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Abstract: Continuous-time models play a central role in the modern theoretical

finance literature, while discrete-time models are often used in the empirical fi-

nance literature. The continuous-time models are diffusions governed by stochastic

differential equations. Most of the discrete-time models are autoregressive condi-

tionally heteroscedastic (ARCH) models and stochastic volatility (SV) models. The

discrete-time models are often regarded as discrete approximations of diffusions be-

cause the discrete-time processes weakly converge to the diffusions. It is known that

SV models and multiplicative GARCH models share the same diffusion limits in a

weak-convergence sense. Here we investigate a much stronger convergence notion.

We show that SV models are asymptotically equivalent to their diffusion limits

at the basic frequency of their construction, while multiplicative GARCH models

match to the diffusion limits only for observations singled-out at frequencies lower

than the square root of the basic frequency of construction. These results also

reveal that the structure of the multiplicative GARCH models at frequencies lower

than the square root of the basic frequency no longer obey the GARCH framework

at the observed frequencies. Instead they behave there like the SV models.
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ing, frequency, stochastic differential equation, stochastic volatility.

1. Introduction

Since Black and Scholes (1973) derived the price of a call option under
the assumption that the underlying stock obeys a geometric Brownian motion,
continuous-time models have been central to modern finance theory. Currently,
much of the theoretical development of contingent claims pricing models has been
based on continuous-time models of the sort that can be represented by stochastic
differential equations. Application of various “no arbitrage” conditions is most
easily accomplished via the Itô differential calculus and requires a continuous-
time formulation of the problem. (See Duffie (1992), Hull (1997) and Merton
(1990).)
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In contrast to the stochastic differential equation models so widely used in
theoretical finance, in reality virtually all economic time series data are recorded
only at discrete intervals, and empiricists have favored discrete-time models. The
discrete-time modeling often adopts some stochastic difference equation systems
which capture most of the empirical regularities found in financial time series.
These regularities include leptokurtosis and skewness in the unconditional dis-
tribution of stock returns, volatility clustering, pronounced serial correlation in
squared returns, but little or no serial dependence in the return process itself.
One approach is to express volatility as a deterministic function of lagged residu-
als. Econometric specifications of this form are known as ARCH models and have
achieved widespread popularity in applied empirical research (Bollerslev, Chou
and Kroner (1992), Engle (1982), Engle and Bollerslev (1986) and Gouriéroux
(1997)). Alternatively, volatility may be modeled as an unobserved component
following some latent stochastic process, such as an autoregression. Models of
this kind are known as stochastic volatility (SV) models (Jacquier, Polson and
Rossi (1994)).

Historically the literature on discrete-time and continuous-time models devel-
oped quite independently. Interest in models with stochastic volatility dates back
to the early 1970s. Stochastic volatility models naturally arise as discrete approx-
imations to various diffusion processes of interest in the continuous-time asset-
pricing literature (Hull and White (1987), Jacquier, Polson and Rossi (1994)).
The ARCH modeling idea was introduced in 1982 by Robert Engle. Since then,
hundreds of research papers applying this modeling strategy to financial time se-
ries data have been published, and empirical work with financial time series has
been mostly dominated by variants of the ARCH model. Nelson (1990) and Duan
(1997) established the link between GARCH models and diffusions by deriving
diffusion limits for GARCH processes. Although ARCH modeling was proposed
as statistical models, and is often viewed as an approximation or a filter tool
for diffusion processes, GARCH option pricing model has been developed and
shown, via the weak convergence linkage, to be consistent with option pricing
theory based on diffusions (Duan (1995)). However, this relies solely on discrete-
time models as diffusion approximations in the sense of weak convergence. A
precise formulation is described later in this section, and in more detail in Sec-
tion 2.3. In that formulation weak convergence is satisfactory for studying the
limiting distribution of discrete-time models at separated, fixed time points. It
also suffices for studying the distribution of specific linear functionals. Weak
convergence is not adequate for studying asymptotic distributions of more com-
plicated functionals or the joint distributions of observations made at converging
sets of time points. These issues can be studied by treating GARCH models and
their diffusion limits in the statistical paradigm constructed by Le Cam. (See
e.g., Le Cam (1986) and Le Cam and Yang (2000).)
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The diffusion model is a continuous-time model, while SV and GARCH
models are mathematically constructed in discrete time. We consider statisti-
cal equivalence for observations from the SV and GARCH models and discrete
observations from the corresponding diffusion model over a time span at some
frequencies. To describe our results more fully, suppose a process in time inter-
val [0, T ] based on a GARCH or SV model is constructed at ti = (i/n)T , and a
process from the corresponding diffusion model is also discretely observed at ti,
i = 1, . . . , n. Thus, T/n is the basic time interval for the models and φc = n/T

is the corresponding basic frequency. We follow Drost and Nijman (1993) to de-
fine what we mean by low frequency observations. Assume xi, i = 1, . . . , n, are
observations at the basic frequency. The first kind of low frequency observations
are xk �, � = 1, . . . , [n/k], where k is some integer (which may depend on n in
our asymptotic study), [n/k] denotes the integer part of n/k, and for each k,
φ = φc/k = n/(k T ) is defined to be an associated low frequency. The second
kind of low frequency observations are x̄k � =

∑k−1
j=0 xk �−j, � = 1, . . . , [n/k], with

k as before. Drost and Nijman (1993, Section 2) adapted the first kind of low
frequency observations for a stock variable and the second kind of low frequency
observations for a flow variable. The first case catches the intuition that low fre-
quency observations correspond to data singled-out at sparse time points, while
the second case captures the cumulative sum of observations between the spaced-
out time points. This paper will study asymptotic equivalence of the first kind of
low frequency observations from the SV, GARCH and diffusion models at some
suitable frequencies. Asymptotic equivalence in this sense can be interpreted in
several ways. A basic interpretation is that any sequence of statistical proce-
dures for one model has a corresponding asymptotic-equal-performance sequence
for the other model.

