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Abstract: We propose procedures designed to uncover structural breaks in the co-

movements of financial markets. A reduced form approach is introduced that can

be considered as a two-stage method for reducing the dimensionality of multi-

variate heteroskedastic conditional volatility models through marginalization. The

main advantage is that one can use returns normalized by volatility filters that

are purely data-driven and construct general conditional covariance dynamic spec-

ifications. The main thrust of our procedure is to examine change-points in the

co-movements of normalized returns. The tests allow for strong and weak depen-

dent as well as leptokurtic processes. We document, using a ten year period of two

representative high frequency FX series, that regression models with non-Gaussian

errors adequately describe their co-movements. Change-points are detected in the

conditional covariance of the DM/US$ and YN/US$ normalized returns over the

decade 1986-1996.

Key words and phrases: Change-point tests, conditional covariance, high-frequency

financial data, multivariate GARCH models.

1. Introduction

There are many circumstances where one may expect that the co-movements
between financial assets undergo fundamental changes. For example, portfo-
lio holders may worry about the impact of the deregulation of an industry on
their optimal allocation of assets which depends on conditional covariances (in
a mean-variance setting). The deregulation may cause fundamental shifts in the
(conditional) correlations across the asset holdings. Likewise, hedging strate-
gies involving foreign exchange may be adversely affected by central bank policy
shifts. Emerging markets is another example where the potential of breaks in
co-movements may occur. The world equity markets liberalization and integra-
tion may represent an example of structural changes in the relationship of these
markets. Similarly, the recent evidence of the Asian and Russian financial crises,
transmitted across markets, have serious effects for investors, corporations and
countries. The global character of financial markets presents an additional reason
for examining the transmission of breaks and their effects in the co-movements
between financial as well as real assets. Most financial asset pricing theories and
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models assume that covariances between assets are stable (possibly time varying)
whereas more recent empirical approaches recognize the presence of time hetero-
geneity such as regime changes (e.g., Bollen, Gray and Whaley (2000)), institu-
tional changes (e.g., Garcia and Ghysels (1998), Bekaert, Harvey and Lumsdaine
(2002)) and extreme events (e.g., Hartmann, Straetmans and de Vries (2000)).
Pastor and Stambaugh (2001) have also recently shown that structural breaks
could contribute to the equity premium puzzle.

We propose procedures designed to uncover structural changes in multivari-
ate conditional covariance dynamics of asset returns. The procedures are based
on testing for breaks in the conditional correlations involving normalized returns
which are defined as the returns standardized by the conditional variance pro-
cess. Hence the conditional correlation is equivalent to the conditional covariance
process of normalized returns that may exhibit a general form of dependence
(e.g., φ− or α−mixing) as well as heavy tails. We start from a multivariate
dynamic heteroskedastic asset return process. Instead of trying to explore the
co-movements via a parametric specification and test for structural change in the
parameters, we adopt a reduced form approach which consists of testing for struc-
tural change in static or dynamic relationships involving marginalizations of the
multivariate process. Our approach relates to a large class of multivariate ARCH-
type models with constant or dynamic conditional correlation (see, for instance
Bollerslev, Engle and Nelson (1994)). Although there is some loss of informa-
tion when we look at the individual normalized returns and their relationships,
these losses are offset by gains in reducing the overparameterized multivariate
GARCH type models and by focusing on the conditional covariance specifica-
tion. The latter is our focus in this paper. In addition this approach provides
a simple and computationally efficient framework for testing and estimating the
unknown (multiple) breaks in the co-movements of volatility and allows general
forms of dependence as well as heavy tails without having to explicitly estimate
their form.

The choice of standardized returns as an object of interest is motivated by
both finance and statistics arguments. From the finance point of view, standard-
ized returns relate to the fundamental measure of reward-to-risk consistent with
conventional mean-variance analysis. The statistical arguments are a bit more
involved. Our approach can be viewed as a two-stage method for reducing the
dimensionality of multivariate heteroskedastic conditional volatility models to a
framework involving returns normalized by purely data-driven volatility filters
in the first stage, and cross products of normalized returns in the second stage.
Recently, Engle (2002), Engle and Sheppard (2001) and Tse and Tsui (2002)
rely on a similar two-stage procedure to handle multivariate GARCH models.
Their stages are both parametric whereas ours involve a first stage that is purely
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nonparametric. Our reduction approach does not aim to present alternative
specification or estimation methods for multivariate GARCH models. Instead,
we adopt this two stage approach as a method to perform change-point tests in
multivariate heteroskedastic models. The approach here is semiparametric since
the second stage can allow for general types of dependence, data-driven spot and
quadratic volatility measures as well as leptokurtic or asymmetric distributions.
More specifically, let r(m),t := log pt − log pt−m be the discretely observed time
series of continuously compounded returns with m measuring the time span be-
tween discrete observations. We compute X(m),t := r(m),t/σ̂(m),t involving purely
data-driven estimators σ̂(m),t. Foster and Nelson (1996) proposed several rolling
sample type estimators. Their setup applies to ARCH as well as discrete and
continuous time SV models (which are in our application marginalizations of
multivariate processes). In addition to the Foster and Nelson rolling volatil-
ity filters we also consider high-frequency volatility filters, following the recent
work of Andersen, Bollerslev, Diebold and Labys (2001), Andreou and Ghysels
(2002a), Barndorff-Nielsen and Shephard (2002a,b, 2003), among others. The
data-driven measures of normalized returns provide the estimation of the first
stage in multivariate heteroskedastic returns models. Moreover, keeping the first
stage data-driven has the advantage that we do not specify, and therefore also not
potentially misspecify, a parametric model for volatility. This may eliminate po-
tential sources of misspecification and avoid erroneous inference on the presence
of structural breaks. The second stage deals with the conditional covariance de-
fined as the cross-product of normalized returns, say Y12,(m),t := X1,(m),tX2,(m),t,

for a pair of assets given by the vector (1, 2)′. This process may exhibit con-
stant, weak or strong dependence (as in multivariate constant or dynamic corre-
lation GARCH and Factor models, respectively) as well as a general functional
form driven by a heavy tailed distribution. In addition, auxiliary regression
models for normalized returns are employed to study the homogeneity of their
co-movements. The simulation and empirical results in the paper show that stan-
dardized returns, using various volatility filters, are in most cases non-Gaussian
with different types of temporal dependence structure. The paper extends the
application of recent change-point tests in Kokoszka and Leipus (1998, 2000)
and Lavielle and Moulines (2000) to the conditional covariance of Multivariate
GARCH (M-GARCH) models, using the above two-stage procedure for detecting
breaks in the co-movements of normalized returns.

The paper is organized as follows. In Section 2 we discuss the general mul-
tivariate conditional volatility models and the transformations of the data that
form the basis of the testing procedure. Section 3 discusses recent change-point
tests, developed in a univariate context, and a method to apply them to the
conditional covariance processes of multivariate heteroskedastic models. The
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fourth section presents a brief Monte Carlo experiment that examines the statis-
tical properties of normalized returns and provides a justification for the testing
strategies adopted. The size and power of the aforementioned tests are also in-
vestigated. In the empirical section we document using a ten year period of
two representative high frequency FX series, YN/US$ and DM/US$, that the
conditional covariance specified by regression models of daily standardized re-
turns with non-Gaussian errors adequately describe their co-movements. The
main thrust of our procedure is then to examine breaks in the co-movements of
normalized returns using CUSUM and least-squares methods for detecting and
dating the change-points. A final section concludes the paper.

2. Models and Filters

It has long been recognized that there are gains from modeling volatility
co-movements. In practice one stumbles on the obvious constraint that any mul-
tivariate model is hopelessly overparameterized if one does not impose any type
of restriction (see for instance, Engle (2001) for some of the open questions in
multivariate volatility models). Bollerslev, Engle and Nelson (1994) provide an
elaborate discussion of various multivariate ARCH type models and review the
different restrictions which have been adopted to make multivariate volatility
models empirically feasible. Ghysels, Harvey and Renault (1996) discuss various
multivariate SV models, both in discrete and continuous time. In this section
we describe the classes of multivariate heteroskedastic models that fall within
the context of our statistical procedures for change-point tests in the dynamic
co-movements of asset returns. Broadly speaking there are two classes of multi-
variate volatility models, both being among the most widely applied parametric
specifications. These are (1) multivariate factor models, see for instance Diebold
and Nerlove (1989), Engle, Ng and Rotschild (1990), Harvey, Ruiz and Shephard
(1994), Ng, Engle and Rotschild (1992) and many others, and (2) the conditional
correlation models, see for instance Bollerslev, Engle and Wooldridge (1988),
Bollerslev (1990), Bolleslev, Engle and Nelson (1994) and more recently Engle
(2002), Engle and Sheppard (2001) and Tse and Tsui (2002). Since the statisti-
cal procedures adopted here share many features with the latter, we devote the
first subsection to the conditional correlation volatility specification. The sec-
ond subsection describes various volatility filters which are adopted for dynamic
heteroskedastic series.

