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Abstract: A latent variable model is proposed to analyze two-level data with hierar-

chical structure and mixed continuous and polytomous data that are very common

in behavioral, biomedical and social research. On the basis of an EM algorithm

associated with the maximum likelihood estimation of the model, a method is de-

veloped for assessing local influence of minor perturbation for the proposed latent

variable model. The key idea of the development is to derive diagnostic measures

on the basis of the conditional expectation of the complete-data log-likelihood func-

tion in the E-step of the EM algorithm. Building blocks in the diagnostic measures

are computed via observations generated by the Gibbs sampler. It is shown that

the proposed method is computationally efficient and feasible for a wide variety of

perturbations that carry clear interpretation. The approach is illustrated by a two-

level data set concerning the development and findings from an AIDS preventive

intervention of Filipino commercial sex workers.

Key words and phrases: Benchmark, conditional expectation, Gibbs sampler, MCEM

algorithm, perturbation.

1. Introduction

In behavioral, medical and social research, substantive theory involves latent
variables that cannot be assessed by a single measurement on each individual un-
der study. Relationships among latent and manifest variables are important in
establishing a model for making correct decisions. Latent variable models such
as the LISREL model (Jöreskog and Sörbom (1996)) and Sammel and Ryan’s
(1996) model are important in analyzing these relations, and have been exten-
sively applied. While the above models are developed for continuous variables,
data are often measured on ordinal response scales. These measurements are usu-
ally modeled by polytomous variables that are defined through underlying con-
tinuous variables with thresholds. Recently, a lot of attention has been focused
on latent variable models with mixed polytomous and continuous variables, see
Sammel, Ryan and Legler (1997), Shi and Lee (2000) and Song and Lee (2001),
among others. Methods developed in this work depend on the assumption of
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independence among observations. However, it is common to encounter hierar-
chically structured data that are collected from units that are nested within a
large cluster. For multilevel data, the assumption of independence is not real-
istic because individuals within a cluster are expected to share certain common
influential factors. In analysis of latent variable models, the need to develop sta-
tistical methods for multilevel data is well recognized; see for example, Lee and
Shi (2001). However, existing development of two-level latent variable models
has only focused on estimation.

Local influence analysis is a general statistical technique to assess the stabil-
ity of estimation outputs with respect to models inputs. Cook (1986) proposed
a unified approach for assessment of local influence in minor perturbations of
a statistical model. In past years, this powerful approach dominated the local
influence analysis of statistical models (see Lesaffre and Verbeke (1998), among
others) and latent variable models (see Poon, Wang and Lee (1999), among
others). However, no local influence analysis for two-level models with mixed
continuous and polytomous variables has been developed. The main reason may
be that the building blocks in the diagnostic measures associated with Cook’s
(1986) approach involve intractable integrals induced by the complexities of the
data structures.

The main objective of this article is to develop diagnostic measures for local
influence analysis of a general two-level latent variable model with mixed contin-
uous and polytomous variables. To achieve our goal, we have to develop a Monte
Carlo EM (MCEM) algorithm (Dempster, Laird and Rubin (1977); Wei and Tan-
ner (1990)) for maximum likelihood (ML) estimation. Our development of local
influence measures is on the basis of a general approach proposed by Zhu and Lee
(2001). In the local influence analysis, we focus on a displacement function that
depends on the conditional expectation of the complete-data log-likelihood at
the E-step of the EM algorithm rather than the more complicated observed-data
likelihood displacement function as in Cook’s (1986) famous approach. As our
procedure does not require evaluation of any intractable integrals, its theoretical
development is manageable and its computation burden is not heavy.

Section 2 introduces a general two-level latent variables model (LVM) and
describes briefly an MCEM type algorithm for obtaining the ML estimates. A
procedure for assessing the local influence of the proposed model is developed
in Section 3, where diagnostic measures are obtained via the conformal normal
curvature. In Section 4, an illustrative example based on an AIDS data set is
presented. A discussion is given in Section 5.