We have mainly established asymptotic equivalence for low frequency obser-
vations of the first kind, namely for observations singled out every once a while.
Specifically, we are able to show that for any choice of k, including k = 1, the SV
model and its diffusion limit are asymptotically equivalent, and meanwhile the
low frequency observations of the first kind for the GARCH model are asymptot-
ically equivalent to those for its diffusion limit at frequencies φ = n/(T k) with
n1/2/k → 0. When k = 1, both kinds of low frequency observations coincide
with observations at the basic frequency. Asymptotic equivalence with k = 1
implies that the SV model is asymptotically equivalent to its diffusion limit at
any frequencies up to the basic frequency for either kind of low frequency ob-
servations. For the GARCH model, we show that sparse observations match to
those for the diffusion limit only at frequencies lower than the square root of the
basic frequency. So far we have not succeeded in proving a similar asymptotic
equivalence result for the GARCH model with the second kind of low frequency
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observations. However, we conjecture that the same frequency-based asymptotic
equivalence holds for the second kind of low frequency observations, that is, low
frequency observations of the second kind for the GARCH model match to those
for the diffusion limit at frequencies φ = n/(T k) with n1/2/k → 0.

This paper proves only one part of the whole envisioned picture, but we
believe the techniques involving the hybrid process developed in the proof of
Theorem 2 should be very useful for the aggregation case. Also our proofs are
actually constructed to show that observations at suitable frequencies of SV or
GARCH models asymptotically match in the appropriate distributional sense
to observations at the same frequency of their diffusion limit. This establishes
somewhat more than asymptotic equivalence in the sense of Le Cam’s deficiency
distance. It also shows that on the basis of observations at these frequencies it
is asymptotically impossible to distinguish whether the observations arose from
the SV or GARCH model or the corresponding diffusion model.

Wang (2002) investigated asymptotic equivalence of GARCH and diffusion
models when observed at the basic frequency of construction, i.e., when k = 1.
He showed that these models are not equivalent when observed at that frequency
except in the trivial case where the variance term in the GARCH model is non-
stochastic. At the other extreme, the choice k = εn for some fixed ε corresponds
to observation only at a finite set of time points. In this case a minor elaboration
of the weak convergence results of Nelson (1990) shows that the GARCH and
diffusion models are asymptotically equivalent when observed at such a finite set
of times. These contrasting results provide motivation for studying asymptotic
equivalence for GARCH and SV processes when observed at frequency φ = φc/k

with k → ∞ but k = o(n).
The difference between the equivalence results for the SV models and the

GARCH models is due to the fact that these models employ quite different mech-
anisms to propagate noise in their conditional variances. In the diffusion frame-
work, the conditional variances are governed by an unobservable white noise.
However, the GARCH models use past observations to model their conditional
variances. The SV models employ an unobservable, i.i.d. normal noise to model
their conditional variances, and this closely mimics the diffusion mechanism.
This fact has a twofold implication. First, the close mimicking makes the SV
models asymptotically equivalent to diffusions at all frequencies. Second, the
different noise propagation systems in the GARCH and SV models result in dif-
ferent patterns in equivalence with respect to frequency. It takes much longer
for the GARCH framework to make the innovation process (i.e., the square of
past observation errors) in the conditional variance close to white noise than it
does for the SV models with i.i.d. normal errors. Thus, the GARCH models
are asymptotically equivalent to the diffusion limits only when observed at much
lower frequencies than the SV models.



THE STATISTICAL EQUIVALENCE WITH THE CORRESPONDING DIFFUSION MODEL 997

The paper is organized as follows. Section 2 reviews diffusions, GARCH
and SV models, and illustrates the link of the discrete-time models to diffusions.
Section 3 presents some basic concepts of statistical equivalence and defines what
we mean by equivalence in terms of observational frequency for the GARCH, SV,
and diffusion models. The equivalence results for the SV and GARCH models are
featured in Sections 4 and 5, respectively. Some technical lemmas are collected
in Section 6. Since the GARCH counterpart of an SV model is the multiplicative
GARCH, and the multiplicative GARCH and SV models have the same diffusion
limits, this paper investigates equivalence only for the multiplicative GARCH
models. We believe that the methods and techniques developed in this paper
may be adopted for the study of equivalence of other GARCH models and their
diffusion limits.

2. Financial Models

2.1. Diffusions

Continuous-time financial models frequently assume that a security price St

obeys the stochastic differential equation

dSt = µt St dt + σt St dWt, t ∈ [0, T ], (1)

where Wt is a standard Wiener process, µt is called the drift in probability or
the mean return in finance, and σ2

t is called the diffusion variance in probability
or the (conditional) volatility in finance. The celebrated Black-Scholes model
corresponds to (1) with constants µt = µ and σt = σ.

