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Abstract: One important topic in financial studies is to build a tracking portfolio

of stocks whose return mimics that of a chosen investment target. Statistically,

this task can be accomplished by selecting an optimal constrained linear model. In

this paper, we extend the Generalized Information Criterion (GIC) to constrained

linear models with independently and identically distributed random errors and,

more generally, with dependent errors that follow a stationary Gaussian process.

The extended GIC procedure is proved to be asymptotically loss efficient and con-

sistent under mild conditions. Simulation results show that the relative frequency

of selecting the optimal constrained linear model by GIC is close to one for finite

samples. We also apply GIC to build an optimal tracking portfolio for measur-

ing the long-term impact of a corporate event on stock returns, and demonstrate

empirically that it outperforms two competing methods.
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1. Introduction

In a number of financial studies, the essential task boils down to building
a tracking portfolio of stocks whose return mimics that of a chosen investment
target. For example, the sole business of an index fund is to maintain a portfolio
of individual stocks so that percentage changes in value of the portfolio are ap-
proximately equal to those of the chosen index. How closely its portfolio tracks
the index is an important determinant of the success of an index fund. Another
example is to assess the effect of a specific corporate event on the event firm’s
long-term stock returns after the event has happened. Since the observed post-
event return has been affected by the event, we do not know what the status-quo
return would have been if the event had not happened. To estimate the unob-
servable status-quo return, a researcher can choose a portfolio of other stocks
whose returns have moved in tandem with the event firm’s returns before the
event happened and use the observed post-event return on the portfolio as an
estimate.

In both examples, a tracking portfolio is to be built given a desired target
and a group of other stocks. Every nonempty subset of the given group of stocks
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compose a portfolio that may track the target to some degree. There are as many
possible tracking portfolios as the number of nonempty subsets of stocks. Among
all possible portfolios, an ideal tracking portfolio should be the one whose return
is equal to the target’s return in every month. In reality, no portfolio tracks the
target perfectly. An optimal, though not ideal, tracking portfolio would be the
one whose returns are on average closest to the target’s. Therefore, the task is
to find such an optimal tracking portfolio.

Since return of a tracking portfolio is a weighted sum of returns on all stocks
in the portfolio, building a tracking portfolio from a group of stocks is equivalent
to fitting a constrained linear model with the target’s return as the response
variable and returns on stocks in the group as the covariates. The linear model
is constrained such that all coefficients in the model sum to one. This is because
the coefficient of a covariate is equal to the proportion of investment on the
corresponding stock to the total investment in the tracking portfolio and the
sum of all coefficients accounts for 100 percent of the total investment.

Because of the correspondence between a tracking portfolio and a constrained
linear model, the task of finding the optimal tracking portfolio can be accom-
plished by selecting an optimal constrained linear model. In this paper, we
develop a statistical procedure to do this, based on a model selection criterion
known as the Generalized Information Criterion (GIC). There is considerable
literature on the problem of selecting variables in the context of unconstrained
linear models; see review papers by Hocking (1976) and Thompson (1978a, b) for
early contributions. Miller (1990) gave a comprehensive summary of variable se-
lection methods prior to 1990, and George (2000) reviewed the key developments
in the last decade. A recent book by Burnham and Anderson (2002) gives a
systematic account of the developments in model selection from the information
theoretic viewpoint. The Generalized Information Criterion (GIC) we use in this
paper was proposed by Rao and Wu (1989), and is a generalization of the well
known Akaike’s Information Criterion (AIC, Akaike (1973)) and the Bayesian
Information Criterion (BIC, Schwartz (1978)).

Asymptotic properties of GIC have been investigated in various settings. For
instance, Nishii (1984), Rao and Wu (1989) and Pötscher (1989) proved consis-
tency of GIC or its asymptotic equivalents for unconstrained linear models under
the assumption that there exists a finite-dimensional true model. In these stud-
ies, different assumptions were imposed on the random error terms in the linear
models. Nishii (1984) and Rao and Wu (1989) assumed independently and iden-
tically distributed (i.i.d.) random errors, while Pötscher (1989) assumed that
the error term is a martingale difference sequence. Shao (1997) used two crite-
ria to evaluate asymptotic validity of a model selection procedure: consistency
and asymptotic loss efficiency (see Section 3 for definitions of asymptotic loss
efficiency and consistency). For unconstrained linear models with i.i.d. random
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errors, Shao (1997) showed that GIC is asymptotically loss efficient regardless of
the existence of a true model, and consistent if a true model exists.

In this paper, we extend GIC to constrained linear models with errors follow-
ing a stationary Gaussian process. Since there is no guarantee that the target’s
return is completely determined by returns on a subset of stocks, the existence
of a true model cannot be taken for granted. We give conditions under which
the extended GIC is asymptotically loss efficient regardless of the existence of a
true model, and consistent if a true model exists.

The rest of the paper is organized as follows. In Section 2, we formalize
a statistical model for the problem of building an optimal tracking portfolio.
In Section 3, we extend GIC to constrained linear models with dependent errors
that follow a stationary Gaussian process, and we study its asymptotic properties.
Section 4 reports results from a simulation study which demonstrates that the
relative frequency of selecting the correct model by the GIC procedure is close
to one for finite samples. In Section 5, we apply the GIC procedure to build
an optimal tracking portfolio for the purpose of measuring long-term post-event
abnormal returns of event firms. Performance of the GIC procedure is compared
against that of two other methods empirically. It is found that the GIC procedure
gives the best performance. Summary of the paper and some discussions are in
Section 6. Proofs of the asymptotic properties are given in the Appendix.

2. Statistical Model

Let yt be the return from investing in a chosen target during a unit time
interval from t− 1 to t, i.e.,

yt =
Target’s price at t − Target’s price at t− 1

Target’s price at t− 1
,

for t = 1, 2, · · · , τ . Let y = (y1, · · · , yτ )′ be a vector of historical returns with

y = µ + e , (2.1)

where µ = E(y) is the mean of y and e = y −µ is a vector of random variables
with mean zero. Note that we allow the expected return of the target to change
with time in any manner.