2.1. Multivariate conditional correlation volatility models

The statistics developed in this paper apply to a two-step procedure that
shares several features with the recent work on Dynamic Conditional Correlation
(henceforth DCC) of Engle (2002), Engle and Sheppard (2001) and Tse and Tsui
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(2002). The appeal of these is that they feature the flexibility and simplicity
of univariate ARCH models but not have the complexity of typical multivariate
specifications. This decomposition also presents an advantage for change-point
detection in multivariate heteroskedastic settings, discussed further in Section 3.
The statistical inference procedures proposed apply to several multivariate spec-
ifications given that the conditional covariance process satisfies some general reg-
ularity conditions. It will be convenient to start with a discrete time framework,
and to set notation we assume that an n-vector of returns Rt is observed. In the
empirical applications n will be equal to 2, but our techniques extend to n > 2.
Consider the ratio Xi,t := ri,t/σi,t, where ri,t and σi,t are the return and condi-
tional volatility (standard deviation) of the ith return process, respectively, using
the univariate filtration of each series separately. Then the conditional correla-
tion between pairs of assets, e.g., (1, 2)′ is: ρ12,t = Et−1(X1,tX2,t) := Et−1(Y12,t),
where we denote Y12,t := X1,tX2,t. The original specification of Bollerslev (1990)
assumed that ρ12,t := ρ12, yielding a CCC model, i.e., a Constant Conditional
Correlation multivariate specification. It was noted that the CCC specification
offered many computational advantages, but the assumption of constant ρ12 does
not enjoy much empirical support.

The procedures proposed in this paper also involve the X1,t, X2,t and Y12,t

processes. However, these processes are obtained in a much more general context
not involving a parametric specification for the conditional standard deviation
σi,t for i = 1, 2. The DCC specification assumes that σi,t follows a GARCH(1,1)
model. We adopt a purely data-driven specification for σi,t, and this has several
advantages. First this approach covers processes more general than the GARCH
specification, some of which can account for asymmetries as well as jumps (given
the results in Foster and Nelson (1996), Andersen, Bollerslev, Diebold and Labys
(2001) and Andreou and Ghysels (2002a)). The purely data-driven first stage
also has the advantage that we do not potentially misspecify the parametric
model for volatility. Moreover, this approach may avoid some potential sources
of misspecification and erroneous inference on the presence of structural breaks.
This is related to the second advantage of the method proposed in that it yields a
semi-parametric setup for the second stage of the test procedure that also allows
for general innovation distributions.

In the remainder of this subsection we discuss only the basic underpinnings
of filtering σi,t. The notation is simplified here by dropping the subscript i per-
taining to a particular return series, i.e., instead of ri,t we simply write rt because
we adopt mainly a univariate framework. The computation of rt/σt with data-
driven σt is valid in a diffusion context as well as discrete time processes, such as
various ARCH type models including GARCH, EGARCH, SV and other spec-
ifications. The setup is deliberately closely related to the work of Foster and
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Nelson (1996) on rolling sample volatility estimators. Consider the following
discrete time dynamics:

r(m),t = µ(m),tm
−1 + M(m),t − M(m),t−m ≡ µ(m),tm

−1 + ∆(m)M(m),t (2.1)

which correspond to the so called Doob-Meyer decomposition of the m horizon
returns into a predictable component µ(m),t and a local martingale difference
sequence. The decomposition is a natural starting point when returns are gen-
erated by a standard diffusion process with stochastic volatility. The decompo-
sition in (2.1) is also the starting point for discrete time ARCH type processes.
Conditional expectations and variances with respect to the (univariate) filtration
{F(m),t} will be denoted as E(m),t(·) and Var (m),t(·) respectively, whereas uncon-
ditional moments follow a similar notation, E(m)(·) and Var (m)(·). Consequently

Var (m),t(r(m),t) ≡ E[(∆(m)M(m),t)
2|F(m),t] = σ2

(m),tm
−1, (2.2)

where σ2
(m),t measures the conditional variance per unit of time. We consider

various data-driven estimators for σ2
(m),t which can generically be written as:

σ̂2
(m),t =

∑nL

τ=1
w(τ−t)(r(m),t+1−τ − µ̂(m),t)

2, (2.3)

where w(τ−t) is a weighting scheme, nL is the lag length of the rolling window
and µ̂(m),t is a (rolling sample) estimate of the drift. The optimal window length
and weights are discussed in Foster and Nelson (1996) and Andreou and Ghysels
(2002a), and applied in the empirical section.

2.2. Transformations of returns using data-driven volatilities

The test statistics discussed in the next section are based on functions of
normalized returns computed as (r(m),t − µ̂(m),t)/σ̂(m),t, for some estimator of
µ̂(m),t and σ̂(m),t, i.e., some sampling frequency m and weighting scheme w(τ−t)

in (2.3). The empirical setting that will be used involves very short spans of
data with high frequency sampling. We can deal with the local drift either by
estimating it as a local average sum of returns or, following the arguments in
Merton (1980) among others, ignore any possible drift and set it to zero, i.e.,
µ̂(m),t ≡ 0. For simplicity we adopt the latter and set the drift to zero.

The setup in (2.1) and (2.2) is the same as in Foster and Nelson (1996), who
derive a continuous record asymptotic theory which assumes that a fixed span
of data is sampled at ever finer intervals. The basic intuition driving the results
is that normalized returns, r(m),t/σ(m),t, over short intervals are approximately
i.i.d. with zero conditional mean and finite conditional variance and have regular
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tail behavior, which make the application of central limit theorems possible.
Foster and Nelson impose several fairly mild regularity conditions such that the
local behavior of the ratio r(m),t/σ(m),t becomes approximately i.i.d. with fat
tails (and eventually Gaussian for large m). In their setup local cuts of the data
exhibit a relatively stable variance, which is why σ̂(m),t catches up with the latent
true σ(m),t with judicious choices of the weighting scheme and, in particular, the
data window chosen to estimate the local volatility. The tests allow for some local
dependence in the data and do not rely on normality of the ratio r(m),t/σ̂(m),t.

The empirical evidence of the normality of r(m),t/σ̂(m),t is mixed at the daily level
at least. Zhou (1996) and Andersen, Bollerslev, Diebold and Labys (2000) report
near-normality for daily sampling frequencies. We find that different classes of
volatility filters yield different distributional properties for the normalized returns
process, X(m),t.

A number of alternative volatility filters, σ̂i,(m),t, are considered below which
differ in terms of estimation method, sampling frequency and information set (fur-
ther evaluated in Foster and Nelson (1996), Andersen and Bollerslev (1998), An-
dersen, Bollerslev, Diebold and Labys (2001) and Andreou and Ghysels (2002a)).
These data-driven variance filters belong to two classes. The first include: (i)
Exponentially Weighted Moving Average Volatility, defined following the indus-
try standard introduced by J. P. Morgan (see Riskmetrics Manual (1995)) as
σ̂RM,t = λσ̂RM,t−1 +(1 − λ) r2

t , t = 1, . . . , Tdays,where λ = 0.94 for daily data, rt

is the daily return, and Tdays is the number of trading days; (ii) One-sided Rolling
daily window Volatility defined as σ̂RV,t =

∑nL
j=1 wjr

2
t+1−j , t = 1, . . . , Tdays,

where nL is the lag length of the rolling window in days. In our simulations
we consider nL = 26 and 52 days to conform with the optimality in Foster and
Nelson, and the common practice of taking (roughly) one month worth of data
(see e.g., Schwert (1989) among others). These interday volatilities are denoted
as σ̂i,t where i = RM , RV 26, RV 52. The second class of intraday volatility
filters is based on the quadratic variation of returns (see Andreou and Ghy-
sels (2002a) for more details). These include: (i) One-day Quadratic Variation
of the process (also called Integrated Volatility, e.g., Andersen and Bollerslev
(1998)) is the sum of squared log returns r(m),t for different values of m, with
σ̂QV 1,t =

∑m
j=1 r2

(m),t+1−j/m, t = 1, . . . , ndays (for the 5-minute sampling fre-
quency, the lag length is m = 288 for financial markets open 24 hours per day,
e.g., FX markets); (ii) One-day Historical Quadratic Variation (introduced in
Andreou and Ghysels (2002a)), defined as the sum of m rolling QV 1 estimates
σ̂HQV 1,t = 1/m

∑m
j=1 σ̂QV 1,(m),t+1−j/m, t = 1, . . . , Tdays. These intraday volatili-

ties are denoted as σ̂i,t where i = QV k,HQV k, for window lengths k = 1, 2, 3,
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in the 5-minute sampling frequency case. For window lengths k > 1 the intraday
volatility filters (H)QV k are simple averages of (H)QV 1 for k days.