For continuous-time models, the “no arbitrage” (often labeled in plain En-
glish as “no free lunch”) condition can be elegantly characterized by martingale
measure under which µt = 0 and the discounted price process is a martingale.
Prices of options are then the conditional expectation of a certain functional of
S under this measure. These calculations and derivations can be easily manipu-
lated by tools such as Itô’s lemma and Girsanov’s theorem. (See Duffie (1992),
Hull and White (1987), Karatzas and Shreve (1997) and Merton (1990).)

Many econometric studies have documented that financial time series tend
to be highly heteroskedastic. To accommodate this, one often allows σ2

t to be
random (in place of the assumption that σt = σ) and assumes log σ2

t itself is
governed by another stochastic differential equation. Such σ2

t is called stochastic
volatility.

We will be interested in properties of this continuous time model when ob-
served at regular discrete time intervals. To describe this, divide the time inter-
val [0, T ] into n subintervals of length λn = T/n and set ti = iλn, i = 1, . . . , n.
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There is no loss of generality in assuming T = 1, and we henceforth do so. Then
λn = 1/n.

2.2. Stochastic volatility models

In the general discrete time stochastic volatility model each data point has a
conditional variance which is called volatility. The volatilities are unobservable
and are assumed to be probabilistically generated. The density of the data is
a mixture over the volatility distribution. The widely used stochastic volatility
model assumes that the conditional variance of each incremental observation yi

follows a log-AR(p) process
yi = ρi εi,

log ρ2
i = α0 +

p∑
j=1

αj log ρ2
i−j + αp+1 γi,

where εi and γi are independent standard normal random variables. See Ghy-
sels, Harvey and Renault (1996). This paper deals with SV models with AR(1)
specification only. In accordance with the previous assumption we take T = 1
and λn = 1/n. Redefining the constants to correspond to the diffusion model in
(7) and (8) below we write the model as

yi = ρiεi/
√

n and (2)

log ρ2
i =

β0

n
+
(

1 +
β1

n

)
log ρ2

i−1 + β2
γi√
n

. (3)

Denote by Y0, . . . , Yn the partial sum process of yi, or equivalently, yi =
Yi − Yi−1, i = 1, . . . , n.

2.3. GARCH models

Engle (1982) introduced the ARCH model by setting the conditional vari-
ance, τ2

i , of a series of prediction errors equal to a linear function of lagged errors.
Generalizing ARCH(p), Bollerslev (1986) introduced a linear GARCH specifica-
tion in which τ2

i is an ARMA process with non-negative coefficients and with
past z2

i ’s as the innovation process. Geweke (1986) and Pantula (1986) adopted
a natural device for ensuring that τ2

i remains non-negative, by making log τ2
i

linear in some function of time and lagged zi’s. Then

zi = τiεi and

log τ2
i = α0 +

p∑
j=1

αj log τ2
i−j +

q∑
j=1

αp+j log ε2
i−j ,
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where εi are independent standard normal random variables and the α’s are
constants. This model is often referred to as multiplicative GARCH(p, q)
(MGARCH(p, q)).

In many applications, the MGARCH(1,1) specification has been used and
has been found to be adequate. (See Bollerslev, Chou and Kroner (1992), Engle
(1982), Duan (1997), Engle and Bollerslev (1986) and Gouriéroux (1997).) In the
sequel we treat only the case MGARCH(1,1). There are several other variants
of ARCH and GARCH models. We believe that the methods of this paper could
be successfully applied to many of these variants.

More formally, for i.i.d. standard normal εi, let

c0 = E(log ε2
i ), c1 = {Var (log ε2

i )}1/2, ξi = (log ε2
i − c0)/c1. (4)

Then, suppressing in the notation the dependence on n, let

zi = τi εi/
√

n, (5)

log τ2
i =

β0

n
+
(

1 +
β1

n

)
log τ2

i−1 + β2ξi−1/
√

n. (6)

2.4. Diffusion models

Denote by Z0, . . . , Zn the partial sum process of zi, or equivalently, zi =
Zi−Zi−1, i = 1, . . . , n. A continuous time MGARCH(1,1) approximating process
(Zn,t, τ

2
n,t), t ∈ [0, 1], is given by

Zn,t = Zi, τ2
n,t = τ2

i+1, fort ∈ [ti, ti+1).

Nelson (1990) showed that as n → ∞, the normalized partial sum process of
(εi, ξi) weakly converges to a planar Wiener process and the process (Zn,t, τ

2
n,t)

converges in distribution to the bivariate diffusion process (Xt, σ
2
t ) satisfying

dXt = σt dW1,t t ∈ [0, 1], (7)

d log σ2
t = (β0 + β1 log σ2

t ) dt + β2dW2, t, t ∈ [0, 1], (8)

where W1, t and W2, t are two independent standard Weiner processes. The diffu-
sion model described by (7)−(8) is thus called the diffusion limit of the MGARCH
process. For the diffusion limit, denote its discrete samples at ti by Xi = Xti ,
and define the corresponding difference process by xi = Xi − Xi−1, i = 1, . . . , n.

We assume that the initial values X0 = Y0 = Z0 and σ2
0 = τ2

0 = ρ2
0 are

known constants. Note that xi, yi, zi are the difference processes of Xi, Yi,
Zi, respectively, or Xi, Yi, Zi are the respective partial sum processes of xi, yi,
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zi. Also, we refer to zi as observations from the GARCH model and Zi as the
GARCH approximating process.