Suppose that m other stocks are available for building a tracking portfolio
of the target. Let X = (x1, · · · ,xm) be a τ × m matrix of rank m, where
xj = (xj1, · · · , xjτ )′ is a vector of historical returns on the jth stock for j =
1, · · · ,m. Let V be the collection of all nonempty subsets of {1, 2, · · · ,m}. Each
subset v ∈ V indexes a group of stocks. Let X(v) be the submatrix of X whose
columns are returns of stocks in the subset v. To build a tracking portfolio
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consisting of all stocks in the subset v, we fit the following linear model of y

against the covariates:
y = X(v)β(v) + e(v) , (2.2)

where the dimension of β(v) is equal to the size of the subset v. Note that the
error term e(v) depends on v and differs from the random vector e in (2.1). More
specifically, the error term e(v) is the sum of the random vector e and the model
misspecification error.

In the context of building a tracking portfolio, the coefficients β(v) in (2.2)
sum up to one. The left hand side of (2.2) is the return of investing one dollar in
the target. The right hand side is the return of investing one dollar in the portfolio
consisting of all stocks in the subset v, plus random noise. Each coefficient in
β(v) is the proportion of a dollar invested in the corresponding stock, and the
sum of all coefficients accounts for 100 percent of the dollar.

Let β̂(v) denote an estimate of β(v). Then an estimate of µ is µ̂(v) =
X(v)β̂(v). The goodness of the estimate is measured by the average squared
error loss

L(v) =
||µ − µ̂(v)||2

τ
, (2.3)

where || · || is the Euclidean norm. The objective of model selection is to find the
subset v whose associated estimate µ̂(v) minimizes the average squared error loss.
Once the minimizing subset v is found, the portfolio that consists of all stocks
in the subset v and uses β̂(v) as the portfolio weights is the optimal tracking
portfolio.

To estimate the linearly constrained coefficients, we take the model reduction
approach of Hocking (1985, Chap. 3). We briefly describe the approach for the
sake of self-completeness of this paper. To simplify notation, we drop the subset
index v for now.

A linear model with general linear constraints is written as

y = Xβ + ε subject to Gβ = g , (2.4)

where y is a vector of dimension τ , X is a τ ×m matrix of rank m, β is a vector
of m coefficients, G is a q ×m matrix of rank q, and ε is a random vector.

An estimate of β can be obtained by the model reduction approach as follows.
The coefficient vector β and the constraint matrix G are partitioned in such a
way that the constraints are written as

G1β1 + G2β2 = g ,

where G1 is a q × q matrix of rank q. Solving for β1 yields

β1 = G−1
1 g − G−1

1 G2β2 . (2.5)
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Corresponding to the partition of β, we partition X as X = (X1 X2), where
X1 is a τ × q matrix. Substituting the partition into the constrained model, we
obtain the unconstrained model yR = XRβ2 + ε, where yR = y −X1G

−1
1 g and

XR = X2 −X1G
−1
1 G2. The least squares estimate of β2 is then given by β̂2 =

(X ′
RXR)−1X ′

RyR. Substituting β̂2 in (2.5), we get β̂1 = G−1
1 g − G−1

1 G2β̂2.
We can write the estimate of β together as

β̂ =

[
β̂1

β̂2

]
=

[
G−1

1 g

0

]
+

[−G−1
1 G2

I

]
β̂2 . (2.6)

Then the estimate of µ = E(y) is given by

µ̂ = Xβ̂ = η + Hy , (2.7)

where H = XR(X ′
RXR)−1X ′

R and η = (I − H)X1G
−1
1 g.

3. EGIC and its Asymptotic Properties

In the context of unconstrained linear models, numerous criteria have been
proposed to select variables, see, e.g., Hocking (1976), Thompson (1978a, b), Li
(1987), Miller (1990), George (2000) and the references therein. Among them,
GIC or its asymptotic equivalents have been proposed and/or studied by Nishii
(1984), Rao and Wu (1989), Pötscher (1989) and Shao (1997), among others. In
this section we extend GIC to constrained linear models with dependent observa-
tions, and give conditions under which the extended GIC is still asymptotically
loss efficient and consistent.

In the remainder of this paper, the subset index v ∈ V and the subscript τ
are used to identify quantities that depend on the subset v and those that vary
with τ , respectively.

We consider constrained linear models

yτ = Xτ (v)β(v) + eτ (v) subject to l′β(v) = 1 , (3.1)

where v belongs to V , l is a vector of ones with the same dimension as β(v),
and τ is the number of observed time periods. Note that the coefficients in β(v)
vary with the subset v but not with τ . In other words, we assume that the linear
relationship between yτ and Xτ (v) does not change over time.

Let µτ = E(yτ ). A candidate model v ∈ V is said to be correct if there
exists β(v) such that µτ = Xτ (v)β(v) for all τ . Let V c be the collection of all
correct models.

It is straightforward to decompose yτ as yτ = µτ + eτ , where eτ is a vector
of random variables with zero mean. We assume that {et}∞t=−∞ is a stationary
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Gaussian process with E(et) = 0 and E(etet+j) = γj . The autocovariance matrix
for eτ , denoted as Ψτ , is then

Ψτ =



γ0 γ1 · · · γτ−1

γ1 γ0 · · · γτ−2
...

...
. . .

...
γτ−1 γτ−2 · · · γ0


 . (3.2)

We further assume that the autocovariances {γj , j = 0,±1, . . . , } are absolutely
summable, that is,

Υ ≡ γ0 + 2
∞∑

j=1

|γj | <∞ . (3.3)

The Extended Generalized Information Criterion (EGIC) selects a model
that minimizes

Φτ (v) ≡ ||yτ − µ̂τ (v)||2
τ

+
λτ tr(Ψ̂τHτ (v))

τ
(3.4)

over v ∈ V , where Ψ̂τ is an estimate of Ψτ , tr(·) stands for the trace of a
matrix, the hat matrix Hτ (v) is introduced in equation (2.7), and λτ satisfies
the conditions given in (3.6) and (3.7). Note that Ψ̂τ does not depend on v and
is obtained by fitting a linear model with all covariates included.

In the special case when random errors eτ are independently and identi-
cally distributed with a normal distribution of mean zero and variance σ2, the
Extended Generalized Information Criterion can be simplified to

Γτ (v) ≡ ||yτ − µ̂τ (v)||2
τ

+
λτ σ̂

2
τ tr(Hτ (v))

τ
(3.5)

over v ∈ V , where σ̂2
τ is an estimator of σ2. Note that σ̂2

τ does not depend on v

and is obtained by fitting the linear model with all m covariates included. Note
that tr(Hτ (v)) is equal to the number of unconstrained coefficients in the linear
model (3.1). For instance, a linear model with five covariates and one constraint
has four unconstrained coefficients and tr(Hτ (v)) = 4. This simplified criterion
is essentially the same as GIC discussed in Shao (1997), except that in this paper
the hat matrix Hτ (v) is a result of fitting a constrained linear model.