3. Tests for Structural Breaks in Co-Movements

There is a substantial literature on testing for the presence of breaks in
i.i.d. processes and more recent work in the context of linearly dependent stochas-
tic processes (see for instance, Liu, Wu and Zidek (1997) and Bai and Perron
(1998)). Nevertheless, high frequency financial asset returns series are strongly
dependent processes satisfying β−mixing. Chen and Carrasco (2001) provide
a comprehensive analysis of such univariate processes and Bussama (2001) and
Chen and Hansen (2002) have shown that multivariate ARCH and diffusion pro-
cesses are also β-mixing. This result precludes the application of many tests for
structural breaks that require stronger mixing conditions. Following Kokoszka
and Leipus (1998, 2000) and Lavielle and Moulines (2000), we explore recent ad-
vances in the theory of change-point estimation for strongly dependent processes.
These papers have shown the consistency of CUSUM and least squares type
change-point estimators, respectively, for detecting and dating change-points.
The tests are not model-specific and apply to a large class of weakly and strongly
dependent (e.g., ARCH and SV type) specifications. So far only limited simu-
lation and empirical evidence has been reported about these tests. Andreou
and Ghysels (2002b) enlarged the scope of applicability by suggesting several
improvements that enhance the practical implementation of the proposed tests.
They also find, via simulations, that the VARHAC estimator proposed by den
Haan and Levin (1997) yields good properties for the CUSUM-type estimator of
Kokoszka and Leipus (2000).

The Lavielle and Moulines (2000) and Kokoszka and Leipus (2000) studies
can handle univariate processes while we investigate multivariate processes via
the two-step setup. It is demonstrated that the two-stage approach adopted here
for multivariate models can be considered as a simple reduced form, and compu-
tationally efficient, method for the detection of structural breaks tests in multi-
variate heteroskedastic settings. The procedures proposed apply to the empirical
process Y12,t := X1,tX2,t for pairs of assets normalized returns of M-GARCH
type models, where Xi,t := ri,t/σi,t, i = 1, 2, is obtained via the application
of a data-driven filter described in the previous section. The β-mixing prop-
erty of multivariate GARCH and diffusion processes (Bussamma (2001), Chen
and Hansen (2002)) implies that Y12,t is β-mixing as well. This is valid for the
M-GARCH with dynamic conditional correlation specifications. For instance,
according to the M-GARCH-DCC (Engle (2002)), Y12,t has a GARCH specifica-
tion which implies β-mixing, the exception being the M-GARCH-CCC according
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to which Y12,t is assumed to be constant. Last but not least, we note that in dy-
namic correlation M-GARCH models quadratic transformations, such as |Y12,t|d
d = 1, 2, are also β-mixing since they are measurable functions of mixing pro-
cesses which are β-mixing and of the same size (see White (1984, Theorem 3.49
and Proposition 3.23)).

The analysis focuses on the bivariate case for ease of exposition. This two-
step approach can be extended to the n asset M-GARCH framework for which
n(n−1)/2 cross-covariances, Yij,t, would be the processes for testing the change-
point hypothesis in pairs of assets. It is worth noting that when n gets large,
this framework becomes useful if we impose some additional restrictions. For
instance in the M-GARCH-CCC model, when n gets large, we can test the null
hypothesis of joint homogeneity in the correlation coefficients in the pairs of
normalized returns, ρij , versus the alternative that there is an unknown change-
point in the any of these cross-correlations. A similar approach for n−dependent
processes can be found in Horváth, Kokoszka and Steinebach (1999) and can
be adapted to the conditional covariances of an M-GARCH-CCC model. In the
remainder of this section we discuss the specifics of the testing procedures.

3.1. CUSUM type tests

Without an explicit specification of a multivariate ARCH, the tests discussed
in this section will examine whether there is evidence of structural breaks in the
data generating process of Y12,t. To test for breaks, Kokoszka and Leipus (1998,
2000) consider

UN (k) =
(

(1/
√

N)
∑k

j=1
Zj − (k/(N

√
N))

∑N

j=1
Zj

)
(3.1)

for 0 < k < N, where Zt = |Y12,t|d , d = 1, 2, in (3.1) represent the absolute
and squared normalized returns in an ARCH(∞) process. When the conditional
covariance process exhibits an ARCH-type specification, like in most dynamic
conditional correlation M-GARCH models, we need not specify the explicit func-
tional form of Y12,t. Kokoszka and Leipus (1998, 2000) assume that ARCH(∞)
processes are (i) stationary with short memory, i.e., the coefficients decay expo-
nentially fast, and (ii) the errors are not assumed Gaussian but do have a finite
fourth moment. Horváth (1997) and Kokoszka and Leipus (1998) show that (3.1)
holds if the process Zt := Y12,t is linearly dependent. The above moment con-
ditions need also apply to M-GARCH processes. The CUSUM type estimators
are

k̂ = min{k : |UN (k)| = max
1≤j≤N

|UN (j)|}. (3.2)

The estimate k̂ is the point at which there is maximal sample evidence for a
break in the Zt process. To decide whether there is actually a break, one has also
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to derive the asymptotic distribution of sup0≤k≤N UN (k), or related processes
such as

∫ 1
0 U2

N (t)dt. Moreover, in the presence of a single break, k̂ is a consistent
estimator of k∗. Under the null hypothesis of no break,

UN (k) →D[0,1] σZB(k), (3.3)

where B(k) is a Brownian bridge and σ2
Z =

∑∞
j=−∞ Cov(Zj, Z0). Consequently,

using an estimator σ̂Z , one can establish that under the null:

sup{|UN (k)|}/σ̂Z →D[0,1] sup{B(k) : kε[0, 1]}, (3.4)

which yields a Kolmogorov-Smirnov type asymptotic distribution. Further details
about the computation of the statistics and its application to multiple breaks in
a univariate GARCH context can be found in Andreou and Ghysels (2002b).

3.2. Least squares type tests

Liu, Wu and Zidek (1997) and Bai and Perron (1998) have proposed a least
squares estimation procedure to determine the number and location of breaks
in the mean of linear processes with weakly dependent errors. Their key result
uses a Hájek-Rényi inequality to establish the asymptotic distribution of the test
procedure. Recent work by Lavielle and Moulines (2000) has greatly increased
the scope of testing for multiple breaks. They obtain similar inequality results
for weakly, as well as strongly, dependent processes. The number of breaks
is estimated via a penalized least-squares approach similar to Yao (1988). In
particular, Lavielle and Moulines (2000) show that an appropriately modified
version of the Schwarz criterion yields a consistent estimator of the number of
change-points. In the present analysis we apply this test to the model

Y12,t = µ∗
k + εt, t∗k−1 ≤ t ≤ t∗k, 1 ≤ k ≤ r, (3.5)

where t∗0 = 0 and t∗r+1 = T, the sample size. The indices of the breakpoint and
mean values µ∗

k, k = 1, . . . , r, are unknown. It is worth recalling that Y12,t is a
generic stand-in process. In our application, (3.5) applies to the cross-products of
normalized returns for examining the change-point hypothesis in the conditional
covariance of M-GARCH-CCC and -DCC type models.

For dynamic conditional correlation models, (3.5) can be augmented to

Y12,t = θ12 + η12Y12,t−1 + v12,t. (3.6)

When the M-GARCH conditional correlation is assumed constant, or when deal-
ing with a single observed factor model (e.g., the market CAPM) with con-
stant correlation, another auxiliary equation that may yield power for testing the
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structural breaks hypothesis is the regression between normalized returns, e.g.,
X1,t = θ′12 + η′12X2,t + v12,t. Note that this regression is not strictly equivalent
to (3.5) for the conditional covariance that is derived from the M-GARCH-CCC
reduction approach. Nevertheless, it can be considered as another auxiliary re-
gression that relates to the conditional co-movements between assets in factor
models, as well as most conditional mean asset pricing theories.

A useful example of this approach can be considered in the context of the
one factor model that is used to model the market CAPM model. Let rM,t and
ri,t be the demeaned returns on the market (indexed by M) and on the individual
firm stock i at time t :

rM,t = σM,tuM,t, (3.7)

ri,t = βi,trM,t + σi,tui,t, (3.8)

where uM,t and ui,t are uncorrelated i.i.d.(0, 1) processes, σM,t, σi,t and βi,t are,
respectively, the conditional variance of rM,t, the firm specific variance of ri,t,

and the conditional beta of ri,t with respect to rM,t. Beta is expressed as

βi,t = Et−1(ri,trM,t)/Et−1(r2
M,t) := σiM,t/σ

2
M,t. (3.9)

In the market CAPM equation (3.8), we divide by σi,t and write beta explicitly
to obtain ri,t/σi,t = (σiM,t/(σM,tσi,t)(rM,t/σM,t)) + (σi,tzi,t)/σi,t. If we define the
normalized returns by Xi,t and XM,t, then the following regression type model
arises: Xi,t = (σiM,t/(σM,tσi,t))XM,t + zi,t, or

Xi,t = ρiM,tXM,t + zi,t, (3.10)

where ρiM,t represents the conditional correlation between the returns of the two
assets. Two interesting cases arise in the context of (3.10). If ρiM,t = ρiM , then
constant conditional correlation implies the process (3.10) is φ−mixing. If ρiM,t

is a dynamic conditional correlation, then (3.10) is β−mixing. In both cases
the Lavielle and Moulines test can be applied. Note that the above example is
restricted to observable factors and can be extended to n risky assets to obtain
n regressions of normalized returns with the risk adjusted market portfolio. The
change-point could be performed on each equation (3.10) to assess the stability
of the co-movements of risky stocks with the market portfolio.