3. Statistical Equivalence

3.1. Comparison of experiments

A statistical problem IE consists of a sample space Ω, a suitable σ-field F ,
and a family of distributions Pθ indexed by parameter θ which belongs to some
parameter space Θ, that is, IE = (Ω,F , (Pθ , θ ∈ Θ)).

Consider two statistical experiments with the same parameter space Θ, IEi =
(Ωi,Fi, (Pi,θ, θ ∈ Θ)), i = 1, 2. Denote by A a measurable action space, let
L : Θ×A → [0,∞) be a loss function, and set ‖L‖ = sup{L(θ, a) : θ ∈ Θ, a ∈ A}.
In the ith problem, let δi be a decision procedure and denote by Ri(δi, L, θ) the
risk from using procedure δi when L is the loss function and θ is the true value
of the parameter. Le Cam’s deficiency distance is

∆(IE1, IE2) = max

{
inf
δ1

sup
δ2

sup
θ∈Θ

sup
L:‖L‖=1

|R1(δ1, L, θ) − R2(δ2, L, θ)|,

inf
δ2

sup
δ1

sup
L:‖L‖=1

|R1(δ1, L, θ) − R2(δ2, L, θ)|
}

.

Le Cam (1986) and Le Cam and Yang (2000) provide other useful expressions
for ∆.

Two experiments IE1 and IE2 are called equivalent if ∆(IE1, IE2) = 0. Equiv-
alence means that for every procedure δ1 in problem IE1, there is a procedure δ2

in problem IE2 with the same risk, uniformly over θ ∈ Θ and all L with ‖L‖ = 1,
and vice versa. Two sequences of statistical experiments IEn,1 and IEn,2 are said
to be asymptotically equivalent if ∆(IEn,1, IEn,2) → 0, as n → ∞. Thus for any
sequence of procedures δn,1 in problem IEn,1, there is a sequence of procedures δn,2

in problem IEn,2 with risk differences tending to zero uniformly over θ ∈ Θ and
all L with ‖L‖ = 1, i.e., supθ∈Θ supL:‖L‖=1 |R1(δn,2, L, θ) − R2(δn,2, L, θ)| → 0.
The procedures δn,1 and δn,2 are said to be asymptotically equivalent.

For processes Xi on (Ωi,Fi) with distributions Pθ,i, for convenience we often
write ∆(IE1, IE2) as ∆(X1,X2). Suppose Pθ,i have densities fθ,i with respect
to measure ζ(du). Define L1 distance D(fθ,1, fθ,2) =

∫ |fθ,1(u) − fθ,2(u)| ζ(du).
Then

∆(X1,X2) ≤ sup
θ∈Θ

D(fθ,1, fθ,2). (9)

(See Brown and Low (1996, Theorem 3.1, and previously cited references).)
Hellinger distance H2(fθ,1, fθ,2) = 1

2

∫ |f1/2
θ,1 (u)−f

1/2
θ,2 (u)|2 ζ(du) can easily handle
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measures of product forms, as encountered in the study of independent observa-
tions and some dependent observations. For example,

H2


 m∏

j=1

f1,j,
m∏

j=1

f2,j


 = 1 −

m∏
j=1

[
1 − H2(f1,j, f2,j)

]
≤

m∑
j=1

H2(f1,j , f2,j), (10)

H2(N(0, σ2
1), N(0, σ2

2)) = 1 −
[

2σ1 σ2

σ2
1 + σ2

2

]1/2

≤
(

min(σ2
1 , σ

2
2)

max(σ2
1 , σ

2
2)

− 1

)2

. (11)

See Brown, Cai, Low and Zhang ((2002), Lemma 3) for the final inequality.
We have the following relation between Hellinger distance and L1 distance:

H2(fθ,1, fθ,2) ≤ D(fθ,1, fθ,2) ≤ 2H(fθ,1, fθ,2). (12)

For convenience we also write D(X1,X2) and H(X1,X2) for L1 and Hellinger
distances, respectively.

The above expressions suggest that our proofs of asymptotic equivalence of
two experiments begin by representing the two relevant series of observations on
the same sample space. For example, in Theorem 2 we deal with the first kind
of low frequency observations {xk�}� and {zk�}� for the incremental processes
of diffusion and MGARCH processes observed at frequency φ = n/(k T ), where
k/

√
n → ∞. These have joint densities (fθ,1, fθ,2), say, where the dependence on

n is suppressed in this notation. We prove that D(fθ,1, fθ, 2) → 0 uniformly over
θ ∈ Θ. Hence ∆({xk�}�, {zk�}�) → 0 by (9).

Such a proof also verifies the impossibility of constructing an asymptoti-
cally informative sequence of tests to determine which of the two experiments
produced the observed data. Thus, let δn({wk�}�) be any sequence of tests de-
signed to determine which of the two experiments produced the data. Such
a sequence is asymptotically non-informative at θ to distinguish {xk�}� from
{yk�}� if lim supn→∞ supθ∈Θ Eθ(|δn({xk�}�) − δn({yk�}�)|) = 0. Since we prove
that limn→∞ supθ∈Θ D(fθ,1, fθ, 2) = 0 it follows directly that all sequences δn are
asymptotically non-informative in the above sense.