Shao (1997) studied the asymptotic validity of several model selection pro-
cedures with respect to two criteria: consistency and asymptotic loss efficiency.
We adopt his definitions of the two criteria in this paper. Specifically, let v̌τ

denote the model that minimizes EGIC, Φτ (v), over v ∈ V . Let vL
τ be the model

that minimizes the average squared error loss, Lτ (v), over v ∈ V . The EGIC
selection procedure is said to be consistent if P{v̌τ = vL

τ } → 1 as τ → ∞, and
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to be asymptotically loss efficient if Lτ (v̌τ )/Lτ (vL
τ ) p→1 as τ → ∞, where p→ rep-

resents convergence in probability. Throughout this paper, all limiting processes
are taken as τ → ∞.

Proofs of the following results are given in the Appendix.

Theorem 3.1. The average squared error loss at (2.3) is Lτ (v) = ∆τ (v) +
(e′

τHτ (v)eτ )/τ , where ∆τ (v) = (||µτ − ητ (v) − Hτ (v)µτ ||2)/τ . Furthermore,
∆τ (v) = 0 when v ∈ V c. In addition, the expected average squared error loss
is Rτ (v) ≡ E(Lτ (v)) = ∆τ (v) + tr(ΨτHτ (v))/τ , where the matrix Ψτ is the
autocovariance matrix at (3.2).

Remark 3.1. The theorem shows that the average squared error loss has two
components: the model misspecification error ∆τ (v), and the estimation error
(e′

τHτ (v)eτ ))/τ due to randomness in the observed data. Moreover, when the
model v is correct, the model misspecification error ∆τ (v) is zero.

The following two lemmas discuss some properties of the autocovariance
matrix Ψτ .

Lemma 3.1. For any vectors a and b,

∣∣a′Ψτb
∣∣ ≤ ||a||2 + ||b||2

2
Υ ,

where Υ is the absolute sum of autocovariances.

Lemma 3.2. Suppose that H is an idempotent matrix of rank r. Then tr(ΨτH)
≤ rΥ and tr(ΨτHΨτH) ≤ (rΥ)2.

Theorem 3.2. Assume that {et}∞t=−∞ is a stationary Gaussian process with
E(et) = 0, γj = E(etet+j), and Υ ≡ γ0 + 2

∑∞
j=1 |γj | < ∞. Assume further that

Ψ̂τ used in computing the EGIC, Φτ (v), is a consistent estimator of Ψτ and that
tr(ΨτHτ (v)) converges to a finite limit as τ → ∞ for any v ∈ V c. If

λτ → ∞ , λτ/τ → 0 , (3.6)

λτ

τRτ (v)
→ 0 for all v ∈ V − V c , (3.7)

the EGIC minimizer v̌τ is asymptotically loss efficient. In addition, if V contains
at least one correct model, then v̌τ is consistent.

Remark 3.2. Shao (1997) proved asymptotic loss efficiency and consistency
of the GIC for unconstrained linear regression models with i.i.d. random errors
under condition (3.6) and

lim inf
τ→∞ min

v∈V −V c
∆τ (v) > 0 . (3.8)
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It is easy to see that (3.6) and (3.8) imply (3.7) because Rτ (v) ≥ ∆τ (v). Shao’s
condition (3.8) requires that the model misspecification error ∆τ (v) be bounded
away from zero uniformly for all incorrect models. By contrast, our condi-
tion (3.7) suggests that, as long as the model misspecification error of incorrect
models tends to 0 at a rate slower than 1/τ , the EGIC minimizer v̌τ still has
these optimal asymptotic properties for certain λτ .

The following corollary shows that some common stochastic processes are
covered by Theorem 3.2. The proof of the corollary is simple and omitted.

Corollary 3.1. Theorem 3.2 is valid when {et}∞t=−∞ is an infinite moving aver-
age Gaussian process given by et =

∑∞
j=0 ψjat−j , where at ∼ i.i.d. N(0, σ2

a) and∑∞
j=0 |ψj | <∞.

Remark 3.3. The Gaussian infinite moving average process specified in Corol-
lary 3.1 includes the stationary Gaussian processes AR(p), MA(q) and ARMA(p,
q) as special cases.

Remark 3.4. It has been widely documented that many financial time series
follow the Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
model (see, e.g., Bollerslev, Chou and Kroner (1992) and the references therein).
A GARCH model characterizes the error process {et}∞t=−∞ by et = atσt, where
at ∼ i.i.d. with mean 0 and variance 1, and σ2

t = α0+
∑q

i=1 αie
2
t−i+

∑p
j=1 βjσ

2
t−j.

Under the conditions that α0 > 0, αi ≥ 0, βj ≥ 0, and
∑q

i=1 αi+
∑p

j=1 βj < 1, the
GARCH process {et} is uncorrelated with zero mean and constant unconditional
variance (see, e.g., Tsay (2001, Chap. 3)). However, it is not a Gaussian process;
otherwise, being uncorrelated would imply mutual independence of {et}. In fact,
the unconditional distribution of et has fatter tails than the normal distribution.
Therefore, Theorem 3.2 does not apply to GARCH processes.

When the random errors are i.i.d., the GIC given in (3.5) replaces EGIC. The
following corollary gives the optimal asymptotic properties of GIC for constrained
linear models. Its proof is simple and omitted.

Corollary 3.2. Assume that random errors eτ are i.i.d. with a normal distri-
bution with mean zero and variance σ2 and that the estimator σ̂2

τ is consistent.
Under (3.6) and (3.7), the GIC minimizer v̂τ is asymptotically loss efficient. In
addition, if V contains at least one correct model, then v̂τ is consistent.

Remark 3.5. Under the condition that the estimator σ̂2
τ is bounded, the con-

clusions in Corollary 3.2 hold. A proof is available upon request.