The Lavielle and Moulines tests are based on the least-squares computation

QT (t) = min
µ∗

k
,k=1,...,r

∑r+1

k=1

∑tk

t=tk−1+1
(Y12,k − µk)2. (3.11)

Estimation of the number of break points involves the use of the Schwarz or
Bayesian information criterion (BIC), and hence a penalized criterion QT (t)+βT r

where βT r is a penalty function to avoid over-segmentation with r the number of
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changes and {βT } a decreasing sequence of positive real numbers. We examine
the properties of this test using both BIC and the information criterion proposed
in Liu, Wu and Zidek (1997) (denoted as LWZ). It is shown under mild conditions
that the change-point estimator is strongly consistent with rate of convergence
T .

4. Monte Carlo Design and Results

In this section we discuss the Monte Carlo study which examines the proper-
ties of normalized returns in univariate and multivariate heteroskedastic param-
eterizations, as well as the properties of the Kokoszka and Leipus (1998, 2000)
and Lavielle and Moulines (2000) change-point tests applied in a multivariate
heteroskedastic setting. The design and results complement the findings of An-
dreou and Ghysels (2002a,b), who propose extensions of the continuous record
asymptotic analysis for rolling sample variance estimators and examine the afore-
mentioned tests for testing breaks in the dynamics of univariate volatility models.

4.1. Simulation design

The simulated returns processes are generated from the following two types
of DGPs: (i) a univariate GARCH process with Normal and Student’s t errors,
and (ii) a multivariate GARCH process with constant correlation (M-GARCH-
CCC) (Bollerslev (1990)), as well as dynamic correlation such as the vech di-
agonal specification proposed in Bollerslev, Engle and Wooldridge (1988) (M-
GARCH-VDC). The choice of the M-GARCH-CCC and M-GARCH-VDC models
is mainly due to their simplicity and parsimony for simulation and parameteriza-
tion purposes. Moreover, the former multivariate design is most closely related
to the univariate GARCH for which the Kokoszka and Leipus (2000) test has
been derived. More specifically, the DGPs examined are the following.
(i) The univariate GARCH process is:

rq,t = uq,t(σq,t)1/2, σq,t = ωq + aqr
2
q,t−1 + βqσq,t−1, (4.1)

where rq,t is the returns process generated by the product of the error uq,t, which
is i.i.d.(0, 1) with Normal or Student’s t distribution, and the volatility process
σq,t that has a GARCH(1,1) specification. The process without change points is
denoted by q = 0, whereas a break in any of the parameters of the process is sym-
bolized by q = 1 to denote the null and the alternative hypotheses, respectively,
outlined below.
(ii) The multivariate GARCH process for a pair of assets denoted by (1, 2) is

r1,q,t = r1,q,t(h11,q,t)1/2 + u2,q,th12,q,t,
(4.2)

r2,q,t = r2,q,t(h22,q,t)1/2 + u1,q,th12,q,t, t = 1, . . . , T and q = 0, 1,
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where r1,q,t and r2,q,t are the returns processes that are generated by u1,q,t and
u2,q,t, i.i.d.(0, 1) processes, and M-GARCH conditional variances

h11,q,t = ω11,q + a11,qr
2
1,q,t−1 + β11,qh11,q,t−1,

(4.3)
h22,q,t = ω22,q + a22,qr

2
2,q,t−1 + β22,qh22,q,t−1.

The conditional covariance in the M-GARCH-CCC (Bollerslev (1990)) is given
by

h12,q,t = ρ12,q(h11,q,th22,q,t)1/2. (4.4)

Similarly the conditional covariance in the M-GARCH-VDC (Bollerslev, Engle
and Wooldridge (1988)) is given by

h12,q,t = ω12,q + a12,qr1,q,t−1r2,q,t−1 + β12,qh12,q,t−1. (4.5)

The models used in the simulation study are representative of financial markets
data with a set of parameters that capture a range of degrees of volatility persis-
tence measured by δ = a + β. The vector parameter (ω, a, β) in (4.1) describes
the following data generating processes: DGP1 has (0.4, 0.1, 0.5) and DGP2 has
(0.1, 0.1, 0.7), characterized by low and high volatility persistence, respectively. In
order to control the multivariate simulation experiment, the volatility processes
of the M-GARCH equations in (4.3) are assumed to have the same parameter-
ization. The sample sizes N = 500 and 1000 are chosen so as to examine not
only the asymptotic behavior but also the small sample properties of the tests
for realistic samples in financial time series. For simplicity and conciseness the
simulation design is restricted to the bivariate case, it can be extended to n > 2
assets where the tests are applied to pairs just as in the bivariate model.

The models in (i) and (ii) without breaks (q = 0) denote the processes under
the null hypothesis for which the simulation provides evidence for the size of the
Kokoszka and Leipus and Lavielle and Moulines tests. Under the alternative
hypothesis the returns process is assumed to exhibit breaks. Four cases are
considered to evaluate the power of the tests. The simulation study focuses on
the single change-point hypothesis but can be extended to the multiple breaks
framework (see for instance, Andreou and Ghysels (2002b)). In the context of
(4.1) we study breaks in the conditional variance hq,t, which can also be thought of
as permanent regime shifts in volatility at change points πN (π = 0.3, 0.5, 0.7).
Such breaks may have the following sources: HA

1 : a change in the volatility
dynamics, βq; HB

1 : a change in the intercept, ωq; HC
1 : a change in the conditional

correlation, given by ρ12,q in (4.4) or HD
1 : ω12,q or β12,q in (4.5).

The simulation investigation is organized as follows. First we examine some
of the probabilistic properties of the normalized returns series generated from
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univariate and multivariate GARCH models. Second we investigate the perfor-
mance of the Kokoszka and Leipus and Lavielle and Moulines tests using the mul-
tivariate normalized returns framework. We test for breaks in the cross-product
of normalized returns or the regression of normalized returns. The simulation,
as well as the empirical analysis, is performed using the GAUSS programming
language.

4.2. The standardized returns processes

The statistical properties of daily returns standardized by volatility filters are
discussed in the context of the univariate and bivariate dynamic heteroskedastic
structures described above. For intraday volatility filters and for the purpose
of simulation and parameter selection we take the univariate representation of
each GARCH process for alternative sampling frequencies following Drost and
Werker (1996, Corollary 3.2), who derive the mappings between GARCH param-
eters corresponding to processes with r(m),t sampled with different values of m.
Obviously the Drost and Werker formulae do not apply in multivariate settings
but they are used here for the marginal process, producing potentially an ap-
proximation error as the marginal processes are not exactly weak GARCH(1,1).
Using the estimated GARCH parameters for daily data with m = 1, one can
compute the corresponding parameters ω(m), α(m) and β(m), for any other fre-
quency m. The models used for the simulation study are representative of the
FX financial markets, popular candidates of which are taken to be returns on
DM/US$, YN/US$ exchange rates. We take the daily results of Andersen and
Bollerslev (1998) and compute the implied GARCH(1,1) parameters ω(m), α(m)

and β(m) for 1-minute and 5-minutes frequency, m = 1440 and 288 respectively,
using the software available from Drost and Nijman (1993).

The normalized returns transformation is the process of interest following the
discussion in Section 2. According to the univariate GARCH process (4.1), the
standardized returns process Xi,(m) := ri,(m),t/σi,(m),t is by definition i.i.d.(0, 1).
The ‘true’ standardized returns of the univariate GARCH is given for the 1-
minute sampling frequency and the corresponding parameters found in Andreou
and Ghysels (2002a). Quadratic variation intraday estimators are specified by
aggregating the ‘true’ squared returns process at 5-, 30- and 60-minutes sam-
pling frequencies. The remaining volatility filters are the spot volatilities which
are specified here using daily frequencies. Evaluation of how well the returns
standardized by the data-driven volatility filters approximate the true paramet-
ric structure is based on the contemporaneous Mean Square and Absolute Errors
(MSE and MAE) using as benchmark the MSE (and MAE) of XQV 1,t. We also
evaluate the statistical properties of these ratio transformations by testing their
normality assumption using the Jarque and Bera (1980) test, as well as whether
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they adequately capture the nonlinear dynamics by testing for any remaining
ARCH (Engle (1982)) in Xi,t. According to the bivariate GARCH process with
constant or dynamic correlation, (4.4) or (4.5) respectively, the normalized re-
turns is expected to be a dependent process.

Table 1. Monte Carlo Simulations of MSE and MAE ratios, normality and
second-order dependence test results for daily FX X(i) = Returns/Volatilities
(i) of YN/US$ calculated at 5-minute frequency.