3.2. MGARCH, SV and diffusion experiments

Let β = (β0, β1, β2) be the vector of parameters for the MGARCH, SV and
diffusion models defined in Section 2, and let the parameter space Θ consist of
βi belonging to bounded intervals.

From Section 2, observations {yi}1≤i≤n from the SV model and observations
{zi}1≤i≤n from the MGARCH model are defined by the stochastic difference
equations (2)−(3) and (4)−(6), respectively, process {xi}1≤i≤n is the difference
process of the discrete samples at ti = i/n, i = 1, . . . , n, of the diffusion process
Xt governed by the stochastic differential equations (7)−(8).
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In Theorem 1 we establish that the SV process {Yi}1≤i≤n and the discrete ver-
sion {Xi}1≤i≤n of the approximating diffusion process are asymptotically equiv-
alent (at the basic frequency). The proof proceeds by examining the incremental
processes {yi}, {xi} and showing these are asymptotically equivalent.

The MGARCH models use past observational errors to propagate their con-
ditional variances, while the diffusion and SV models employ unobservable, white
noise and i.i.d. normal random variables to govern their conditional variances,
respectively. Because of the different noise propagation systems in the condi-
tional variances, Wang (2002) showed that under stochastic volatility, their like-
lihood processes have different asymptotic distributions, and consequently the
two type of models are not asymptotically equivalent. In other words neither
D({xi}1≤i≤n, {zi}1≤i≤n) nor D({yi}1≤i≤n, {zi}1≤i≤n) converge to zero. Thus, at
the basic frequency, MGARCH is not asymptotically equivalent to the other two
models. We study the asymptotic equivalence of the first kind of low frequency
observations for the processes {xi}1≤i≤n, {yi}1≤i≤n and {zi}1≤i≤n. Namely, we
investigate whether the processes {xk�}�, {yk�}�, {zk�}�, � = 1, . . . ,m = [n/k], are
asymptotically equivalent for some integers k, where [n/k] denotes the integer
part of n/k.

For convenience we give a formal definition corresponding to the above no-
tion. For two processes {xi}i and {yi}i, we say that their low frequency ob-
servations, {xk�}� and {yk�}�, of the first kind are asymptotically equivalent at
frequency φ = n/(k T ), if as n → ∞, ∆({xk�}1≤�≤m, {yk�}1≤�≤m) → 0. Similarly,
we say that their low frequency observations of the second kind are asymptotically
equivalent at frequency φ = n/(k T ), if as n → ∞, ∆({x̄k�}1≤�≤m, {ȳk�}1≤�≤m) →
0. From the definition in Section 1, x̄k� and ȳk� are the cumulative sum of xi and
yi for i = k (� − 1) + 1, . . . , k �, respectively, and hence x̄k� = Xk� − Xk(�−1) and
ȳk� = Yk� − Yk(�−1). Therefore, the second kind of low frequency observations
for xi and yi correspond to the difference of the first kind of low frequency ob-
servations for their partial sum processes Xi and Yi, respectively. As a process
is statistically equivalent to its difference process plus initial value, asymptotic
equivalence of low frequency observations of the first kind for X’s and Y ’s is
the same as that of the second kind for their incremental processes x’s and y’s.
Also, for each kind of low frequency observations, if k1 ≤ k2, asymptotic equiv-
alence at frequency φ1 = n/(k1 T ) implies asymptotic equivalence at frequency
φ2 = n/(k2 T ). In particular, asymptotic equivalence at the basic frequency
(i.e., k = 1) implies asymptotic equivalence at any low frequencies of either kind.

4. Equivalence of Diffusions and SV Models

Theorem 1. Let Θ be any bounded subset of {β0, β1, β2}. As n → ∞,
∆({xi}, {yi}) → 0.
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Remark 1. Theorem 1 implies that the SV model is asymptotically equivalent
to its diffusion limit at the basic frequency. This consequently also shows the
asymptotic equivalence of low frequency observations of either kind for the SV
and diffusion models.

Proof. We reserve p and q for the probability densities of processes related to
xi’s and yi’s, respectively. From the structure of the SV process at (2) and (3),
we can easily derive that, conditional on γ = (γ1, . . . , γn), the yi are independent
with yi conditionally following a normal distribution with mean zero and variance
ρ2

i /n. Thus
q(y) = Eq(y|γ), (13)

where q(·|γ) denotes the conditional normal distribution of y given γ. Similarly,
the structure of the diffusion process at (7) and (8) implies that, conditional on
W2, the xi are independent and follow a normal distribution with mean zero and
variance σ̃2

i =
∫ i/n
(i−1)/n σ2

t dt,

p(x) = E(p(x|W2)). (14)

The normal random variables γ and the process W2 can be realized on a
common space by writing γ = γ(W2) where γi = n1/2(W2,ti − W2,ti−1).

Lemma 4 in Section 6 shows that on this space

| log ρ2
i − log σ2

ti | = Op

(
1
n

)
i = 1, . . . , n (15)

uniformly in Θ, i, where ti = i/n.
It follows from (8) that on this space

σ̃2
� =

∫ �/n

(�−1)/n
σ2

t dt = σ2
(�−1)/n

∫ �/n

(�−1)/n

σ2
t

σ2
(�−1)/n

dt

= σ2
(�−1)/n

{∫ �/n

(�−1)/n

[
1 + log(

σ2
t

σ2
(�−1)/n

)

]
dt + O

(
1
n2

)}

= σ2
(�−1)/n

{
1
n

+
β0

n2
+

β1

n2
log σ2

(�−1)/n +
β2

n
(W2,�/n − W2,(�−1)/n) + O

(
1
n2

)}
.