2. A General Two-level LVM with Mixed Type Variables

Consider a collection of p-variate random vectors ugi, i = 1, . . . , Ng, within
groups g = 1, . . . , G. The sample sizes Ng may differ from group to group so that
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the data set is unbalanced. At the first level, we assume that, conditional on the
group mean vg, random observations in each group have the following structure:

ugi = vg + vgi = vg + Λwζgi + εgi, g = 1, . . . , G, i = 1, . . . , Ng, (1)

where Λw is a p× qw matrix of factor loadings, ζgi is a qw × 1 random vector of
latent factors, and εgi is a p × 1 random vector of error measurements which is
independent of ζgi and is distributed as N [0,Ψw], where Ψw is a diagonal matrix.
At the second level, we assume that the group mean vg has the structure

vg = µ + Λbζg + εg, g = 1, . . . , G, (2)

where µ is the mean vector, Λb is a p× qb matrix of factor loadings, ζg is a qb×1
vector of latent variables, and εg is a p× 1 random vector of error measurements
which is independent of ζg and is distributed as N [0,Ψb], where Ψb is a diagonal
matrix. Moreover, the first level latent vectors ζgi and εgi are assumed to be
independent of the second level latent vectors ζg and εg. To handle more complex
situations, the latent vectors ζgi and ζg are partitioned as ζgi = (ηT

gi, ξ
T
gi)

T and
ζg = (ηT

g , ξ
T
g )T , respectively, where ηgi(qw1 × 1), ξgi(qw2 × 1),ηg(qb1 × 1) and

ξg(qb2 × 1) are latent vectors, with qw1 + qw2 = qw, and qb1 + qb2 = qb. Moreover,
the two-level model involves the following structural equations:

ηgi = Πwηgi + Γwξgi + δgi, and ηg = Πbηg + Γbξg + δg, (3)

in the between-groups and within-groups models, respectively, where Πw(qw1 ×
qw1),Πb(qb1×qb1),Γw(qw1×qw2) and Γb(qb1×qb2) are unknown parameter matri-
ces. We assume that Iw−Πw and Ib−Πb are nonsingular and their determinants
are independent of Πw and Πb. Hence, this is a general two-level model with
structural equations for assessing relationships among latent variables at both
the individual and group levels.

To study the model with mixed polytomous and continuous variables, let
ugi = (xT

gi,y
T
gi)

T , where xgi = (xgi1, . . . , xgir)T is an observable continuous ran-
dom vector and ygi = (ygi1, . . . , ygis)T an unobservable continuous random
vector. A probit model is used to model the observable polytomous vector
z = (z1, . . . , zs)T with its underlying continuous vector y = (y1, . . . , ys)T as
follows: if yk is in (αk,zk

, αk,zk+1], then the kth entry of z is equal to an integral
value zk in {0, . . . , bk}. In general, we let αk,0 = −∞, αk,bk+1 = ∞. For the kth
variable, there are bk + 1 categories which are defined by unknown thresholds
αkj.

The proposed two-level LVM with structural equations at both levels and
with mixed continuous and polytomous variables is rather general. It sub-
sumes many existing LVMs such as the well-known LISREL model (Jöreskog and
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Sörbom(1996)), and the model in Shi and Lee (2000). Although we assume, for
simplicity of notation and brevity, that Λw, Φw and Ψw are invariant across
groups, it is straightforward to extend the methodologies developed here to mod-
els without this assumption.

To identify the variance and the thresholds associated with each polytomous
variable, αk,1 and αk,bk

, k = 1, . . . , s, are fixed at some preassigned values. This is
basically equivalent to use the range αk,bk

−αk,1 as a measure for the dispersion of
the polytomous variable zk. The choice of the preassigned values only changes the
scale of the covariance matrices but not the correlations of the latent variables,
see Lee and Shi (2001). Moreover, we follow the common method in latent
variable modeling to identify the within-groups and between-groups covariance
structures by fixing appropriate elements in Λw, Λb, Πw, Γw, Πb, Γb, Φw, and/or
Φb at preassigned known values, see Jöreskog and Sörbom (1996). Let α be a
vector that contains all unknown thresholds, and θ be the parameter vector that
contains all unknown structural parameters in Λw, Ψw, Πw, Γw, Φw, Ψwδ, Λb,
Ψb, Πb, Γb, Φb, Ψbδ and α. The ML estimation is briefly outlined in the next
section.

3. ML Estimation via the MCEM Algorithm

Let X = {xgi : g = 1, . . . , G; i = 1, . . . , Ng} and Z = {zgi : g =
1, . . . , G; i = 1, . . . , Ng} be the observed data matrices, and Lo(θ|X,Z) be
the observed-data log-likelihood function. Owing to the nature of the two-level
polytomous data, Lo(θ|X,Z) involves intractable multiple integrals. Thus, it
is very difficult to obtain the ML estimate of θ or the diagnostic measures
on the basis of Cook’s (1986) approach by working directly with Lo(θ|X,Z).
To solve the difficulties, we reformulate the problem as a missing-data prob-
lem by treating some latent quantities as hypothetical missing data and ob-
tain the ML estimates via the well-known EM algorithm. In our model, there
are a tremendous number of latent quantities, namely, the continuous measure-
ments in Y = {ygi : g = 1, . . . , G; i = 1, . . . , Ng} that underly the polyto-
mous variables, the latent variables in Fw = {ζgi : g = 1, . . . , G; i = 1, . . . , Ng},
Fb = {ζg : g = 1, . . . , G}, and V = {vg : g = 1, . . . , G}. There are two pos-
sible ways to apply the EM algorithm. The first one treats Fw, Fb, V and Y
as hypothetical missing data, while the second one treats only Fw, Fb and V as
missing.