Jarque Bera Normality Test ARCH Test

N-GARCH t -GARCH N-GARCH t -GARCH
JB JB ARCH(5) ARCH(5)

X(RM) 113.8 3254 0.921 0.623
(0.000) (0.000) (0.536) (0.701)

X(RV26) 266.7 2735 0.921 0.623
(0.000) (0.000) (0.536) (0.701)

X(RV52) 1368 13587 0.705 0.599
(0.000) (0.000) (0.730) (0.730)

X(QV1) 2.132 4.169 0.986 1.030
(0.447) (0.215) (0.496) (0.491)

X(QV2) 6.514 19.15 1.262 1.886
(0.190) (0.010) (0.392) (0.210)

X(QV3) 24.48 100.9 1.354 2.063
(0.006) (0.000) (0.366) (0.166)

X(HQV1) 388.4 9056 1.354 1.324
(0.018) (0.000) (0.358) (0.470)

X(HQV2) 555.3 26687 1.550 1.367
(0.000) (0.000) (0.369) (0.474)

X(HQV3) 1253 38579 1.350 1.155
(0.000) (0.000) (0.407) (0.497)

Note: The simulation design is described in Section 3. We consider normal and

Student’s t (with 6 degrees of freedom) GARCH processes. The volatility filters are

defined in the end of Section 2.2. The standardized returns are tested for normality

using the Jarque-Bera (JB) test. We examine any remaining second-order temporal

dependence in standardized returns using the ARCH test with the corresponding

lag length in parentheses. Similar results were obtained for alternative lag lengths.

p-values are reported below the test statistics in the parentheses. The total sample

size is 2500 which is adjusted for the subsample of 2250 due to the standardized

returns by rolling volatilities.

The simulation results in Table 1 summarize the statistical properties of the
daily returns standardized by the alternative volatility filters (defined in Section
2.2) with respect to their distributional and temporal dependence dynamic prop-
erties. We focus on the univariate GARCH process since it is expected that the
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normalized returns from an M-GARCH process will exhibit second-order depen-
dence due to unmodelled conditional covariance dynamics. The normality test
results show that in the case of the normal GARCH process, there is general
simulation evidence that does not support the normality hypothesis for most
standardized returns series (at the 5% significance level), except for XQV 1,t and
XQV 2,t. Similarly, under the more realistic assumption of a t-GARCH, arising
from heavy-tailed high-frequency data, we do not find supportive evidence of
the normality hypothesis in all series except XQV 1,t. Table 1 also presents the
simulation results from testing any remaining ARCH effects in normalized re-
turns. We find evidence in favor of no remaining second-order dynamics in all
risk-adjusted returns by interday and intraday volatility filters, under both nor-
mal and Student’s t univariate GARCH processes. The results present evidence
that univariate returns process normalized by optimal volatility filters yield an
approximately independent series, with a distribution that has different tail be-
havior depending on the standardizing filter employed.

4.3. Simulation results of change-point tests

In Section 2 we discussed the reduced form approach adopted for M-GARCH
models. The first stage involves the univariate specification and estimation of
conditional variance dynamics which yield the normalized returns process for
each asset, X1,t and X2,t. The second stage involves the specification of the
conditional covariance dynamics. For M-GARCH processes the conditional co-
variance is specified as the cross-product of pairs of normalized returns for assets
1 and 2 given by Y12,t = X1,tX2,t. The equations for Y12,t, which we use for
change-point testing, are given by (3.5) and (3.6) which represent the constant
and dynamic conditional correlation of M-GARCH-CCC and M-GARCH-VDC
models, respectively. The specification in (3.6) for the conditional correlation as
well its ARMA generalizations have been discussed in Engle (2002) and Tse and
Tsui (2002). The simulation test results focus on N = 1000 and π = 0.5 for
conciseness purposes.

The simulation results for the properties of the Kokoszka and Leipus (K&L)
test are reported in Table 2. We consider the cross product of normalized returns
X1,tX2,t (using volatility estimators) as well as the ‘true’ simulated cross product
of normalized returns given by u1,tu2,t in (4.2). We focus on the XRV 26,t and
XRM,t series which are applicable in a broader sense given their daily sampling
frequency, as well as the relationship of the RiskMetricks with IGARCH models.
Note that the empirical analysis considers all volatility filters discussed in Section
2.2. The representative simulation results in Table 2 show that although the K&L
test has good size properties for simulated cross product of normalized returns,
u1,tu2,t, it is seriously undersized for the estimated normalized returns, X1,tX2,t,
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Table 2. Size and power of the Kokoszka and Leipus (2000) test for a change-
point in the co-movements of normalized returns.

Statistic: Umax/σ̂V ARHAC Sample: N = 1000 Change-point timing: π = 0.5

Processes True errors X1(RV 26)∗X2(RV 26) X1(RM)∗X2(RM)

Transformations

Bivariate GARCH with constant conditional correlation

H0: (ωi,0, αi,0, βi,0t)

DGP1:(0.4,0.1,0.5) 0.053 0.044 0.049 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DGP2:(0.1,0.1,0.8) 0.086 0.063 0.081 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HA
1 : Break in the dynamics of volatility, (βi,j,0, βi,j,1), i, j = 1, 2

DGP1: (0.5, 0.8) 0.999 0.910 0.998 0.622 0.069 0.068 0.792 0.052 0.076 0.128

DGP1: (0.5, 0.1) 0.387 0.751 0.478 0.279 0.014 0.000 0.400 0.022 0.002 0.504

DGP2: (0.8, 0.5) 0.999 0.830 0.889 0.998 0.401 0.263 0.508 1.000 0.422 0.669

HB
1 : Break in the constant of volatility, (ωi,j,0, ωi,j,1), i, j = 1, 2

DGP1: (0.4, 0.2) 0.745 0.369 0.466 0.281 0.017 0.001 0.402 0.016 0.002 0.490

DGP2: (0.1, 0.2) 0.812 0.541 0.707 0.058 0.006 0.000 0.097 0.004 0.000 0.036

HC
1 : Break in the correlation coefficient, (ρ12,0, ρ12,1)

DGP1: (0.5,0.8) 0.965 0.807 0.933 0.155 0.007 0.000 0.296 0.005 0.004 0.103

DGP1: (0.5,0.3) 0.958 0.652 0.702 0.915 0.085 0.003 0.913 0.094 0.010 0.849

DGP2: (0.5,0.3) 0.961 0.620 0.733 0.890 0.090 0.009 0.925 0.088 0.016 0.407

DGP2: (0.5,0.8) 0.961 0.796 0.908 0.176 0.017 0.003 0.293 0.009 0.003 0.070

Bivariate GARCH with time varying conditional correlation

HD
1 : Break in the covariance dynamics, (β12,0, β12,1)

DGP1: (0.5,0.1) 0.989 0.961 0.995 0.000 0.000 0.000 0.000 0.000 0.000 0.014

DGP2: (0.8,0.4) 1.000 0.967 0.997 0.007 0.050 0.001 0.153 0.005 0.003 0.283

Note: (1) The Kokoszka and Leipus (2000) test statistic is described in Section 3.1. (2) The

simulated bivariate GARCH models refer to GARCH-CCC (Constant Conditional Correlation)

at (4.2), (4.3), (4.4) and GARCH-VDC (Varying Conditional Correlation) at (4.2), (4.3), (4.5).

(3) The models are simulated for 1,000 replications. The superscripts 1 and 0 in the coefficients

of each hypothesis in the Table denote the cases with and without change-points, respectively.

The entries in DGP(*,*) refer to the coefficients prior to and after the change-point under

the alternative hypothesis, as given by the title of each panel. For instance, the entries in

DGP1:(0.5,0.8) under the alternative hypothesis HA
1 (in the second panel) denote the constant

GARCH coefficients prior to and after the change point. (4) Under the alternative hypotheses

HA
1 and HB

1 , the change in parameters refer to both GARCH processes. Under the alternative

hypotheses HC
1 and HD

1 , we assess the change in the conditional covariance.

using either σ̂RV 26,t and σ̂RM,t. The main result from Table 2 is that the cross-
product Y12,t := X1,tX2,t (as opposed to its quadratic and absolute transforma-
tions) as well as σRM

Y12
yield the highest power under the hypotheses of change
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points in the volatility coefficients (HA
1 and HB

1 ) as well as the conditional co-
variance parameters (HC

1 and HD
1 ). It is important to clarify that the normalized

returns cross product process Y12,t, which involves volatility estimation, has lower
power than the true simulated process and has relatively more power in detect-
ing large change points in the context of the GARCH-CCC than GARCH-VDC
model.

Table 3. Size, power and frequency distribution of the number of change-
points obtained with the Lavielle and Moulines (2000) test when there is a
single break in a M-GARCH with constant conditional correlation.