4. Simulation Results

In this section, we carry out a simulation study for two purposes: to empir-
ically check validity of the optimal properties of the GIC defined in (3.5), and
to understand how choice of the penalty λn affects GIC’s performance in finite
samples.
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4.1. Simulation setup

Simulation studies in this paper are based on historical monthly returns of
five stocks. The five stocks are randomly selected and their monthly returns
between January 1981 and December 1988 (inclusive) are extracted from the
database distributed by the Center of Research in Securities Prices (CRSP). The
five stocks are Wal Mart Stores Inc. (WMT), Dayton Hudson Corp. (DH),
Mac Frugals Bargains Close Outs (MFB), Service Merchandise Inc. (SM), and
Family Dollar Stores Inc (FDS). The sample autocorrelation function plots show
that monthly returns of the five stocks are not autocorrelated. This is consistent
with documented findings in empirical finance literature that monthly individ-
ual stock returns have insignificant autocorrelation (see, e.g., Campbell, Lo and
MacKinlay (1997, Chap. 2), and the references therein). We also estimated
GARCH models with these monthly returns and found that most coefficients in
the conditional variance function are insignificant. Although prior studies have
documented strong evidence of conditional heteroskedasticity in daily or weekly
returns on individual stocks and on monthly returns on stock indices (see, e.g.,
Bollerslev, Chou and Kroner (1992) and the references therein), there is no such
conclusive evidence for monthly individual stock returns. Therefore, it is reason-
able to assume i.i.d. random errors in modeling monthly individual stock returns,
and to use GIC instead of EGIC.

Monthly returns of the five stocks, denoted by {x1t, . . . , x5t}, are used as
independent variables in the following regression model

yt = β1x1t + β2x2t + β3x3t + β4x4t + β5x5t + εt , t = 1, · · · , τ

subject to β1 + β2 + β3 + β4 + β5 = 1 .

Given the model coefficients (β1, β2, · · · , β5), we simulate the response variable
yt by generating i.i.d. random errors εt from a normal distribution N(0, σ2). We
choose σ to be 0.0385 throughout the simulation, this is the sample standard
deviation of the 96 monthly returns on the CRSP value weighted market index
between January 1981 and December 1988.

Three sets of simulations are carried out in this study. For the first set, we
fix the coefficients at (0.3,0.0,0.0,0.4,0.3) and choose the number of observations
τ to be 36, 60, or 96. Two common choices of the penalty λτ are employed:
λτ = log τ and λτ =

√
τ . Under each combination of τ and λτ , 1,000 realizations

are simulated. There are 31(= 25 − 1) nonempty subsets for five covariates.
Given each realization, we compute the GIC value, Γτ (v), for all 31 subsets, and
identify the smallest one. We report in Table 1 the frequency of each subset
being the minimizer of GIC in the 1,000 realizations.
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Table 1. Frequency of each candidate model being selected by the GIC
procedure, in 1000 realizations with observed returns, regression coefficients
being (0.3, 0.0, 0.0, 0.4, 0.3).

Candidate λτ = log(τ) λτ =
√
τ

Models τ = 36 60 96 τ = 36 60 96
(1) 0 0 0 0 0 0
(2) 0 0 0 0 0 0
(3) 0 0 0 0 0 0
(4) 0 0 0 0 0 0
(5) 0 0 0 0 0 0

(1, 2) 0 0 0 0 0 0
(1, 3) 0 0 0 0 0 0
(1, 4) 0 1 0 7 4 0
(1, 5) 0 0 0 1 0 0
(2, 3) 0 0 0 0 0 0
(2, 4) 0 0 0 0 0 0
(2, 5) 0 0 0 0 0 0
(3, 4) 0 0 0 0 0 0
(3, 5) 0 0 0 0 0 0
(4, 5) 31 1 0 120 26 2

(1, 2, 3) 0 0 0 0 0 0
(1, 2, 4) 0 0 0 0 0 0
(1, 2, 5) 0 0 0 0 0 0
(1, 3, 4) 0 0 0 0 0 0
(1, 3, 5) 0 0 0 0 0 0
(1, 4, 5) 832 911 953 799 928 991
(2, 3, 4) 0 0 0 0 0 0
(2, 3, 5) 0 0 0 0 0 0
(2, 4, 5) 49 19 1 37 20 5
(3, 4, 5) 37 16 2 29 15 2

(1, 2, 3, 4) 0 0 0 0 0 0
(1, 2, 3, 5) 0 0 0 0 0 0
(1, 2, 4, 5) 23 34 24 5 4 0
(1, 3, 4, 5) 25 16 20 2 2 0
(2, 3, 4, 5) 2 0 0 0 1 0

(1, 2, 3, 4, 5) 1 2 0 0 0 0

In the second set of simulations, we experiment with larger sample sizes and
let τ to be 36, 60, 96, 120, or 240. However, since we have only 96 observed
monthly returns for each stock, we generate 240 values in the following way. For
each stock, we compute the sample mean and sample standard deviation of the 96
observed monthly returns after omitting two extreme values at each tail. Sample
means of the five stocks are 0.0349, 0.0234, 0.0200, 0.0218 and 0.0258, and sample
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standard deviations are 0.0715, 0.0724, 0.0931, 0.1131 and 0.1015. We use the
Kolmogorov-Smirnov Goodness-of-Fit Test to check whether returns of the five
stocks are normally distributed, the p-values are 0.5, 0.5, 0.0622, 0.5 and 0.0288,
respectively. Since monthly returns of the five stocks are approximately normally
distributed, we generate 240 values for each stock from a normal distribution with
mean and standard deviation respectively equal to the stock’s sample mean and
sample standard deviation. Other aspects of the simulation are the same as in
the first simulation. Results from the second set of simulations are reported in
Table 2.

Table 2. Frequency of each candidate model being selected by the GIC
procedure, in 1000 realizations with simulated returns, regression coefficients
being (0.3, 0.0, 0.0, 0.4, 0.3).

Candidate λτ = log(τ) λτ =
√
τ

Models τ = 36 60 96 120 240 τ = 36 60 96 120 240
(1) 0 0 0 0 0 0 0 0 0 0
(2) 0 0 0 0 0 0 0 0 0 0
(3) 0 0 0 0 0 0 0 0 0 0
(4) 0 0 0 0 0 0 0 0 0 0
(5) 0 0 0 0 0 0 0 0 0 0

(1, 2) 0 0 0 0 0 0 0 0 0 0
(1, 3) 0 0 0 0 0 0 0 0 0 0
(1, 4) 1 0 0 0 0 4 0 0 0 0
(1, 5) 0 0 0 0 0 0 0 0 0 0
(2, 3) 0 0 0 0 0 0 0 0 0 0
(2, 4) 0 0 0 0 0 0 0 0 0 0
(2, 5) 0 0 0 0 0 0 0 0 0 0
(3, 4) 0 0 0 0 0 0 0 0 0 0
(3, 5) 0 0 0 0 0 0 0 0 0 0
(4, 5) 11 0 0 0 0 33 2 0 0 0