Let Λw1 and Λw2 be the sub-matrices of Λw, Ψw1 and Ψw2 be the sub-
matrices of Ψw, and vg1 and vg2 be the sub-vectors of vg that are associ-
ated with x and y, respectively. For h = 1, 2, let Λwhk, ψwhk and vghk be
the kth row, kth diagonal element and kth element of Λwh, Ψwh and vgh, re-
spectively. In the first EM algorithm, the complete-data log-likelihood function,
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L∗
c(θ|X,Z,Y,Fw,Fb,V), is proportional to the sums of the following functions:

L∗
1(Λw1,Ψw1|X,Fw,V) =

G∑
g=1

Ng∑
i=1

log p(xgi|ζgi,vg1,Λw1,Ψw1)

=
G∑

g=1

Ng∑
i=1

−1
2

{
log |Ψw1|+(xgi−vg1−Λw1ζgi)

TΨ−1
w1(xgi − vg1−Λw1ζgi)

}
, (4)

L∗
2(Λw2,Ψw2,α|Z,Y,Fw,V) =

G∑
g=1

Ng∑
i=1

s∑
k=1

log I(αk,zgik
,αk,zgik+1

](ygik)

−1
2

G∑
g=1

Ng∑
i=1

{
log |Ψw2| + (ygi − vg2 − Λw2ζgi)

TΨ−1
w2(ygi − vg2 − Λw2ζgi)

}
,

L∗
3(Πw,Γw,Φw,Ψwδ|Fw) =

G∑
g=1

Ng∑
i=1

log p(ζgi|Πw,Γw,Φw,Ψwδ)

=
G∑

g=1

Ng∑
i=1

−1
2

{
log |Ψwδ| + log |Φw| + ξT

giΦ
−1
w ξgi

+(ηgi − Πwηgi − Γwξgi)
TΨ−1

wδ(ηgi − Πwηgi − Γwξgi)
}
, (5)

L∗
4(µ,Λb,Ψb|Fb,V) =

G∑
g=1

log p(vg|ζg,µ,Λb,Ψb)

=
G∑

g=1

−1
2

{
log |Ψb| + (vg − µ − Λbζg)

T Ψ−1
b (vg − µ −Λbζg)

}
, (6)

L∗
5(Πb,Γb,Φb,Ψbδ|Fb) =

G∑
g=1

log p(ζg|Πb,Γb,Φb,Ψbδ)

=
G∑

g=1

−1
2

{
log |Ψbδ| + log |Φb| + ξT

g Φ−1
b ξg

+(ηg − Πbηg − Γbξg)
TΨ−1

bδ (ηg − Πbηg − Γbξg)
}
, (7)

where IA(y) is an indicator function which takes the value 1 if y ∈ A and zero oth-
erwise. The ML estimate of θ can be obtained via the first EM algorithm which
is implemented as follows at the jth iteration with current value θ(j). E-step:
evaluate Q∗(θ|θ(j)) = E{L∗

c(θ|X,Z,Y,Fw,Fb,V)|X,Z,θ(j)}, where the expec-
tation is taken with respect to the conditional distribution of (Y,Fw,Fb,V) given
(X,Z) and θ(j); M-step: obtain a new value of θ by maximizing Q∗(θ|θ(j)). We
apply the Gibbs sampler (Geman and Geman (1984)) to generate a sufficiently
large number, say J , of observations from p(Y,Fw,Fb,V|X,Z,θ(j)) for comput-
ing the conditional expectation at the E-step. The choice of J proceeds on a
problem-by-problem basis; for example, we can take J = 50 + 10r at the rth
iterations of the MCEM algorithm. The M-step is completed by approximating
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the various sufficient statistics via the means of the random observations gener-
ated in the E-step. We monitor convergence of the algorithm by bridge sampling
(Meng and Wong (1996)), via a slight extension of the procedure described in
Lee and Shi (2001, p.790).