Similarly, (3) implies that on this space

ρ2
� = ρ2

(�−1)/n

{
1
n

+
β0

n2
+

β1

n2
log ρ2

(�−1)/n +
β2

n
(W2,�/n − W2,(�−1)/n)

}
.

It then follows from (15) that(
1 − ρ2

�/n

σ̃2
�

)2

= Op

(
1
n2

)
(16)
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uniformly as in (15).
Now we can denote by EW2 the expectation taken with respect to W2 and

write

D({xi}, {yi}) =
∫

|p(u) − q(u)| du

=
∫

|EW2 (p(u|W2) − q(u|γ(W2)) | du

≤ EW2

∫
|p(u|W2) − q(u|γ(W2))| du

≤ 2EW2H (p(u|W2), q(u|γ(W2)))

= 2EW2H

(
n∏

�=1

N(0, σ̃2
� ),

n∏
�=1

N(0, ρ2
�/n)

)

≤ 2EW2


{ n∑

�=1

(
min(σ̃2

� , ρ
2
�/n)

max(σ̃2
� , ρ

2
�/n)

− 1)2
}1/2




≤ 2EW2

({
n Op

(
1
n2

)}1/2
)

= O

(
1√
n

)
→ 0 as n → ∞. (17)

5. Equivalence of Diffusions and MGARCH Models

Theorem 2. Let Θ be a bounded subset. For any k = n1/2 rn with rn → ∞, we
have ∆({xk�}�, {zk�}�) → 0, as n → ∞.

Remark 2. Theorem 2 shows that for the observations zi from the MGARCH
model (i.e., the increments of the MGARCH approximating process Zi), their low
frequency observations of the first kind are asymptotically equivalent to those for
its diffusion limit at frequencies φ = n1/2/(T rn) for any rn → ∞. Taking rn to
diverge arbitrarily slowly, we have that, although the MGARCH model and its
diffusion limit are not asymptotically equivalent at the basic frequency φc = n/T ,
their low frequency observations of the first kind are asymptotically equivalent
at frequencies lower than the square root of the basic frequency.

Remark 3. We are currently a few steps short of obtaining a similar asymptotic
equivalence result for the MGARCH model with regard to the second kind of low
frequency observations. The heuristic intuition and our insight lead us to believe
that the same frequency-based asymptotic equivalence holds for the second kind
of low frequency observations, that is, the low frequency observations z̄k � of the
second kind from the GARCH model are asymptotically equivalent to x̄k � from
the diffusion limit at frequencies φ = n/(T k) with n1/2/k → 0.
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Remark 4. Comparing Theorems 1 and 2, we see that observations from the
MGARCH model and its diffusion limit start to be asymptotically equivalent
at frequencies much lower than those for the SV model case. This is due to
the noise propagation systems in their conditional variances. The MGARCH
model utilizes past observational errors to model its conditional variance, while
the conditional variance of the SV model is governed by i.i.d. normal random
variables, which are a discrete version of the white noise used by the diffusion
to model its conditional variance. Because of the mimicking of white noise by
i.i.d. normal errors, the SV model is much closer to the diffusion limit than the
MGARCH model. Thus, observations from the SV model can be asymptotically
equivalent to those from the diffusion limit at higher frequencies than those from
the MGARCH model.

Remark 5. The equivalence result in Theorem 2 reveals that the first kind of low
frequency observations from the MGARCH model at frequencies asymptotically
lower than n1/2 are no longer ARCH or GARCH, but instead they behave like a
SV model. This can be explicitly seen from the hybrid process introduced in the
proof of Theorem 2 below. The result is also consistent with Drost and Nijman
(1993, Examples 1 and 3 in Section 3), which showed that for the first kind of low
frequency observations, their GARCH structures begin to break down at some
lower frequencies. More precisely, our result reveals explicitly that the structures
of the MGARCH model at frequencies lower than n1/2 are similar to those of a
SV model.

Proof. Define a hybrid process as follows,

zi = τ̄i εi, i = 1, . . . , n, (18)

log τ̄k �+1 = α0 + α1 log τ̄k �, � = 1, . . . ,m, (19)

and for 1 ≤ i ≤ n and i �= k � + 1 with 1 ≤ � ≤ m,

log τ̄i = α0 + α1 log τ̄i−1 + α2 ξi−1, (20)

where ξi are defined in (4), α0 = β0 λn, α1 = 1 + β1 λn and α2 = β2 λ
1/2
n .

We fix the following convention. Notations h and h are reserved for the prob-
ability densities of processes relating to zi’s and zi’s, respectively, with notations
p and q for these of xi’s and yi’s, respectively.

