ζ̂n|| ≤ cn)
n∑

i=1

I(|µi| ≤ |x′
inζ̂n|)/Nn

≤
n∑

i=1

I(|µi| ≤ cndn)
( n∑

i=1

I(µi > 0)
)−1

→ 0. (3.11)

By (3.9), (3.11), (2.5) and (2.6), we have f̃n(0)/f̂n(0) = N̂n/Nn → 1 in probability
as n → ∞.

Now

I(||ζ̂n|| ≤ cn)
∣∣∣f̃n(0) − f∗

n(0)
∣∣∣

≤ I(||ζ̂n|| ≤ cn)(hNn)−1
n∑

i=1

I(x′
iβ̂n > 0){I(|ei| ≤ cndn) + I(h < ei ≤ h + cndn)}

≤ (hNn)−1
n∑

i=1

{I(µi > 0) + I(|µi| ≤ cndn)}{I(|ei| ≤ cndn)

+I(h < ei ≤ h + cndn)} := Jn.

Since hn → 0, and cndn/h → 0, by (A1) and (2.7) we have

EJn = (Nn)−1{Nn +
n∑

i=1

I(|µi| ≤ cndn)}

×{P (|e1| ≤ cndn)/h + P (h < e1 ≤ h + cndn)/h} → 0,
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which, by (3.9), implies that f̃n(0)−f∗
n(0) → 0 in probability as n → ∞. Similarly,

we have f∗
n(0) − fn(0) → 0 in probability as n → ∞. By (A1) and (2.5), it is

easily shown that fn(0) → f(0) in probability as n → ∞. The result follows.

4. A Simulation Study

We perform simulations to study properties of the proposed tests with prac-
tical sample sizes. For simplicity, p is fixed to be 2 at (1.2), and e1 is taken to
have the Laplace distribution with density function (2c)−1 exp(−|u|/c). The true
value of the parameter vector β is set to be (0, 1)′ and the linear hypothesis under
consideration is H0 : H ′β = 0 with H ′ = (1, 0). The test statistics 4f̂(0)Mn,
4f̂2(0)Ŵn, R̂n and 4M2

n/Ŵn are abbreviated to T1, T2, T3 and T4, respectively.
To generate xi = (x(1)

i , x
(2)
i ), i = 1, . . . , n, let P (x(1) = 1) = P (x(1) = 0) = 1/2,

and take x(2) standard normal independent of x(1). Independent copies of x(1)

and x(2) yield observations on x = (x(1), x(2)). In our simulations, sample size n

is taken to be 50, 100 and 200, respectively, and 1, 000 repetitions are generated
for each sample size.

To find minimization solutions β̂n and β∗
n in (2.1), we use an iterative linear

programming algorithm (see Buchinsky (1994)). Given a complete sample, to
estimate a probability density the choice of window width h can be done by
using the cross-validation method. However, this may be a difficult task for our
situation. We will study these problems in the future. For this simple simulation,
we only list a number of h’s which are taken for estimating f(0). Note that the
choice of h depends on the sample size n and the scale of the distribution of
random error ei.

First we study distribution approximation of the four test statistics by sim-
ulation. To this end, we set c = 0.1 and take xi, i = 1, . . . , n, to be fixed in
all the 1, 000 samples. For all cases, we take h = 0.04. Under the true model,
the functions P (Ti ≤ κ(t)) are plotted against t in Figure 1−3, where κ(·) is the
quantile function of the χ2

1 distribution. The figures show that the distributions
of the four test statistics under the true model are close to the limiting χ2

1 dis-
tribution even for moderate sample sizes, with the approximations for T1 and T2

better than the others.
Denote by χ2

1(α) the upper α-quantile of the limiting χ2
1 distribution. We

can define the Ti test by specifying its rejection region as {Ti > χ2
1(α)}, where

α is the approximate or nominal level of the Ti test, i = 1, . . . , 4. To further
study true levels (or type 1 errors) and power values under some alternative for
the above four tests, we set c = 1 and take covariates to be random in all the
samples, which is a more realistic case. In order to estimate f(0) for construction
of T1 and T2, we choose h = 0.2, 0.3, . . . , 0.7, respectively, and list the relevant
simulation results. In Table 1 we list P (Ti > χ2

1(α)) under the true model vs.
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α for four test statistics. The corresponding power values under the alternative
β = (1, 0)′ are reported in Table 2. The relevant simulation results in Tables 1
and 2 have been rounded to two decimals.
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Figure 1. P (Ti ≤ κ(t)) plot for n = 50. h = 0.04 for T1 and T2; c =
0.1 and covariates are non-random; κ(·) is the quantile function of the χ2

1

distribution.
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Figure 2. P (Ti ≤ κ(t)) plot for n = 100. h = 0.04 for T1 and T2; c =
0.1 and covariates are non-random; κ(·) is the quantile function of the χ2

1

distribution.
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Figure 3. P (Ti ≤ κ(t)) plot for n = 200. h = 0.04 for T1 and T2; c =
0.1 and covariates are non-random; κ(·) is the quantile function of the χ2

1

distribution.