The first EM algorithm is rather efficient for producing ML estimates. How-
ever, as L∗

c(θ|X,Z,Y,Fw,Fb, V) is not differentiable with respect to α, we de-
velop our local influence analysis on the basis of the second EM algorithm. Now
the complete-data set is (X,Z,Fw,Fb,V), and the complete-data log-likelihood
function is equal to

Lc(θ|X,Z,Fw,Fb,V) = L1(Λw1,Ψw1|X,Fw,V) + L2(Λw2,Ψw2,α|Z,Fw,V)
+L3(Πw,Γw,Φw,Ψwδ|Fw)+L4(µ,Λb,Ψb|Fb,V)+L5(Πb,Γb,Φb,Ψbδ|Fb), (8)

where the Lh = L∗
h are defined by equations (4)-(7), for h = 1, 3, 4, 5, while

L2(Λw2,Ψw2,α|Z,Fw,V) =
G∑

g=1

Ng∑
i=1

log p(zgi|ζgi,vg2,Λw2,Ψw2,α),

with p(zgi|ζgi,vg2,Λw2,Ψw2,α)=
∏s

k=1[Φ(α∗
k,zgik+1)−Φ(α∗

k,zgik
)], in which α∗

k,zgik

= ψ
−1/2
w2k (αk,zgik

− vg2k −Λw2kζgi), and Φ is the cumulative distribution function
of N [0, 1]. Note that this complete-data log-likelihood function contains separate
terms that involve different separable parameters. Hence, its Hessian matrix is a
diagonal block matrix. This reduces the computational effort for computing the
influence diagnostics.

The E-step of the EM algorithm evaluates Q(θ|θ(j)) = E{Lc(θ|X,Z,Fw,Fb,
V) |X,Z,θ(j)}. It is completed as before. At the M-step, optimal values of
Λw1, Ψw1, Πw, Φw, Ψwδ, µ, Λb, Ψb, Πb, Φb and Ψbδ can be obtained in closed
form. However, one requires an iterative procedure such as the Newton Raphson
algorithm to obtain the optimal values of Λw2, Ψw2 and α in L2.

4. Local Inference of the Model

Let Lc(θ,ω|X,Z,Fw,Fb,V) be the perturbed complete-data log-likelihood
function with respect to a perturbation vector ω = (ω1, . . . , ωm)T . Assume
that there is a ω0 such that Lc(θ,ω0|X,Z,Fw,Fb,V) = Lc(θ|X,Z,Fw,Fb,V)
for all θ. Our local influence approach is based on the Q-displacement function
fQ(ω) = 2{Q(θ̂|θ̂)−Q(θ̂(ω)|θ̂)}, where θ̂ is the ML estimate of θ, and θ̂(ω) is the
estimate of θ which maximizes Q(θ,ω|θ̂) = E{Lc(θ,ω|X,Z,Fw,Fb,V)|X,Z, θ̂}.
The main motivation for using the Q-displacement function fQ(ω) instead of the
likelihood displacement function is that Lc(θ,ω|X,Z,Fw,Fb,V) is much simpler
than Lo(θ|X,Z). Moreover, it can be regarded as a measure of the difference
between θ̂ and θ̂(ω): it is greater than or equal to zero and achieves its global
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minimum at ω0. When no perturbation is introduced, θ̂(ω0) is θ̂. Following Cook
(1986), attention should be paid to situations where key results of the analysis
are seriously influenced by a minor perturbation of Q(θ,ω|θ̂). The influence
graph of fQ(ω) is defined as γ(ω) = (ωT , fQ(ω))T . Since it is difficult to obtain
the complete influence graph, the normal curvature CfQ,h of γ(ω) at ω0 in the
direction of a unit vector h is used to summarize the local behavior of fQ(ω).
Define Q̈ω0 = ∂2Q(θ̂(ω)|θ̂)/∂ω∂ωT |ω=ω0 , Q̈θ(θ̂) = ∂2Q(θ|θ̂)/∂θ∂θT |θ=θ̂ and
∆ω = ∂2Q(θ,ω|θ̂)/∂θ∂ωT |θ=θ(ω). Using a similar derivation as in Cook (1986),
it can be shown that the normal curvature CfQ,h of γ(ω) at ω0 is CfQ,h =
−2hT Q̈ω0h = 2hT∆T