For convenience, for � = 1, . . . ,m = [n/k], let x∗
� = xk �, y∗� = yk �, z∗� = zk �,

z∗� = zk � and x∗ = (x∗
1, . . . , x

∗
m), y∗ = (y∗1, . . . , y∗m), z∗ = (z∗1 , . . . , z∗m), z∗ =

(z∗1, . . . , z∗m). Let ε = {εi : 1 ≤ i ≤ n, i �= k � � = 1, . . . ,m}, that is, ε consists of
all εi whose index i is not a multiple of k. From the framework of the MGARCH
process at (5) and (6), we see a one-to-one relationship between {z1, . . . , zn} and
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{ε, z∗}, and thus the distribution of z1, . . . , zn is uniquely determined by ε and
z∗, and vice versa. Denote by h(·|ε) the conditional distribution of z∗ given ε.
Then the marginal density of z∗ is given by

h(·) = Eεh(·|ε), (21)

where Eε denotes the expectation taken with respect to ε. Similarly for the
process zi’s at (18)−(20), denote by h(·|ε) the conditional distribution of z∗

given ε. Then
h(·) = Eεh(·|ε). (22)

From the definition of zi given by (18)−(20), the conditional variance of z∗ =
(z∗1, . . . , z∗m) depends only on {zi, 1 ≤ i ≤ n, i �= k �, � = 1, . . . ,m}, or equiva-
lently, ε. Thus, conditional on ε, z∗1, . . . , z∗m are conditionally independent and
have normal distributions with conditional mean zero and conditional variance
τ̄2
k � for z∗� . The process z∗ behaves like an SV process with conditional variances

driven by log normal random variables.
Since D(y∗, z∗) ≤ D(y∗, z∗) + D(z∗, z∗), to prove the theorem we need to

show that D(z∗, z∗) and D(y∗, z∗) both converge to zero for k specified in the
theorem.

First, since both y∗ and z∗ are SV processes, the same arguments to show
(17) in the proof of Theorem 1 lead to

D(y∗, z∗) ≤ 2Eδε


1 −

m∏
�=1

∣∣∣∣∣ 2σk �τ̄k �

σ2
k � + τ̄2

k �

∣∣∣∣∣
1/2

 . (23)

Using Lemmas 1, 7 and 9, and the arguments to prove (17) in the proof of
Theorem 1, we can show that the term inside the expectation in (23) is bounded
by one and has order m Op([n−1/2 log n + k−1/2]2) = Op(k−1 log2 n + n k−2) =
Op(n−1/2 log2 n r−1

n + r−2
n ) = op(1). Now applying the Dominated Convergence

Theorem to the right hand side of (23) proves that D(y∗, z∗) tends to zero.
Second, we show D(z∗, z∗) → 0. From (21) and (22) we have

D(z∗, z∗) =
∫

|h(u) − h(u)| du

=
∫

|Eεh(u|ε) − Eεh(u|ε)| du

≤ Eε

∫
|h(u|ε) − h(u|ε)| du. (24)

Applying successive conditional arguments to the GARCH process zi at (5) and
(6), we see that the joint conditional distribution of z∗ = (z∗1 , . . . , z∗m) given ε is
a product of N(0, τ2

k �), where τ2
k � depends on z∗1 , . . . , z∗�−1 and εi for 1 ≤ i < k �
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and i being not a multiple of k. In comparison, the conditional variance τ̄2
k � of

the SV process z∗� depends on only εi, where 1 ≤ i < k � and i is not a multiple
of k.

Let

M� = log τ2
k � − log τ̄2

k � = α2 α−1
1

�−1∑
l=1

αk �−k l
1 ξk l, (25)

and define events

Ωj,n =

{
sup

1≤�≤j−1
M� ≤ An

}
, j = 2, . . . ,m, (26)

where An is a constant whose value will be specified later, α0 = β0 λn, α1 =
1 + β1 λn and α2 = β2 λ

1/2
n .

Since Ωc
j,n depend on only εi whose distributions are the same under both

models for zi’s (with density h) and zi’s (with density h), applying Lemma 2 we
get ∫

|h(u|ε) − h(u|ε)| du

≤ 2P (Ωc
m,n) +

√
8

{
P (Ωm,n) −

∫
Ωm,n

|h(u|ε)h(u|ε)|1/2 du

}1/2

. (27)

Denote by φ the density of standard normal distribution. Direct calculations and
Lemma 1 show

∫
|φ(um/τk m)φ(um/τ̄k m)|1/2 dum =

∣∣∣∣∣ 2 τk m τ̄k m

τ2
k m + τ̄2

k m

∣∣∣∣∣
1/2

= Υ(τk m/τ̄k m),

where Υ is defined in Lemma 1 in the appendix. Note that Ωm,n does not have
any restriction on z∗m, z∗m or εkm. Thus∫

Ωm,n

|h(u|ε)h(u|ε)|1/2 du

=
∫
Ωm,n

m−1∏
�=1

|φ(u�/τk�)φ(u�/τ̄k�)|1/2du1 · · · dum−1

∫
|φ(um/τkm)φ(um/τ̄km)|1/2dum

=
∫
Ωm,n

m−1∏
�=1

|φ(u�/τk �)φ(u�/τ̄k �)|1/2 du1 · · · dum−1 Υ(τk m/τ̄k m)