From the simulation results, it seems that convergence rates of the distribu-
tion for T1 and T2 are better than those of the other two in our simulations. The
simulation also shows that the performance of estimate of f(0) depends greatly
on the choice of h.

Table 1. Empirical levels (c = 1).

n α T1 T2 T3 T4

0.2 ∗ 0.3 ∗ 0.4 ∗ 0.5 ∗ 0.6 ∗ 0.7 ∗ 0.2 ∗ 0.3 ∗ 0.4 ∗ 0.5 ∗ 0.6 ∗ 0.7 ∗

50 0.10 0.14 0.11 0.10 0.09 0.08 0.07 0.18 0.14 0.12 0.09 0.08 0.07 0.11 0.21
0.05 0.09 0.06 0.06 0.05 0.04 0.03 0.13 0.10 0.07 0.06 0.05 0.04 0.07 0.14
0.01 0.03 0.02 0.01 0.01 0.01 0.01 0.07 0.05 0.03 0.02 0.02 0.01 0.03 0.06

100 0.10 0.12 0.10 0.09 0.08 0.07 0.06 0.13 0.11 0.09 0.08 0.07 0.06 0.12 0.19
0.05 0.06 0.05 0.05 0.04 0.04 0.03 0.09 0.07 0.06 0.05 0.04 0.03 0.06 0.12
0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.05 0.03 0.02 0.01 0.01 0.01 0.02 0.04

200 0.10 0.11 0.09 0.08 0.07 0.06 0.06 0.11 0.09 0.07 0.06 0.05 0.03 0.11 0.17
0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.07 0.05 0.04 0.02 0.02 0.01 0.07 0.09
0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.02 0.01 0.01 0.01 0.01 0.00 0.02 0.03

∗ 0.2−0.7 are values of h, n is sample size, α is nominal level. The results are based on 1,000
repetitions. Covariates are random.
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Table 2. Power values under alternative β = (1, 0)′ (c = 1).

n α T1 T2 T3 T4

0.2 ∗ 0.3 ∗ 0.4 ∗ 0.5 ∗ .6 ∗ 0.7 ∗ 0.2 ∗ 0.3 ∗ 0.4 ∗ .5 ∗ 0.6 ∗ 0.7 ∗

50 0.10 0.92 0.93 0.93 0.94 0.93 0.94 0.90 0.91 0.92 0.93 0.93 0.93 0.22 0.90
0.05 0.90 0.90 0.90 0.90 0.90 0.90 0.86 0.88 0.89 0.89 0.90 0.89 0.09 0.84
0.01 0.79 0.80 0.79 0.79 0.78 0.77 0.79 0.81 0.80 0.80 0.78 0.78 0.01 0.71

100 0.10 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.54 0.99
0.05 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.32 0.99
0.01 0.99 0.99 1.00 0.99 0.99 0.99 0.96 0.98 0.98 0.99 0.98 0.98 0.06 0.96

200 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00
0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.76 1.00
0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.36 1.00

Rejection region is {Ti > χ2
1(α)} with χ2

1(α) the upper α-quantile of χ2
1 distribution.

∗ 0.2−0.7 are values of h, n is sample size, α is nominal level. The results are based on 1,000
repetitions. Covariates are random.

5. Appendix

Proof of Lemma 3.3. Since λ(Sn) → ∞ and (A3′) holds, it is easily shown
that

dn := max
1≤i≤n

||xin|| → 0 as n → ∞. (5.1)

By (3.8), tni(ζ) can be written as a sum of those terms of the form ±tj±ni (ζ), j =
1, . . . , 4, where x− = |x|I(x < 0) and t1±ni (ζ) := I(x′

inζ > ei,−x′
inζ < µi ≤

0)(x′
inθ)±, t2±ni (ζ) := I(x′

inζ < ei,−x′
inζ <µi ≤ 0)(x′

inθ)±, t3±ni (ζ) := I(x′
inζ >ei,

0 < µi ≤ −x′
inζ)(x′

inθ)±, t4±ni (ζ) := I(x′
inζ < ei, 0 < µi ≤ −x′

inζ)(x′
inθ)±.

Write T j±
n := {(tj±ni (ζ), 1 ≤ i ≤ n), ζ ∈ Rp}, j = 1, 2, 3, 4. It is easily

shown that, if h±
ni(ζ) = I(x′

inζ < ai)(x′
inθ)± with ai being a random variable or

real number, and H±
n :=

{(
h±

ni(ζ), 1 ≤ i ≤ n
)

, ζ ∈ Rp
}

, then H±
n has pseudo-

dimension at most p according to the sense of Pollard (1990, pp.14-22). By
Lemma 5.1 in Pollard (1990), if both F and G have pseudo-dimension at most
V , then F ∧ G := {(f ∧ g) : f ∈ F , g ∈ G} has pseudo-dimension less than 10V ,
where f ∧ g = min(f, g). From this, all T j±

n have bounded pseudo-dimensions.
By the maximal inequality for manageable processes (Pollard (1990, 7.10), we
have