ω0{−Q̈θ(θ̂)}−1∆ω0h.
Let {(λi, ei), i = 1, . . . ,m} be the eigenvalue-eigenvector pairs of −2Q̈ω0

with λ1 ≥ · · · ≥ λr > λr+1 = · · · = λm = 0 and orthonormal eigenvectors
{ei, i = 1, . . . ,m}. The eigenvector e1 = hmax corresponding to the largest
eigenvalue λ1 provides important information for judging large enough change of
CfQ,h with respect to a minor perturbation on the postulated model. However,
as pointed out recently by Lesaffre and Verbeke (1998), Poon and Poon (1999)
and Zhu and Lee (2001), it is not enough to assess local influence by inspecting
only hmax. Hence, we consider the following aggregated contribution vector of
all eigenvectors associated with nonzero eigenvalues. Let λ̃i = λi/

∑r
k=1 λk, e2

i =
(e2i1, . . . , e

2
im)T , and M(0) =

∑r
k=1 λ̃ke2

k. The jth component of M(0), M(0)j , is∑r
k=1 λ̃ke

2
kj. Assessment of influential cases is based on {M(0)j , j = 1, . . . ,m}.

Inspired by Poon and Poon (1999) in modifying Cook’s (1986) normal cur-
vature, we define the conformal normal curvature BfQ,h at ω0 in a unit direction
h as follows:

BfQ,h = −2hT Q̈ω0h/tr[−2Q̈ω0 ]. (9)

Let ωj be a basic perturbation vector with jth entry 1 and zero elsewhere. Zhu
and Lee (2001) showed that for all j, M(0)j = BfQ,ωj

. Note that it is very
simple to compute M(0)j , because no eigenvalues and eigenfunctions of −2Q̈ω0

are involved. Let M̄(0) and SM(0) be the mean and standard error of {M(0)j :
j = 1, . . . ,m}. Clearly, M̄(0) = 1/m. It can be used as a benchmark to determine
the significance of contribution from an individual case. Similar to Zhu and Lee
(2001), M̄ (0)j + cSM(0) may be used as a benchmark, where c is a constant
selected on a problem-by-problem basis. In our illustrative example, c is taken
to be 1.96. The jth case is regarded as influential if M(0)j is larger than the
benchmark.

The building blocks of the conformal normal curvature involve ∆ω and Q̈θ(θ)
(see (9) and CfQ,h), which are given by: Q̈θ(θ̂) = E[∂2Lc(θ|X,Z,Fw,Fb,V)/
∂θ∂θT |X,Z, θ̂] and ∆ω0 = E[∂2Lc(θ,ω|X,Z,Fw,Fb,V)/∂θ∂ωT |X,Z, θ̂] |ω=ω0 .
For h = 1, . . . , 5, let θh be the parameter vector that contains the separable
unknown parameters in Lh of Lc, and L̈h(θh) = ∂2Lh(θh|·)/∂θh∂θT

h . Then,
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L̈c(θ) = ∂2Lc(θ|X,Z,Fw,Fb, V)/∂θ∂θT is a diagonal block matrix with diagonal
blocks L̈1(θ1), . . . , L̈5(θ5). These derivatives can be obtained by straightforward
matrix calculus. Their conditional expectations cannot be evaluated in closed
form. So we resort to Monte Carlo integration. Given {(F(j)

w ,F(j)
b ,V(j)), j =

1, . . . , J}, a sufficiently large sample from the conditional distribution [Fw,Fb,V|
X,Z, θ̂], the building blocks Q̈ω0(θ̂) and ∆ω0 can be approximated by the sample
means of this sample. As this random sample can be obtained from the E-step
of the MCEM algorithm in the ML estimation, the required computation is not
heavy.

Since the proposed two-level LVM is rather general, there are a number of
additional perturbations on top of those commonly considered in local influence
analysis. For example, perturbations on the various latent variables (see e.g.,
perturbation (ii) below) have not been investigated before. Taking the advantage
of the fact that the observed-data log-likelihood is decomposed into five separable
functions with distinct separable parameters, see (8), it is rather efficient to
obtain the diagnostic measures under many different perturbations. Moreover,
we see from the definitions of these separable functions that {L1, L2} and L3,
respectively, relate to the measurement equation and the structural equation
of the within-groups model, and that L4 and L5, respectively, play the same
role in the between-groups model. In applying a perturbation, we know exactly
whether it is going to affect the measurement equation or structural equation
of the within-groups model or the between-groups model. In general, given a
perturbation vector ω, the perturbed complete-data log-likelihood function is

Lc(θ,ω|X,Z,Fw,Fb,V) = L1ω(θ1,ω|X,Fw,V) + L2ω(θ2,ω|Z,Fw,V)

+L3ω(θ3,ω|Fw) + L4ω(θ4,ω|Fb,V) + L5ω(θ5,ω|Fb). (10)

Unless otherwise stated, we consider perturbation vectors ω such that ω0 =
(1, . . . , 1). Due to space limitation, only the following perturbations are discussed.