(1, 2, 3) 0 0 0 0 0 0 0 0 0 0
(1, 2, 4) 0 0 0 0 0 4 0 0 0 0
(1, 2, 5) 0 0 0 0 0 0 0 0 0 0
(1, 3, 4) 0 0 0 0 0 0 0 0 0 0
(1, 3, 5) 0 0 0 0 0 0 0 0 0 0
(1, 4, 5) 905 946 950 967 971 951 993 999 1000 1000
(2, 3, 4) 0 0 0 0 0 0 0 0 0 0
(2, 3, 5) 0 0 0 0 0 0 0 0 0 0
(2, 4, 5) 0 0 0 0 0 1 0 0 0 0
(3, 4, 5) 2 0 0 0 0 3 0 0 0 0

(1, 2, 3, 4) 0 0 0 0 0 1 0 0 0 0
(1, 2, 3, 5) 0 0 0 0 0 0 0 0 0 0
(1, 2, 4, 5) 43 24 22 17 15 2 1 1 0 0
(1, 3, 4, 5) 32 27 26 16 14 2 4 0 0 0
(2, 3, 4, 5) 0 0 0 0 0 0 0 0 0 0

(1, 2, 3, 4, 5) 6 3 2 0 0 0 0 0 0 0
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The third set of simulations is conducted to investigate the effect of coeffi-
cients’ signal-to-noise ratio on the performance of the selection procedure. The
only difference between the second set and the third lies in the values of the co-
efficients. The coefficients are equal to (0.3,0.0,0.0,0.4,0.3) in the second set and
(0.2,0.0,0.0,0.7,0.1) in the third. Therefore, in the third set of simulations, the
fourth coefficient has the highest signal-to-noise ratio and the fifth has the lowest
among the three non-zero coefficients. Since the standard deviation of random
errors is 0.0385, the fifth coefficient is within three standard deviations of zero,
its signal is weak. Table 3 reports results from the third set of simulations.

Table 3. Frequency of each candidate model being selected by the GIC
procedure, in 1000 realizations with simulated returns, regression coefficients
being (0.2, 0.0, 0.0, 0.7, 0.1).

Candidate λτ = log(τ) λτ =
√
τ

Models τ = 36 60 96 120 240 τ = 36 60 96 120 240
c(1) 0 0 0 0 0 0 0 0 0 0
c(2) 0 0 0 0 0 0 0 0 0 0
c(3) 0 0 0 0 0 0 0 0 0 0
c(4) 0 0 0 0 0 2 0 0 0 0
c(5) 0 0 0 0 0 0 0 0 0 0

c(1, 2) 0 0 0 0 0 0 0 0 0 0
c(1, 3) 0 0 0 0 0 0 0 0 0 0
c(1, 4) 434 387 222 136 14 638 658 615 508 267
c(1, 5) 0 0 0 0 0 0 0 0 0 0
c(2, 3) 0 0 0 0 0 0 0 0 0 0
c(2, 4) 9 0 0 0 0 8 5 1 0 0
c(2, 5) 0 0 0 0 0 0 0 0 0 0
c(3, 4) 0 0 0 0 0 0 0 0 0 0
c(3, 5) 0 0 0 0 0 0 0 0 0 0
c(4, 5) 131 20 0 0 0 219 68 16 1 0

c(1, 2, 3) 0 0 0 0 0 0 0 0 0 0
c(1, 2, 4) 37 36 20 15 0 21 10 8 3 0
c(1, 2, 5) 0 0 0 0 0 0 0 0 0 0
c(1, 3, 4) 26 20 14 13 3 8 8 6 3 0
c(1, 3, 5) 0 0 0 0 0 0 0 0 0 0
c(1, 4, 5) 297 473 690 790 942 93 246 351 484 733
c(2, 3, 4) 0 0 0 0 0 0 0 0 0 0
c(2, 3, 5) 0 0 0 0 0 0 0 0 0 0
c(2, 4, 5) 8 10 3 0 0 3 1 1 0 0
c(3, 4, 5) 8 1 1 0 0 0 0 1 1 0

c(1, 2, 3, 4) 6 1 2 0 0 1 0 0 0 0
c(1, 2, 3, 5) 0 0 0 0 0 0 0 0 0 0
c(1, 2, 4, 5) 17 26 27 19 15 4 3 1 0 0
c(1, 3, 4, 5) 25 25 19 25 26 3 1 0 0 0
c(2, 3, 4, 5) 0 0 0 0 0 0 0 0 0 0

c(1, 2, 3, 4, 5) 2 1 2 2 0 0 0 0 0 0
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4.2. Results

Both Table 1 and Table 2 show that, as the number of observations τ in-
creases, the relative frequency that the GIC selection procedure picks the cor-
rect model (1, 4, 5) gets closer to 1. It validates consistency of the GIC pro-
cedure. Both tables show that the logarithm penalty often overestimates the
model, whereas the square-root penalty both overestimates and underestimates
frequently.

Both tables also show that the probability of selecting the correct model
under the square-root penalty goes to 1 faster than under the logarithm penalty.
This phenomenon can be explained by theoretical bounds on the convergence
rates of GIC’s error probability given in Shao (1998) and Zhang (1993). They
show that the rate at which the probability of choosing wrong models by GIC
goes to zero is an inverse function of the penalty λτ . Since

√
τ increases faster

than log(τ), the error probability goes to zero faster under the penalty
√
τ than

that under the penalty log(τ). Practically, this suggests that the square-root
penalty is preferable when the sample size ranges from moderate to large. For
small samples, the square-root penalty does not seem to have an advantage over
the logarithm penalty.

Table 3 confirms the above observations in the first two tables. In addition,
it shows that signal-to-noise ratio has an important effect on which model the
GIC procedure chooses. Since the signal of the fifth covariate is weak, the GIC
procedure has difficulty in picking up the fifth covariate and tends to choose the
model with only the first and fourth covariates. From a practical point of view,
since the magnitude of the fifth coefficient is small relative to not only other
non-zero coefficients but also the possible values of random noise, the difference
between the true model and the model with only the first and the fourth covariate
is not likely to be significant. Table 3 also shows the difference in performance
between the logarithm penalty and the square-root penalty when the sample
size ranges from moderate to large. For example, for the sample size of 120 (or
240), the relative frequency of selecting the correct model is 79% (or 94%) for the
logarithm penalty and 48% (or 73%) for the square-root penalty. In summary, the
square-root penalty has more difficulty than the logarithm penalty in selecting
the correct model when some coefficients have weak signal-to-noise ratio. The
simulation result suggests that the logarithm penalty is more appropriate in
applications where a signal-to-noise ratio is likely to be weak.