Samples, T = 1000 and change point, π = 0.5 and Segments, tk = 5

Normalized returns regression X
(
σk

i,t

)
= a + bX(σk

j,t) + ut

Volatility Filter, σk
i,t σRV 26

t σRM
t

Lavielle&Moulines BIC LWZ BIC LWZ

Number of Breaks 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2

H0 : (ωi,0, αi,0, βi,0)

DGP1:(0.4,0.1,0.5) 1.00 0.00 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00

DGP2:(0.1,0.1,0.8) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

HA
1 : Break in the dynamics of volatility with parameters (β0, β1)

DGP1:(0.5, 0.8) 0.00 1.00 0.00 0.44 0.56 0.00 0.00 0.98 0.02 0.38 0.62 0.00

DGP1:(0.5, 0.1) 0.70 0.30 0.00 1.00 0.00 0.00 0.48 0.52 0.00 1.00 0.00 0.00

DGP2:(0.8, 0.7) 0.02 0.96 0.02 0.98 0.02 0.00 0.88 0.12 0.00 1.00 0.00 0.00

DGP2:(0.8, 0.5) 0.02 0.96 0.02 0.98 0.02 0.00 0.04 0.94 0.02 0.94 0.06 0.00

HB
1 : Break in the constant of volatility with parameters (ω0, ω1)

DGP1:(0.4, 0.1) 0.04 0.96 0.00 0.92 0.08 0.00 0.06 0.94 0.00 0.94 0.06 0.00

DGP1:(0.4, 0.8) 0.10 0.90 0.00 1.00 0.00 0.00 0.20 0.80 0.00 1.00 0.00 0.00

DGP2:(0.1, 0.3) 0.10 0.90 0.00 1.00 0.00 0.00 0.96 0.04 0.00 1.00 0.00 0.00

HD
1 : Break in the correlation coefficient (ρ12,0, ρ12,1)

DGP1:(0.5, 0.3) 0.00 1.00 0.00 0.88 0.12 0.00 0.00 1.00 0.00 0.78 0.22 0.00

DGP1:(0.5, 0.8) 0.00 1.00 0.00 0.26 0.74 0.00 0.00 0.95 0.05 0.35 0.65 0.00

DGP2:(0.5, 0.3) 0.02 0.98 0.00 0.92 0.08 0.00 0.00 0.98 0.02 0.88 0.12 0.00

DGP2:(0.5, 0.8) 0.00 1.00 0.00 0.30 0.70 0.00 0.88 0.12 0.04 1.00 0.00 0.00

Notes: (1) The Lavielle and Moulines (2000) test is described in Section 1.2. The Bayesian

Information Criterion (BIC) and its modification by Liu, Wu and Zidek (1997) denoted as LWZ

are used. The simulations focus on DGP1, DGP2, T = 1000 for 500 trials. For comparison

purposes the alternative hypotheses of change points are similar to the K&L simulations (Table

2) and extended to larger breaks. Reported is the frequency distribution of the breaks detected.

The highlighted numbers refer to the true number of change-points in the simulated process.

(2) Explanations for the changes in the coefficients represented by the entries DGP:(*,*) are

given in note (3), Table 2. (3) The simulated model is given at (4.2), (4.3) and (4.4).
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Table 4. Size, power and frequency distribution of the number of change-
points obtained with the Lavielle and Moulines (2000) test when there is a
single break in a M-GARCH with dynamic conditional covariance.

Samples, T = 1000 and change point, π = 0.5

Normalized returns regression X
(
σk

i,t

)
= a + bX

(
σk

j,t

)
+ ut

Volatility Filter, σk
i,t σRV 26

t σRM
t

Lavielle & Moulines BIC LWZ BIC LWZ

Segments, tk = 5

Number of Breaks 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2

H0 : (ωi,0, αi,0, βi,0)

DGP1:(0.4,0.1,0.5) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2:(0.1,0.1,0.8) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

HA
1 : Break in the dynamics of volatility with parameters (β0, β1)

DGP1:(0.5, 0.8) 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.95 0.05 0.00

DGP1:(0.5, 0.1) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2:(0.8, 0.7) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2:(0.8, 0.5) 0.54 0.46 0.00 1.00 0.00 0.00 0.59 0.41 0.00 1.00 0.00 0.00

HB
1 : Break in the constant of volatility with parameters (ω0, ω1)

DGP1:(0.4, 0.5) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1:(0.4, 0.8) 0.80 0.20 0.00 1.00 0.00 0.00 0.44 0.56 0.00 1.00 0.00 0.00

DGP2:(0.1, 0.3) 0.14 0.86 0.00 1.00 0.00 0.00 0.01 0.99 0.00 1.00 0.00 0.00

DGP2:(0.1, 0.2) 0.96 0.04 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00

HC
1 : Break in the constant of the conditional covariance coefficient (ω12,0, ω12,1)

DGP1:(0.4, 0.1) 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.26 0.74 0.00

DGP1:(0.4, 0.8) 0.80 0.20 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.22 0.78 0.00

DGP2:(0.1, 0.3) 0.10 0.90 0.00 1.00 0.00 0.00 0.96 0.04 0.00 1.00 0.00 0.00

HD
1 : Break in the dynamics of the conditional covariance coefficient (b12,0, b12,1)

DGP1:(0.5, 0.8) 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.94 0.06 0.00

DGP1:(0.5, 0.1) 1.00 0.00 0.00 1.00 0.00 0.00 0.42 0.58 0.00 1.00 0.00 0.00

DGP2:(0.8, 0.5) 0.00 1.00 0.00 0.92 0.08 0.00 0.00 1.00 0.00 0.66 0.34 0.00

Notes: As in the notes (1) and (3) of Table 3, the simulated model is given at (4.2), (4.3) and

(4.5).

The change-point hypothesis in multivariate conditional volatility models
is also examined using the Lavielle and Moulines (L&M) test. Table 3 shows
the L&M least squares regression test results for pairs of normalized returns
X1,t = θ′12 + η′12X2,t + v12,t, in the context of the M-GARCH-CCC. The high-
lighted results show that the BIC yields more power than the LWZ criterion for
the L&M test which detects breaks in both directions and DGPs, except when
those are small in size (e.g., a 0.1 parameter change). The results regarding the
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remaining alternative hypotheses (HA
1 and HB

1 ) show that the L&M test also de-
tects breaks in the bivariate relationship of normalized returns when the source of
these change-points rests in the univariate GARCH dynamics as well as breaks in
the co-movements (HC

1 ). The above results also hold if the simulated process is
an M-GARCH-VDC as shown in Table 4, except that the size of the change-point
needs to be even larger in either the conditional variance or covariance dynamics
for the test to exhibit power. It is also interesting to note that in comparing the
normalizing volatility filters we find that the regression involving XRM,t yields
more power in detecting change-points in the conditional covariance of the M-
GARCH-VDC, whereas for the M-GARCH-CCC both XRM,t and XRV 26,t yield
similar power properties.

5. Empirical Analysis

5.1. Co-movements of FX normalized returns

The empirical section of the paper investigates the bivariate relationship be-
tween the daily YN/US$ and DM/US$ risk adjusted returns over a decade, and
tests for structural breaks in their co-movements. The empirical results comple-
ment the Monte Carlo analysis by examining further the stochastic properties of
normalized FX returns and investigating the presence of structural breaks. The
discussion is organized as follows. First, we test the hypotheses of normality
and independence for all YN/US$ and DM/US$ standardized returns as well as
the statistical adequacy of their regression representation. Second, we examine
the stability of this bivariate relationship by testing for change-points using the
Kokoszka and Leipus (2000), Horváth (1997) and Lavielle and Moulines (2000)
tests, which are valid for heavy tailed as well as weakly and strongly dependent
processes. The timing and numbers of breaks are also estimated. The data source
is Olsen and Associates. The original sample for a decade, from December 1st,
1986 to November 30th, 1996 is 1,052,064 five-minute return observations (2,653
days · 288 five-minute intervals per day). The returns for some days were re-
moved from the sample to avoid regular and predictable market closures which
affect the characterization of the volatility dynamics. A description of the data
removed is found in Andersen, Bollerslev, Diebold and Labys (2001). The final
sample includes 705,024 five-minute returns reflecting 2,448 trading days.

The statistical properties of daily returns normalized by a number of volatil-
ity filters are examined for the two FX series. First we focus on the temporal
dependence and distributional properties of normalized returns. It is well doc-
umented that daily asset returns are characterized by a martingale difference
with second-order temporal dynamics and a distribution that exhibits heavy-
tails. Therefore it would be interesting to examine whether these purely data-
driven volatility filters also adequately capture the second-order dynamics of
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asset returns. This is examined by testing the hypothesis of remaining linear
and second-order temporal dependence effects in normalized returns. Detailed
empirical results do not reject the hypothesis that these normalized returns are
approximately independent, see Andreou and Ghysels (2002c, Tables 5 and 6).
Specifically, it is found that the efficiency depends on the sampling frequency,
window length and estimation method. The combination of rolling estimation
and optimal window produces nearly independent standardized FX returns se-
ries. Second, temporal aggregation of intraday returns requires a longer lag of
volatility so as to capture the dependence in normalized returns, and the em-
pirical findings support the continuous record asymptotics of the efficiency of
volatility filters. The distributional properties of normalized returns are assessed
in Table 5 for the YN/US$ and DM/US$. Both the Jarque and Bera (1980)
and Anderson and Darling (1954) tests result provide no empirical support of
the normality hypothesis (at the 10% significance level) for any of the daily stan-
dardized returns series, mainly due to excess kurtosis in both the spot volatility
(SV ) normalized returns, XSV,t, as well as the X(H)QV,t series. The exception
to this result is XQV 1,t, which appears to support the normality hypothesis at
the 5-minute sampling frequency. Nevertheless at the lower sampling frequen-
cies XQV 1,t is also non-normal. At the 5-minute sampling frequency the sample
skewness and kurtosis coefficients suggest that the empirical distributions for all
standardized returns are leptokurtic except for XQV 1,t, which actually appears to
be platykurtic with sample kurtosis coefficient below 3 for all intraday frequen-
cies. The empirical results match the simulation evidence in Table 1. Moreover,
it is interesting to note that a window length beyond one day in QV filters, as
well as rolling instead of block sampling estimation methods, yield excess kur-
tosis in the empirical distribution. It is worth noting that the daily and most
intraday volatility filters result in non-normality due to both excess kurtosis and,
in most cases, asymmetry. This result may be due to an underlying non-normal
distribution and/or the presence of jumps and breaks in the risk adjusted returns
process. The empirical tail behavior implied by XQV,t and XHQV,t differ and the
latter are found to be relatively more leptokurtic. Moreover, as the window
length increases for both QV and SV filters, the distribution of the respective
standardized returns becomes more leptokurtic.