(A) Local influence relating to the measurement equation of the within-groups
model: To identify an influential observation, a case weights perturbation is usu-
ally considered with respect to both the manifest continuous and polytomous
entries. However, since the effect of a perturbation on a polytomous data point
is very minor, we only need to consider the perturbation on the continuous mea-
surements. For polytomous data, it is more appropriate to identify the influential
cells of the corresponding s-dimensional contingency table.
(i) Case weights perturbation on continuous measurements. For this perturbation,
Lhω(θh,ω|·) in Lc(θ,ω|·) is equal to Lh(θh|·) for h = 2, 3, 4, 5, while

L1ω(θ1,ω|X,Fw,V) =
G∑

g=1

Ng∑
i=1

ωgi log p(xgi|ζgi,vg1,Λw1,Ψw1).
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Note that this scheme is a generalization of the case-deletion method.
(ii) Perturbation on Ψw1. In this perturbation, Lhω(θh,ω|·) = Lh(θh|·) for h =
2, 3, 4, 5, and

L1ω(θ1,ω|X,Fw,V) =
G∑

g=1

Ng∑
i=1

log p(xgi|ζgi,vg1,Λw1, ω
−1
gi Ψw1).

(B) Local influence relating to the structural equation of the within-groups model:
(iii) Perturbation on latent variables ζgi. Here, Lhω(θh,ω|·) = Lh(θh|·) for
h = 4, 5, and

L1ω(θ1,ω|X,Fw,V) =
G∑

g=1

Ng∑
i=1

log p(xgi|ωgiζgi,vg1,Λw1,Ψw1),

L2ω(θ2,ω|Z,Fw,V) =
G∑

g=1

Ng∑
i=1

log p(zgi|ωgiζgi,vg2,Λw2,Ψw2,α),

L3ω(θ3,ω|Fw) =
G∑

g=1

Ng∑
i=1

log p(ωgiζgi|Πw,Γw,Φw,Ψwδ).

As ζgi is closely related to ugi, this perturbation gives some insight about the im-
pact of the analysis with respect to minor change of the latent variable associated
with ugi.
(iv) Perturbation on Ψwδ. In this case, Lhω(θh,ω|·) = Lh(θh|·) for h = 1, 2, 4, 5,
and

L3ω(θ3,ω|Fw) =
G∑

g=1

Ng∑
i=1

log p(ζgi|Πw,Γw,Φw, ω
−1
gi Ψwδ).

(C) Local influence relating to the between-groups model: Similar perturbations
for assessing local influence on the measurement and structural equations as
above may be considered. We just present the following perturbation.
(v) Case weights perturbation: In this case, Lhω(θh,ω|·) = Lh(θh|·) for h =
1, 2, 3, 5, while

L4ω(θ4,ω|Fb,V) =
G∑

g=1

ωg log p(vg|ζg,µ,Λb,Ψb).

The main computational burden for obtaining the diagnostic measures is the
evaluation of Q̈ω0 = ∆T

ω0{−Q̈θ(θ̂)}−1∆ω0 . In all the perturbations considered,
most partitions of ∆ω0 are equal to zero, for example, only ∂2L1ω(θ1,ω|·)/∂θ1∂ω

is nonzero in perturbation (i). As Q̈(θ) is also a diagonal block matrix, the
computational burden is not heavy.
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5. An Application: Filipino CSWs Study

The illustrative example is based on the study of Morisky et al. (1998)
on the effects of establishment policies, knowledge and attitudes on condom use
among Filipino commercial sex workers (CSWs). The data set was collected from
female CSWs in 97 establishments (bars, night clubs or Karaoke TV) in cities of
Philippines. The entire questionnaire consisted of 134 items, covering the areas of
attitudes, beliefs, behaviors, self-efficacy for condom use, and social desirability.
Nine manifest variables, of which the first three variables are continuous and
the remaining are polytomous with a five-point scale, were selected. Questions
corresponding to these variables are given in Table 1 of Lee and Shi (2001). For
brevity, we deleted those observations with missing entries, and the remaining
sample size is 755. The numbers of individuals in establishments varied from 1
to 58, thus this is an unbalanced data set. To unify scales of variables, the raw
continuous data were standardized.

Table 1. ML estimates and standard errors of the parameters.