E sup
||ζ||≤C

|tn(ζ) − Etn(ζ)|2 ≤ C1

n∑
i=1

(x′
inθ)2I(|µi| ≤ Cdn) → 0. (5.2)

Here (5.1) and (A4′) are used, and C1 > 0 is a constant.
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By (A1), (5.1) and (A4′), there exist constants C2 and C3 such that

sup
||ζ||≤C

|Etn(ζ)| = 2 sup
||ζ||≤C

∣∣∣ n∑
i=1

(
F (x′

inζ)− 1
2

)
{I(µi+x′

inζ >0)−I(µi >0)}x′
inθ

∣∣∣
≤ C2 sup

||ζ||≤C

n∑
i=1

I(|µi| ≤ Cdn)|(x′
inζ)(x′

inθ)|

≤ C3

n∑
i=1

||xin||2I(|µi| ≤ Cdn) → 0 as n → ∞, (5.3)

and Lemma 3.3 follows from (5.2) and (5.3).

To prove Lemma 3.4, we need the following.

Lemma A.1. Let E be an open convex subset of Rp and let g1, g2, . . . be a
sequence of random convex functions on E such that for any x ∈ E, gn(x) → g(x)
a.s. (or in probability) as n → ∞, where g is some real function on E. Then
g is also convex. Furthermore, assume that ∂g(x), ∂g1(x), ∂g2(x), . . . are sub-
gradients of g, g1, g2, . . . at x, and ∂g(x) is continuous on E. Then for all compact
D ⊂ E, limn→∞ supx∈D ||∂gn(x) − ∂g(x)|| = 0 a.s. (or in probability).

Note that we call ∂g(x) a sub-gradient of g at x if for all z ∈ E, g(z)−g(x) ≥
(∂g(x))′(z − x). For a proof, refer to Lemmas 4.2 and 4.3 in Heiler and Willers
(1988). For the case of convergence in probability, a diagonal technique should
be used.

Proof of Lemma 3.4. Write vn(ζ) =
∑n

i=1 I(µi > 0){ sgn(x′
inζ − ei) +

sgn(ei)}xin. By (3.7), (3.8) and Lemma 3.3, to prove Lemma 3.4 we need only
prove

sup
||ζ||≤C

||vn(ζ)−2f(0)ζ|| → 0 in probability, as n → ∞. (5.4)

Define Vn(ζ) =
∑n

i=1 I(µi > 0)
∫ x′

inζ
0 (sgn(v − ei) + sgn(ei))dv. Vn(ζ) is convex

in ζ and has a sub-gradient vn(ζ) at ζ. By (A1) and (5.1),

EVn(ζ) = 2
n∑

i=1

I(µi > 0)
∫ x′

inζ

0
(F (v) − 1/2)dv

=
n∑

i=1

I(µi > 0)
∫ x′

inζ

0
2f(0)v(1 + o(1))dv → f(0)ζ ′ζ. (5.5)

By the Schwarz inequality, (A1) and (5.1),

Var Vn(ζ) ≤
n∑

i=1

I(µi > 0)E
[ ∫ x′

inζ

0
(sgn(v − ei) + sgn(ei))dv

]2
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≤
n∑

i=1

I(µi > 0)|x′
inζ| ·

∣∣∣4 ∫ x′
inζ

0
E(I(ei > 0) − I(ei > v))2dv

∣∣∣
≤ 4

n∑
i=1

I(µi > 0)|x′
inζ| ·

∣∣∣ ∫ x′
inζ

0
P (|ei| ≤ |v|)dv

∣∣∣
≤ C4

n∑
i=1

I(µi > 0)|x′
inζ|3 ≤ C5dn → 0, (5.6)

where C4 and C5 are constants. By (5.5) and (5.6), for each ζ we have Vn(ζ) →
f(0)ζ ′ζ in probability, as n → ∞, which, by the convexity of Vn(ζ) and Lemma
5.1, implies (5.4). The lemma is proved.

Proof of Corollary 3.1. With Lemma 3.1 x′
iβ̂n = µi + x′

inζ̂n and ||ζ̂n|| =
Op(1) as n → ∞. From (5.4),

∑n
i=1 I(µi > 0){ sgn(x′

inζ̂n − ei) + sgn(ei)}xin −
2f(0)ζ̂n→0 in probability which, in view of Lemma 3.1, implies that

∑n
i=1 I(µi >

0) sgn(x′
inζ̂n−ei)xin → 0 in probability as n → ∞. By Lemma 3.3,

∑n
i=1{I(x′

iβ̂n

> 0) − I(µi > 0)} sgn(x′
inζ̂n − ei)xin → 0 in probability. It then follows that∑n

i=1 I(x′
iβ̂n > 0) sgn(x′

iβ̂n−Yi)xin → 0 in probability as n → ∞, which implies
the result.
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