The above results suggest that the ratio transformation of daily returns-to-
volatility based on data-driven volatility filters can yield a process with a rela-
tively simple statistical structure. Hence we proceed to examine the multivariate
relationship of normalized returns in a regression context. The dynamic struc-
ture of risk adjusted returns using Granger causality tests and the existence of a
linear regression relationship for YN/US$ and DM/US$ normalized returns can
also be found in Andreou and Ghysels (2002c, Table 6). There is no significant
empirical evidence of a lead-lag relationship between the co-movements of the
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two FX series. The simple linear OLS regression results of the two normalized
FX returns are reported in Table 6 for the 5- and 30-minute frequencies. In all
cases the estimated regression coefficient is highly significant and ranges from
0.6 to 0.75 as representing the contemporaneous covariance structure of stan-
dardized returns in the DM and YN vis-à-vis the US$. The statistical adequacy
of this regression relationship is examined. All regression results for XSV,t and
X(H)QV,t support the independence hypothesis (except XQV 1,t in the 30-minute
sampling frequency). Similarly, the empirical results show that the static regres-
sions exhibit non-normal conditional distribution for the two FX risk adjusted
returns. These results open the route for regression type techniques in detecting
change-points and suggest that the empirical conditional covariance process does
not exhibit significant dynamics.

Table 5. Normality test results for daily YN/US$ standardized returns based
on various intraday sampling frequencies.

YN/US$ DM/US$

5min. frequency 30min. frequency 5min. frequency 30min. frequency

Sk. AD BJ Sk. AD BJ Sk. AD BJ Sk AD BJ

Kr. p-value p-value Kr. p-value p-value Kr. p-value p-value Kr. p-value p-value

X(RM) -0.215 4.305 51.511 -0.174 9.062 167.08 -0.012 1.890 8.210 0.142 7.589 170.59

3.585 (0.000) (0.000) 4.260 (0.000) (0.000) 3.289 (0.000) (0.017) 4.290 (0.000) (0.000)

X(RV26) -0.251 7.566 148.74 -0.226 15.403 446.74 -0.019 4.233 55.713 0.256 12.430 451.08

4.127 (0.000) (0.000) 5.089 (0.000) (0.000) 3.754 (0.000) (0.000) 5.086 (0.000) (0.000)

X(RV52) -0.309 11.196 327.21 -0.380 25.022 1471.9 -0.030 6.788 132.50 0.277 19.598 1359.3

4.722 (0.000) (0.000) 6.805 (0.000) (0.000) 3.989 (0.000) (0.000) 6.688 (0.000) (0.000)

X(QV1) -0.030 0.558 1.064 -0.055 1.029 10.407 -0.011 0.418 6.605 -0.012 1.214 17.845

2.915 (0.149) (0.588) 2.693 (0.010) (0.000) 2.741 (0.328) (0.037) 2.573 (0.004) (0.000)

X(QVk) -0.091 2.720 35.943 -0.093 1.384 12.914 -0.005 0.880 2.479 -0.004 0.491 0.256

3.579 (0.000) (0.000) 3.312 (0.001) (0.000) 3.159 (0.024) (0.289) 3.051 (0.219) (0.880)

X(QVl) -0.113 5.598 105.5 -0.192 7.459 151.9 -0.021 1.945 3.292 0.009 3.215 3.699

3.992 (0.000) (0.000) 4.193 (0.000) (0.000) 3.359 (0.000) (0.001) 3.194 (0.000) (0.157)

X(HQV1) -0.138 5.248 120.04 -0.134 3.355 59.811 -0.110 2.942 132.12 -0.092 2.676 82.549

4.073 (0.000) (0.000) 3.736 (0.000) (0.000) 4.142 (0.000) (0.000) 3.902 (0.000) (0.000)

X(HQVk) -0.191 8.683 245.61 -0.149 9.976 314.04 -0.082 4.649 151.52 -0.059 5.664 132.39

4.539 (0.000) (0.000) 4.769 (0.000) (0.000) 4.235 (0.000) (0.000) 4.159 (0.000) (0.000)

X(HQVl) -0.202 10.719 327.82 -0.179 11.298 380.72 -0.054 5.555 154.06 -0.099 6.671 280.06

4.787 (0.000) (0.000) 4.943 (0.000) (0.000) 4.251 (0.000) (0.000) 4.683 (0.000) (0.000)

Note: The volatility filters are defined in Section 2.2. The data set refers to the 5-minute

YN/US$ from 1/12/86 to 30/11/96 which yields a daily sample size of T=2446 days and is

adjusted for a subsample of 2346, excluding the first 100 observations as a result of the rolling

volatility estimators. The window lengths are k=2,4,6 and l=3,8,12 days for the 5-, 30- and

60-minutes frequency, respectively. The sample skewness and kurtosis (Sk and Kr., respectively)

are reported. Statistics reported refer to p-values, the Anderson-Darling (AD) and Bera-Jarque

(BJ) tests.
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Table 6. Linear regression results of daily YN/US$ on DM/US$ standardized
returns based on intra-day sampling frequencies.

5-minute sampling frequency
OLS results Residual Misspecification results

const. beta BJ Sk. ARCH(1) ARCH(5) LM(1) LM(5)

p-value p-value p-value Kr. p-value p-value p-value p-value

X(RM) -0.017 0.603 601.95 -0.566 2.468 1.115 1.220 0.702

(0.276) (0.000) (0.000) 5.209 (0.116) (0.350) (0.269) (0.622)

X(RV26) -0.021 0.604 884.21 -0.597 1.847 1.091 1.298 0.917

(0.208) (0.000) (0.000) 5.760 (0.174) (0.363) (0.225) (0.469)

X(RV52) -0.023 0.603 1542.4 -0.766 4.217 1.987 1.619 0.729

(0.172) (0.000) (0.000) 6.664 (0.040) (0.078) (0.203) (0.601)

X(QV1) 0.004 0.605 54.153 -0.223 1.508 3.238 0.394 0.440

(0.759) (0.000) (0.000) 3.595 (0.219) (0.006) (0.530) (0.821)

X(QV2) -0.004 0.607 284.72 -0.400 0.507 1.524 1.603 1.524

(0.784) (0.000) (0.000) 4.507 (0.476) (0.179) (0.206) (0.179)

X(QV3) -0.003 0.609 283.44 -0.397 0.513 1.538 1.540 0.588

(0.821) (0.000) (0.000) 4.505 (0.474) (0.175) (0.215) (0.709)

X(HQV1) -0.0002 0.607 442.81 -0.422 0.069 0.959 2.335 0.599

(0.861) (0.000) (0.000) 4.902 (0.793) (0.442) (0.127) (0.701)

X(HQV2) -0.0003 0.603 1117.7 -0.614 0.174 0.675 2.418 0.607

(0.611) (0.000) (0.000) 6.152 (0.676) (0.643) (0.120) (0.694)

X(HQV3) -0.0003 0.602 1435.1 -0.662 0.420 0.679 2.274 0.598

(0.530) (0.000) (0.000) 6.597 (0.517) (0.639) (0.132) (0.702)

30-minute sampling frequency
OLS results Residual Misspecification results

const. beta BJ Sk. ARCH(1) ARCH(5) LM(1) LM(5)

p-value p-value p-value Kr. p-value p-value p-value p-value

X(RM) -0.032 0.746 52786 -2.068 0.010 0.073 1.749 2.569

(0.011) (0.000) (0.000) 25.862 (0.919) (0.996) (0.186) (0.025)

X(RV26) -0.032 0.743 84087 2.463 0.022 0.044 0.854 2.345

(0.024) (0.000) (0.000) 31.907 (0.883) (0.999) (0.355) (0.039)

X(RV52) -0.038 0.722 175997 -3.336 1.229 0.039 1.229 2.051

(0.009) (0.000) (0.000) 44.895 (0.268) (0.999) (0.268) (0.069)