Thresholds Between-Group Within-Group
Par Est Std Par Est Std Par Est Std
α12 -1.098 0.050 λb,11 0.151 0.035 λw,21 1.929 0.226
α13 -0.704 0.055 λb,21 0.351 0.055 λw,31 1.594 0.084
α22 -0.084 0.039 λb,31 0.130 0.029 λw,52 0.345 0.087
α23 0.305 0.054 λb,42 0.175 0.072 λw,62 0.595 0.094
α32 -0.991 0.044 λb,52 0.296 0.104 λw,83 2.056 0.239
α33 -0.595 0.058 λb,62 0.435 0.041 λw,93 1.695 0.141
α42 -0.402 0.059 λb,73 0.235 0.037 γw1 -0.051 0.035
α43 0.243 0.043 λb,83 0.107 0.014 γw2 -0.167 0.091
α52 -1.637 0.106 λb,93 0.345 0.075 ψwδ 0.061 0.008
α53 -0.732 0.033
α62 -1.031 0.074 ψb1 0.047 0.058 ψw1 0.869 0.039
α63 -0.119 0.032 ψb2 0.071 0.036 ψw2 0.523 0.029

ψb3 0.011 0.008 ψw3 0.800 0.044
ψb4 0.063 0.030 ψw3 0.530 0.061
ψb5 0.387 0.088 ψw3 0.559 0.052
ψb6 0.016 0.004 ψw3 0.698 0.060
ψb7 0.027 0.016 ψw3 0.868 0.065
ψb8 0.092 0.014 ψw3 0.586 0.035
ψb9 0.027 0.024 ψw3 0.661 0.068
φb,21 -0.089 0.076 φw,11 0.371 0.033
φb,31 0.208 0.073 φw,21 0.055 0.018
φb,32 -0.095 0.081 φw,22 0.079 0.006
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Three latent variables were used in the measurement equations for models
at both levels, using the first three, the second three and the last three manifest
variables as indicators for the first, second and third factors, respectively. For the
between-groups model, we considered a factor analysis model with the following
specifications:

ΛT
b =



λb,11 λb,21 λb,31 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0∗ 0∗ 0∗ λb,42 λb,52 λb,62 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 0∗ 0∗ 0∗ λb,73 λb,83 λb,93


 ,

Φb =




1.0∗ sym
φb,21 1.0∗

φb,31 φb,32 1.0∗


 , and Ψb = (ψb1, ψb2, ψb3, ψb4, ψb5, ψb6, ψb7, ψb8, ψb9),

where any parameter with an asterisk is fixed. For the within-group structure,
we consider a LISREL model with a ΛT

w which has the structure as in ΛT
b with

parameters λw,hk,

Φw =

[
φw,11 φw,12

φw,21 φw,22

]
, Ψw = (ψw1, ψw2, ψw3, ψw4, ψw5, ψw6, ψw7, ψw8, ψw9),

and the following structural equation for the latent variables {ηgi, ξgi1, ξgi2}: ηgi =
γw1ξgi1 + γw2ξgi2 + δgi. To identity the polytomous variables, αk1 and αk4, k =
1, . . . , 6, were fixed at αkj = Φ−1(mk), where mk is the observed cumulative
marginal proportion of the categories with zgik < j. There are a total of 54
parameters. ML estimates were obtained by the first MCEM algorithm and local
influence was conducted on the basis of the function Q(θ̂|θ̂). At the rth iteration
of the MCEM algorithm, 50+10r observations were generated for completing the
E-step. Monitoring convergence by bridge sampling, we found that the algorithm
converged after about 100 iterations. To be conservative, parameters values at the
200th iteration were taken as the ML estimates. These estimates are reported in
Table 1. Hence, we have established a two-level LVM, ugi = vg+vgi, for this data
set, where the within-groups model is a LISREL type model with measurement
equation vgi = Λwζgi + εgi, and the between-groups model is a confirmatory
factor analysis model vg = Λbζg + εg.