5. Application

In this section, we apply GIC to build a tracking portfolio for the purpose
of measuring long-term post-event abnormal stock return. A great interest in
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learning the long-term impact of corporate events has recently arisen among
finance researchers and has generated a still growing literature. The evidence
for the existence of long-term post-event abnormal stock returns challenges the
belief that the U.S. stock market is efficient, and motivates research in behavioral
finance. See Fama (1998) for a summary of the literature with references. In
these studies, the most important job is to precisely estimate the event firm’s
unobservable status-quo post-event returns, which is the return the event firm
would have got if the event had not happened. In the following, we compare the
performance of three estimation methods.

5.1. Measures of abnormal return

The three-year buy-and-hold abnormal return of firm i is

ARi = Ri −BRi , (5.1)

where Ri is the buy-and-hold return of firm i over a time period of three years,
and BRi is a specific benchmark return over the same period. The period of
three years is a common choice in finance literature. The benchmark return
serves as an estimate of the unobservable status-quo return that an event firm
would have had over the three years following the event month if the event had
not happened. The three-year buy-and-hold return of firm i is computed by
compounding monthly returns, i.e., Ri =

∏36
t=1(1 + rit) − 1, where rit is firm i’s

return in month t.
We consider three benchmarks. The first benchmark is a size and book-

to-market ratio matched portfolio widely used in finance literature, see, e.g.,
Dharan and Ikenberry (1995), Desai and Jain (1997), Barber and Lyon (1997),
Lyon, Barber and Tsai (1999) and Mitchell and Stafford (2000). To identify the
size and book-to-market ratio matched portfolio of an event firm, we construct
70 reference portfolios on the basis of firm size and book-to-market ratio and
choose the one that includes the event firm as the matched portfolio. The 70
reference portfolios are formed as follows.

Step 1. At the end of June of year t, we calculate firm size as price per share mul-
tiplied by shares outstanding, sort all NYSE firms by firm size into ten portfolios
of equal size, and then place each AMEX/Nasdaq firm in the portfolio whose
range of firm sizes covers the firm’s size.
Step 2. We partition the smallest size decile portfolio into five subportfolios of
equal size on the basis of firm size rankings of all firms in the portfolio without
regard to listing exchange, so that we have 14 firm size portfolios.
Step 3. We divide each of the 14 portfolios into five subportfolios of equal size by
ranking all firms in the portfolio by their book-to-market ratios at the end of year
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t − 1, so that we end up with 70 reference portfolios. A firm’s book-to-market
ratio at the end of year t − 1 is equal to the ratio of the book common equity
(COMPUSTAT data item 60) at the end of the firm’s fiscal year ending in year
t−1 over the firm’s market common equity at the end of December of year t−1.
Throughout the procedure, we include only stocks with ordinary common equity
shares (CRSP share code 11) and exclude firms of negative book common equity
whenever book equity is needed.

The benchmark return based on a size and book-to-market ratio matched
portfolio is computed as follows:

BRSZBM
i =

36∏
t=1

[
1 +

∑nt
j=1 rjt

nt

]
− 1 , (5.2)

where rjt is the monthly return of firm j in month t and nt is the number of firms
in month t. We label the first benchmark as B1:SZBM and denote its return by
the superscript “SZBM”.

The second benchmark is a portfolio of the ten firms that have the largest
sample correlation coefficients with the event firm among all firms in the size
and book-and-market ratio matched portfolio. To identify the ten firms, we first
choose the size and book-and-market ratio matched portfolio for the event firm
as described above, and identify all firms in the portfolio that have returns in the
five years before the event month and in the three years after the event month.
We then calculate the sample correlation coefficient between each identified firm
and the event firm using the 60 monthly returns in the pre-event five years.
At last, we choose the ten firms that have the largest correlation coefficients.
We label the second benchmark as B2:MC10 for the most correlated ten, and
compute the three-year post-event benchmark return as follows:

BRMC10
i =

10∑
j=1

[∏36
t=1(1 + rjt)

]
− 1

10
, (5.3)

where rjt is the monthly return of firm j in month t. The benchmark return is
the return of investing equally in the ten most correlated firms over the three
years starting with the event month.

The third benchmark is obtained using the GIC procedure. After obtaining
the ten most correlated firms as described above, we apply the GIC selection
procedure with the event firm as the response variable and the ten firms as the
covariates. We use the 60 pre-event monthly returns and the logarithm penalty
in the selection procedure. There are 1023(= 210 − 1) possible subsets for ten
covariates. We select the subset that minimizes the GIC criterion and form a



1090 SHAOJUN ZHANG, XU-FENG NIU AND JAMES S. ANG

tracking portfolio accordingly. We label the third benchmark as B3:GIC and
compute the three-year benchmark return as

BRGIC
i =

ni∑
j=1

wj

[
36∏
t=1

(1 + rjt) − 1

]
, (5.4)

where rjt is the monthly return of firm j in month t, ni is the number of firms
in the GIC optimal tracking portfolio, and wj is the optimal weight of firm j in
the GIC optimal tracking portfolio.

5.2. Empirical assessment of performance

To assess the performance of the three benchmarks, we employ a procedure
that uses actual security return data to examine the characteristics of abnormal
returns produced by the three benchmarks. This type of procedure has been used
widely in finance literature to compare performance of various methodologies for
measuring abnormal returns, see, e.g., Brown and Warner (1980), Kothari and
Warner (1997), Barber and Lyon (1997) and Lyon, Barber and Tsai (1999).

In this procedure, we randomly choose, with replacement, a sample of 200
event months between July 1984 and December 1994, inclusively. For each chosen
event month, we then randomly choose, without replacement, an event firm that
has returns in the five years before the event month and in the three years after
the event month (there are generally several thousand firms in each month that
satisfy the requirement). We apply the above three benchmarks to compute
three-year post-event abnormal returns for each event firm. Table 4 reports
sample mean, median, standard deviation (St. D.), inter-quartile range (IQR),
skewness coefficient and kurtosis coefficient of 200 abnormal returns under each
benchmark. As evident in Table 4, abnormal returns under different benchmarks
have different distributions. In particular, benchmarks B1:SZBM and B2:MC10
produce large negative medians and highly positive skewness coefficients.