X(QV1) 0.007 0.600 31.273 -0.193 0.786 3.492 0.180 0.459

(0.659) (0.000) (0.000) 3.414 (0.375) (0.004) (0.671) (0.807)

X(QV2) 0.0006 0.607 183.84 -0.329 0.475 1.789 1.281 0.523

(0.971) (0.000) (0.000) 4.204 (0.491) (0.112) (0.258) (0.759)

X(QV3) -0.016 0.618 609.2 -0.485 1.535 0.350 1.028 0.499

(0.016) (0.016) (0.000) 5.244 (0.215) (0.882) (0.311) (0.777)

X(HQV1) 0.0002 0.605 201.57 -0.325 0.031 1.208 1.465 0.352

(0.938) (0.000) (0.000) 4.282 (0.861) (0.303) (0.226) (0.881)

X(HQV2) -0.0006 0.632 803.44 -0.514 1.223 0.716 1.679 0.485

(0.648) (0.000) (0.000) 5.681 (0.269) (0.612) (0.195) (0.788)

X(HQV3) -0.0007 0.609 1187.5 -0.572 0.777 0.196 1.618 0.474

(0.407) (0.000) (0.000) 6.297 (0.574) (0.964) (0.204) (0.796)

Note: The notes in Tables IV, VI and VIII apply.
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5.2. Empirical evidence for breaks in FX co-movements

The above empirical regularities of the DM/US$ and YN/US$ normalized
returns satisfy the conditions of the least squares methods in Bai and Perron
(1998) and Lavielle and Moulines (2000), as well as the CUSUM test of Horváth
(1997) and of Kokoszka and Leipus (1998, 2000) discussed in Section 3.

The K&L change-point test results for the conditional covariance between
the DM/US$ and YN/US$ are reported in Table 7. The results show that the
univariate normalized returns (using any volatility filter transformation) appear
to be time-homogeneous processes. However, for the cross-product of the two
FX normalized returns, the K&L test shows that there is strong evidence of a
change-point in their co-movements. The breaks are detected in all specifications
of normalized returns and they occur at the same point in time, namely at March
23th, 1995 at which the statistic first exceeds the 5% control limit. This event
is related to a period of high uncertainty and a series of bilateral interventions
by the Bank of Japan and the Fed (see for instance the Asian Wall Street Jour-
nal). It is worth mentioning the parametric CUSUMSQ test (Brown, Durbin
and Evans (1975)) also presents empirical evidence for the instability in the lin-
ear regression of the two FX risk adjusted returns. However, we emphasize that
these results are based on the statistical adequacy of the normal linear regres-
sion model. The presence of heavy tailed distributions in normalized returns (or
generally deviations from normality) requires more efficient statistical inference
methods for testing the existence of breaks. Similarly, although the parametric
CUSUM is robust to deviations from normality, this result does not extend to the
CUSUM of squares (Ploberger and Kramer (1986)). It is worth mentioning that
an application of the parametric CUSUM does not detect any change-points.

These results are complemented by testing for multiple breaks using the L&M
regression method and the two information criteria, BIC and LWZ, also reported
in Table 7. Given the empirical results in the previous section which support a
static regression framework for the two FX normalized returns, we apply the L&M
test in the context of (3.10). The number and timing of breaks detected (reported
in Table 7) not only vary depending on the information criterion but also on the
specification of normalized returns. The general result is that the tests choose
between zero, one and two change-points, and the break dates are relatively
more consistent for X(H)QV,t using both criteria. This is also related to the
empirical results comparing the different normalizations. The two change-points
detected are associated with the events of the US stock market crash in October
1987, and the period before the repeated bilateral FX market interventions in
March 1995. From the simulation results we learn that the BIC criterion is
relatively more powerful and this is complemented by the empirical evidence,
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which in most cases detects two change-points. Concluding we find that the co-
movements in YN/US$ and DM/US$ normalized returns for the most efficient
class of filters present evidence for change-points using the recent CUSUM and
least-squares methods in K&L and L&M, respectively. Both approaches yield
consistent results about the change-points in the co-movements, whereas the
latter procedure complements the former by detecting an additional break in the
sample.

Table 7. Change-point test results of daily YN/US$ on DM/US$ standard-
ized returns based on 30 minute intra-day sampling frequency.

Kokoszka and Leipus Change-point Test

Normalized Returns Comovements Break Dates

YN(σt) DM(σt) YN(σt)*DM(σt) k∗
Umax

σ̂V ARHAC

Umax
σ̂V ARHAC

Umax
σ̂V ARHAC

X(RM) 0.706 0.839 5.215* Mar.95

X(RV26) 0.810 0.788 1.413* Oct.87

X(RV52) 0.806 0.856 1.178 -

X(QV1) 1.106 0.937 3.503* Oct.87

X(QV4) 1.133 0.929 2.980* Oct.87

X(QV8) 1.184 0.914 2.245* Oct.87

X(HQV1) 1.086 0.879 2.453* Oct.87

X(HQV4) 1.128 1.003 1.984* Oct.87

X(HQV8) 1.149 0.945 1.818* Oct.87

Lavielle and Moulines Multiple Breaks Test

Normalized Returns Comovements Break Dates

YN(σt) DM(σt) YN(σt) = a + bDM(σt) + ut k∗

SIC(k) LWZ(k) SIC(k) LWZ(k) SIC(k) LWZ(k) SIC(k) LWZ(k)

-0.042(0) -0.041(0) -0.028(0) -0.027(0) -0.298(1)-0.301(2) -0.285(1)-0.184(0) Oct.87,Mar.95 Mar.95

-0.014(0) -0.013(0) -0.004(0) -0.004(0) -0.497(1)-0.496(0) 0.495(0) Oct.87 -
0.037(0) 0.037(0) 0.032 (0) 0.033(0) -0.438(2)-0.437(1) -0.435(0) Oct.87,Mar.95 -
-0.067(0) -0.066(0) -0.004(0) -0.004(0) -0.529(2)-0.528(1) -0.515(1)-0.512(0) Oct.87,Mar.95 Oct.87

0.015(0) 0.015(0) 0.066 (0) 0.066(0) -0.469(2)-0.467(1) -0.454(1)-0.452(0) Oct.87,Mar.95 Oct.87

0.060(0) 0.060(0) 0.078 (0) 0.079(0) -0.438(2)-0.435(1) -0.426(0) Oct.87,Mar.95 -

-3.684(0) -3.684(0) -3.766(0) -3.765(0) -4.309(1)-4.286(0) -4.295(1)-4.285(0) Oct.87 Oct.87

-5.085(0) -5.085(0) -5.110(0) -5.109(0) -5.629(2)-5.628(1) -5.614(1)-5.611(0) Oct.87,Mar.95 Oct.87,Mar.95

-5.803(0) -5.802(0) -5.827(0) -5.827(0) -6.337(2)-6.336(1) -6.323(2)-6.321(1) Oct.87,Mar.95 Oct.87,Mar.95

Note: The break dates of returns standardized by the class of quadratic variation filters

X((H)QV) results in more consistent results. Hence we focus our discussion on these speci-

fications.
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6. Conclusions

We have proposed reduced form procedures designed to uncover breaks in
the co-movements of financial markets via testing for change-points in linear
relationships involving returns normalized by conditional volatility. There are
several advantages to using normalized returns. Among the advantages we note
that (1) the covariance of normalized returns capture conditional correlations,
(2) they reduce the complexity of multivariate volatility models along the same
lines as Engle (2002), Engle and Sheppard (2002) and Tse and Tsui (2002), (3)
they enable us to adopt two-stage procedure consisting of a purely data-driven
nonparametric first stage and a semiparametric second stage. Though our pro-
cedures share some features with the two-stage estimation procedure of DCC
models, we take a reduced form view that suffices for the change-point test pur-
pose. Since the parametric structure of the volatility co-movements are largely
left unspecified we cover a larger class of multivariate specifications, including
factor ARCH models. Another main advantage of employing the two-step proce-
dure is that the statistical inference methods allow for departures from normality
and therefore are robust to heavy tailed distributions. It should also be noted
that the returns-to-volatility process relates to various measures of portfolio per-
formance. Such measures include the Treynor ratio which is the square of the
Sharpe ratio (Treynor and Black (1973)). Our two-stage procedure also applies to
various alternative functional forms of normalized returns. Hence, we can exam-
ine structural breaks in Treynor-Black and other measures, and again not require
normality assumptions to do so (similar to the Jobson and Korkie (1980,1981)
approach for the normal case).

We have restricted the simulation and empirical investigations to bivari-
ate models. Extensions to the multidimensional vector of n assets are routes
for further research. The methods proposed can be adapted to examine the
n−homogeneity of the conditional correlation of the cross-section of assets when
n is large in the context of M-GARCH-CCC models, in a similar way to Horváth,
Kokoszka and Steinebach (1999) for the mean of n-dependent observations. In ad-
dition, the nonparametric testing approach presented here can be complemented
with parametric methods for identifying the different sources of structural change
in the variance-covariance dynamics. Further research in a system of conditional
covariance equations for testing change-points is a useful extension of the present
analysis.
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