The E-step at the last iteration of the MCEM algorithm also produces a
sufficiently large sample of the various latent vectors, namely {(F(j)

w ,F(j)
b ,V(j)),

j = 1, . . . , J}. Hence, we can obtain the following estimates of the latent vec-
tors as by-products: ζ̂gi =

∑J
j=1 ζ

(j)
gi /J , ζ̂g =

∑J
j=1 ζ(j)

g /J , v̂g =
∑J

j=1 v(j)
g /J ,

where ζ
(j)
gi , ζ(j)

g and v(j)
g are in F(j)

w , F(j)
b and V(j), respectively. As a result,
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for g = 1, . . . , G, i = 1, . . . , Ng, we can get standardized residuals: ε̂T
gi1Ψ̂

−1
w1ε̂gi1,

δ̂T
giψ̂

−1
wδ δ̂gi, and ε̂T

g Ψ̂
−1
b ε̂g, where ε̂gi1 = xgi − v̂g1 − Λ̂w1ζ̂gi, δ̂gi = ηgi − γ̂w1ξ̂gi1 −

γ̂w2ξ̂gi2, and ε̂g = v̂g − Λ̂bζ̂g.
We first apply the case weights perturbation on continuous measurements to

find influential observations. The mean and standard error ofM(0)j are 0.001 and
0.022, respectively. The benchmark and plots of M(0)j are presented in Figure 1.
In this and other figures, the benchmark is indicated by a dotted horizontal line.
The 373th and 554th observations are clearly identified as influential. Hence,
if we make a minor perturbation on these individuals, it will strongly influence
the outcome of the analysis. We also considered a perturbation such that the
Ψw1 of each individual is perturbed to ω−1

gi Ψw1. We found that M̄(0) = 0.001,
SM(0) = 0.022, and index plots of M(0)j are very similar to those in Figure
1. Again cases 373 and 554 are identified as influential. To identify influential
latent variables and study the local influence relating to the structural equation,
we considered a perturbation such that the latent variables ζgi is perturbed to
ωgiζgi. The mean and standard error of M(0)j are 0.001 and 0.019, respectively.
The benchmark and plots of M(0)j are presented in Figure 2. The 358th, 373th,
433th and 436th latent variables are identified as influential, while the 373th case
is most influential. Interestingly, the latent vector corresponding to the 554th
manifest observation is not identified as influential.
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Case Number

M
(0

) j

Figure 1. Benchmark and plots of M(0)j corresponding to case weights
perturbation of continuous measurements.
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Figure 2. Benchmark and plots of M(0)j corresponding to perturbation of
within-groups latent variables.

To find a possible explanation of the above results, we computed the stan-
dardized estimated residuals ε̂T

gi1Ψ̂
−1
w1 ε̂gi1 and δ̂T

giψ̂
−1
wδ δ̂gi. Plots are presented in

Figures 3a and 3b. From Figure 3a, we see that standardized residuals corre-
sponding to the 373th and 554th observations are very large. We examined these
observations and found that the variable xg3 of the 373th case has an outlying
value of 30, while the variable xg1 of the 554th case has an outlying value of 99.
Comparing to the sample means, these two observations are probably outliers.
From Figure 3b, we see that the standardized residuals corresponding to the
358th, 373th, 433th and 436th latent vectors are relatively large. These latent
vectors are not fitting the structural equation well. For the 373th case, both its
’measurement equation’ and ’structural equation’ residuals are large. This may
explain why the 373th observation and its associated latent vector are identi-
fied as influential. However, for the 554th observation, the ’structural equation’
residual of its associated latent vector is relatively small. This may explain why
its latent vector not identified as influential.

To illustrate the local influence analysis on the confirmatory factor analysis
model associated with the between-groups latent vectors, the plots of M(0)j and
their benchmarks corresponding to the case weights perturbation are displayed
in Figure 4. Clearly, the 69th group is most influential in the between-groups
model. From plots of ε̂T

g Ψ̂
−1
b ε̂g (which are not presented to save space), the

standardized residual associated with the 69th group is significantly larger than
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the others. This indicates that the 69th group does not fitting the between-
groups model well. By examining the manifest observations in this group, we
found that the 554th observation is in there. The analysis of this example is
based on a program written in C language. This program is available from the
authors upon request.
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Figure 3. (a) Plots of residuals ε̂gi1Ψ̂
−1

w1ε̂gi1. (b) Plots of residuals δ̂giψ̂
−1
wδ δ̂gi.

6. Discussion

Owing to the generality of the proposed model and data structures, our
methodology can be applied to assess local influence for many other statistical
models as special cases. For example, it can be applied to models in categorical
data analysis, and two-level regression models with continuous and polytomous
outcomes.
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Figure 4. Benchmark and plots of M(0)j corresponding to case weights
perturba-tions of vg.

Based on the same idea in working with the conditional expectation of the
complete-data likelihood in the EM algorithm, global influence analysis of this
LVM can be investigated similarly as in Zhu, Lee, Wei and Zhou (2001). De-
veloping such diagnostic measures and comparing them with the local influence
measures may be an interesting topic for research.
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