Since the 200 event firms are randomly selected and not many of the 200
event months were supposed to experience any event, they are expected to have
zero abnormal returns. In other words, the 200 abnormal returns are expected
to concentrate around zero. We apply three statistical tests to test whether
the central tendency of these abnormal returns is around zero: Student’s t test,
Fisher’s distribution−free sign test, and Wilcoxon’s signed rank test (see, e.g.,
Hollander and Wolf (1999, Chap. 3)). P-values from all three tests are reported
in the last three columns of Table 4. The t test shows that none of the three
benchmarks produce a significant mean abnormal return. The sign test tells that
benchmarks B1:SZBM and B2:MC10 produce significantly negative medians but
the benchmark B3:GIC has an insignificant median. The rank test reveals that
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benchmark B1:SZBM has a significantly negative median whereas benchmarks
B2:MC10 and B3:GIC have insignificant medians.

Table 4.Comparison between the three benchmarks based on 200 randomly
selected firms.

Descriptive Statistics p-values
mean median St.D. IQR skewness kurtosis t sign rank

B1:SZBM -0.022 -0.256 1.180 0.957 1.437 6.982 0.794 0.009 0.023
B2:MC10 0.054 -0.147 1.145 0.995 1.389 6.775 0.503 0.028 0.169
B3:GIC 0.084 -0.030 1.381 0.941 0.115 9.856 0.390 0.621 0.900

As the three tests tell different stories, what conclusion might we draw from
the empirical evidence? Summary statistics in Table 4 suggest that both normal-
ity and symmetry are violated by abnormal returns for the benchmarks B1:SZBM
and B2:MC10. The sign test does not rely on the assumption of normality or
symmetry of the underlying distribution and, according to it, only benchmark
B3:GIC produces abnormal returns that concentrate around zero, consistent with
our expectation. We suggest that benchmark B3:GIC gives more precise esti-
mates of the unobservable status-quo post-event returns than do the other two
benchmarks.

6. Discussion

In this paper, EGIC for dependent observations has not been employed in
simulation and empirical studies because only monthly stock returns are involved.
It is well documented in empirical finance literature that monthly stock returns
have insignificant autocorrelation, while daily returns appear to be negatively
autocorrelated (see, e.g., Campbell, Lo and MacKinlay (1997, Chap. 2), and the
references therein). EGIC may be more appropriate in a study on how to build
optimal portfolios to track daily movements of a chosen financial index. A study
on tracking a financial index also provides an opportunity to investigate choice of
penalties empirically. For instance, we may construct two index funds with the
logarithm penalty and the square-root penalty respectively, and then compare
performance of the two index funds in terms of how closely each fund tracks the
target index.

Another direction of future research is to apply the GIC procedure to measure
the long-term post-event abnormal returns of firms that have experienced real
corporate events. Such applications will reveal the impact of different types of
events on stock returns and improve our understanding of financial markets.
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Appendix. Proofs of the Main Results

Proof of Theorem 3.1. The loss function Lτ (v) can be decomposed as

τLτ (v) = ||µτ − µ̂τ (v)||2 = ||µτ − (ητ (v) + Hτ (v)yτ )||2
= ||µτ − ητ (v) − Hτ (v)µτ − Hτ (v)eτ ||2
= ||µτ − ητ (v) − Hτ (v)µτ ||2 + e′

τHτ (v)eτ

− 2e′
τH

′
τ (v)[µτ − Hτ (v)µτ − ητ (v)]

= ||µτ − ητ (v) − Hτ (v)µτ ||2 + e′
τHτ (v)eτ .

The second and third equalities hold because of (2.7) and (2.1), respectively.
The fourth equality holds because H ′

τ (v)Hτ (v) = Hτ (v). The last equality
holds because

H ′
τ (v)[µτ −Hτ (v)µτ − ητ (v)] = H ′

τ (v)(I −Hτ (v))(µτ −X1(v)G−1
1 g(v)) = 0 .

For v ∈ V c, since µτ = Xτ (v)βτ (v) and E(eτ ) = 0, the least squares
estimate β̂ at (2.7) is unbiased. By taking expectation on both sides of equation
(2.7), we obtain µτ = Xτ (v)βτ (v) = ητ (v) + Hτ (v)µτ . Therefore, ∆τ (v) =
||µτ − ητ (v) − Hτ (v)µτ ||2/τ = 0.

The expression for the expected average squared error is

Rτ (v) = E(Lτ (v)) = ∆τ (v) + E((e′
τHτ (v)eτ ))/τ

= ∆τ (v) + tr(E(eτe
′
τ )Hτ (v))/τ = ∆τ (v) + tr(ΨτHτ (v))/τ .

Proof of Lemma 3.1. Because of the special structure of Ψτ , we have

∣∣a′Ψτb
∣∣ =

∣∣∣∣∣
τ∑

k=1

τ∑
l=1

akblγk−l

∣∣∣∣∣ =
∣∣∣∣∣γ0

τ∑
l=1

albl +
τ−1∑
i=1

(
γi

τ−i∑
l=1

(al+ibl + albl+i)

)∣∣∣∣∣
≤ γ0

τ∑
l=1

|albl| +
τ−1∑
i=1

(
|γi|

τ−i∑
l=1

(|al+ibl| + |albl+i|)
)
.

Notice that for any i ∈ {1, 2, · · · , τ − 1},
τ−i∑
l=1

al+ibl ≤
τ−i∑
l=1

a2
l+i + b2l

2
≤ 1

2

(
τ∑

l=1

a2
l +

τ∑
l=1

b2l

)
=

||a||2 + ||b||2
2

,
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and similarly
∑τ−i

l=1 albl+i ≤ 1
2 (||a||2 + ||b||2). We thus obtain

∣∣a′Ψτb
∣∣ ≤ ||a||2 + ||b||2

2
(γ0 + 2

∞∑
j=0

|γj |) =
||a||2 + ||b||2

2
Υ .

Proof of Lemma 3.2. Let Λ =

[
Ir 0
0 0

]
be a τ × τ matrix where Ir represents

the identity matrix of dimension r. Since H is an idempotent matrix of rank
r, there exists a τ × τ orthogonal matrix C such that C ′HC = Λ. Then we
have tr(ΨτH) = tr(ΨτCΛC ′) = tr(C′ΨτCΛ) =

∑r
k=1 c′kΨτck, where ck is

the kth column vector of the matrix C. Since C is orthogonal, c′kck = 1 for
k = 1, 2, · · · , τ , and thus we know tr(ΨτH) ≤ rΥ by Lemma 3.1.

Notice that tr(ΨτH) = tr(ΛC ′ΨτCΛ) and ΛC ′ΨτCΛ is symmetric and
non-negative definite. Therefore we have tr(ΨτHΨτH) ≤ [tr(ΨτH)]2 ≤ (rΥ)2.

Proof of Theorem 3.2. We use arguments similar to those in Li (1987) and
Shao (1997).

First, note that the EGIC procedure is to minimize

Φτ (v) =
Sτ (v)
τ

+
λτ tr(Ψ̂τHτ (v))

τ

=
||eτ ||2 + ||µτ (v) − µ̂τ (v)||2 + 2e′

τ (µτ (v) − µ̂τ (v))
τ

+
λτ tr(Ψ̂τHτ (v))

τ
.

For v∈V c, since µτ (v)−ητ (v)−Hτ (v)µτ (v)=0, we have Lτ (v)=(e′
τHτ (v)eτ )/τ

and thus

Φτ (v) =
||eτ ||2
τ

+
λτ tr(Ψ̂τHτ (v))

τ
− e′

τHτ (v)eτ

τ
. (A.1)

For v ∈ V − V c, we have

Φτ (v) =
||eτ ||2
τ

+
||µτ (v) − µ̂τ (v)||2

τ
+
λτ tr(Ψ̂τHτ (v)) − 2tr(ΨτHτ (v))

τ

+
2[tr(ΨτHτ (v)) − e′

τHτ (v)eτ ]
τ

+
2e′

τ [µτ (v) − ητ (v) − Hτ (v)µτ (v)]
τ

=
||eτ ||2
τ

+ Lτ (v) + op(Lτ (v)), (A.2)

where the last equality holds uniformly in v ∈ V − V c. To establish the last
equality, it suffices to show that

max
v∈V −V c

e′
τ [µτ (v) − ητ (v) − Hτ (v)µτ (v)]

τRτ (v)
p→0 , (A.3)

max
v∈V −V c

tr(ΨτHτ (v)) − e′
τHτ (v)eτ

τRτ (v)
p→0 , (A.4)
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max
v∈V −V c

λτ tr(Ψ̂τHτ (v)) − 2tr(ΨτHτ (v))
τRτ (v)

p→0 , (A.5)

max
v∈V −V c

∣∣∣∣Lτ (v)
Rτ (v)

− 1
∣∣∣∣ p→0 . (A.6)

We prove (A.3) first. Given any ε > 0, by Chebyshev’s inequality and Theorem
3.1, we have

P

{
max

v∈V −V c

∣∣∣∣e′
τ [µτ (v) − ητ (v) − Hτ (v)µτ (v)]

τRτ (v)

∣∣∣∣ > ε

}

≤
∑

v∈V −V c

E[e′
τ (µτ (v) − ητ (v) − Hτ (v)µτ (v))]2

[τRτ (v)ε]2

≤
∑

v∈V −V c

Υ||µτ (v) − ητ (v) − Hτ (v)µτ (v)||2
[τRτ (v)ε]2

≤ Υ
ε2

∑
v∈V −V c

1
τRτ (v)

.

Since the last term tends to 0 under (3.7), we obtain (A.3).
To prove (A.4), given any ε > 0, by Chebyshev’s inequality and Lemma 3.2

we have

P

{
max

v∈V −V c

∣∣∣∣ tr(ΨτHτ (v)) − e′
τHτ (v)eτ

τRτ (v)

∣∣∣∣ > ε

}

≤
∑

v∈V −V c

E[tr(ΨτHτ (v)) − e′
τHτ (v)eτ ]2

[τRτ (v)ε]2

=
∑

v∈V −V c

Var(e′
τHτ (v)eτ )

[τRτ (v)ε]2
≤
(
mΥ
ε

)2 ∑
v∈V −V c

1
(τRτ (v))2

.

Since Rτ (v) > 0, the last term goes to zero under (3.7), (A.4) holds.
Then, since tr(ΨτHτ (v)) is bounded according to Lemma 3.2 and Ψ̂τ is a

consistent estimator of Ψτ , (A.5) holds under (3.7). Finally, (A.6) is equivalent
to (A.4) since∣∣∣∣Lτ (v)

Rτ (v)
− 1

∣∣∣∣ = |Lτ (v) −Rτ (v)|
Rτ (v)

=
|e′

τHτ (v)eτ − tr(ΨτHτ (v))|
τRτ (v)

.

We thus conclude the proof of (A.2).
Next we show the asymptotic loss efficiency and consistency of the EGIC

minimizer v̌τ , using (A.1) and (A.2). When V c is empty, we know from (A.2)
that the minimizer of Φτ (v), v̌τ , is asymptotically equal to the minimizer of
Lτ (v), that is, v̌τ is asymptotic loss efficient.

When V c is not empty, we can show that, for any vc ∈ V c,

Φτ (vc) − ||eτ ||2
τ

= op(Lτ (v)) (A.7)
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uniformly in v ∈ V − V c, using arguments similar to those in the proofs of (A.5)
and (A.4). Equation (A.7), together with (A.2), imply that v̌τ will always belong
to V c asymptotically if V c is not empty. Using arguments as in the proof of (A.4),
we can further prove

max
v∈V c

e′
τHτ (v)eτ

λτ tr(Ψ̂τHτ (v))
→p 0 .

Then we know from (A.1), for vc ∈ V c, Φτ (v)− ||eτ ||2/τ is asymptotically domi-
nated by the term λτ tr(Ψ̂τHτ (v))/τ . Under the assumption that Ψ̂τ is a consis-
tent estimator of Ψτ and that tr(ΨτHτ (v)) converges to a finite limit as τ → ∞
for any v ∈ V c, the dominating term λτ tr(Ψ̂τHτ (v))/τ has the same minimizer
as Lτ (v) = e′

τHτ (v)eτ/τ asymptotically. Therefore we obtain

P{v̌τ ∈ V c but v̌τ 	= vL
τ } → 0 , (A.8)

which means that v̌τ is asymptotically loss efficient when V c is not empty. Equa-
tion (A.8) also implies that P{v̌τ = vL

τ } → 1 when V c is not empty, that is, v̌τ

is consistent.
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