≥ Υ(eAn/2)
∫
Ωm,n

m−1∏
�=1

|φ(u�/τk �)φ(u�/τ̄k �)|1/2 du1 · · · dum−1

= Υ(eAn/2)
∫
Ωm−1,n

m−1∏
�=1

|φ(u�/τk �)φ(u�/τ̄k �)|1/2 du1 · · · dum−1
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−Υ(eAn/2)
∫
Ωm−1,n∩[|Mm−1|>An]

m−1∏
�=1

|φ(u�/τk�)φ(u�/τ̄k�)|1/2du1 · · · dum−1, (28)

where the third equation is due to the fact that on Ωm,n, τk m/τ̄k m is bounded
below from e−An and above by eAn . Thus by Lemma 1 (b), Υ(τk m/τ̄k m) is
bounded from below by Υ(eAn/2). The fourth equation is from the fact that
Ωm,n = Ωm−1,n \ [|Mm−1| > An]. However, for the second integral on the right
hand side of (28),

∫
Ωm−1,n∩[|Mm−1|>An]

m−1∏
�=1

|φ(u�/τk �)φ(u�/τ̄k �)|1/2 du1 · · · dum−1

≤
{∫

Ωm−1,n∩[|Mm−1|>An]

m−1∏
�=1

φ(u�/τk �) du1 · · · dum−1

}1/2

{∫
Ωm−1,n∩[|Mm−1|>An]

m−1∏
�=1

φ(u�/τ̄k �) du1 · · · dum−1

}1/2

= P (Ωm−1,n ∩ [|Mm−1| > An]), (29)

where we have used the Cauchy-Schwartz inequality, and the fact that Mm−1

and Ωm−1,n depend on εi whose distributions are the same under both models
for zi and zi. Substituting (29) into (28), and using Υ(eAn/2) ≤ 1 as implied by
Lemma 1, we obtain that∫

Ωm,n

|h(u|ε)h(u|ε)|1/2du

≤ Υ(eAn/2)
∫
Ωm−1,n

m−1∏
�=1

|φ(u�/τk�)φ(u�/τ̄k�)|1/2du1 · · · dum−1

−P (Ωm−1,n ∩ [|Mm−1| > An]).

Repeatedly applying the above procedure to the successive integrals, we get
∫
Ωm,n

|h(u|ε)h(u|ε)|1/2 du ≥
[
Υ(eAn/2)

]m −
m−1∑
j=1

P (Ωj,n ∩ [|Mj | > An])

=
[
Υ(eAn/2)

]m − P

(
sup

1≤�≤m−1
M� > An

)

=
[
Υ(eAn/2)

]m − P (Ωc
m,n). (30)

Plugging (30) into (27) we have∫
|h(u|ε)−h(u|ε)|du ≤ 2P (Ωc

m,n) +
√

8
{
P (Ωm,n)+P (Ωc

m,n)−
[
Υ(eAn/2)

]m}1/2
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= 2P (Ωc
m,n) +

√
8
{
1 −

[
Υ(eAn/2)

]m}1/2

= 2P (Ωc
m,n) +

√
8
{
1 − em log Υ(eAn/2)

}1/2
. (31)

By Lemma 8, P (Ωc
m,n) ≤ Cm/(nA2

n), and from Lemma 1, {1− em log Υ(eAn/2)}1/2

∼ m1/2 An/2. Substituting these two results into (31) and taking An ∼ n−1/3m1/6

= n−1/4r
−1/6
n , we obtain that for some generic constant C1,

∫ |h(u|ε)−h(u|ε)|du
≤ C1r

−2/3
n → 0. Finally, applying the Dominated Convergence Theorem to the

right hand side of (24) proves that D(z∗, z∗) converges to zero. This completes
the proof.

6. Technical Lemmas

Lemma 1. Let Υ(x) = |2x/(1 + x2)|1/2, x ∈ [0,∞). Then

(a) 0 ≤ Υ(0) ≤ 1, Υ(0) = Υ(∞) = 0, and Υ(x) is increasing for x < 1 and
decreasing for x > 1.

(b) For any a > 0, sup{Υ(x) : e−a ≤ x ≤ ea} ≥ |2 ea/(1 + e2 a)|1/2.

(c) As a → 0, log Υ(ea) = log |1 − (ea − 1)2/(1 + e2 a)|1/2 ∼ −(ea − 1)2/4 ∼
−a2/4.

Lemma 1 can be easily verified by direct calculations.

Lemma 2. For any A, we have

D(f, g) ≤ Pf (Ac) + Pg(Ac) +
√

8
{

Pf (A) + Pg(A)
2

−
∫

A
|f(u) g(u)|1/2 du

}1/2

,

where Pf and Pg denote the probability measures with densities f and g, respec-
tively.

Proof.

D(f, g)

= Pf (Ac) + Pg(Ac) +
∫

A
|f1/2(u) − g1/2(u)| |f1/2(u) + g1/2(u)|du

≤ Pf (Ac) + Pg(Ac) +
{∫

A
|f1/2(u)−g1/2(u)|2du

∫
A
|f1/2(u)+g1/2(u)|2du

}1/2

≤ Pf (Ac) + Pg(Ac) + 2
{∫

A
|f1/2(u) − g1/2(u)|2du

}1/2

= Pf (Ac) + Pg(Ac) +
√

8
{

Pf (A) + Pg(A)
2

−
∫

A
|f(u)g(u)|1/2du

}1/2

.
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Lemma 3. We have

log σ2
t = eβ1 t

{
log σ2

0 + β2

∫ t

0
e−β1 sdW2,s +

β0

β1
(1 − e−β1t)

}
, (32)

log ρ2
i = αi

1 log σ2
0 + β2 α−1

1

i∑
j=1

αi−j
1 γj/

√
n + α0 α−1

1

i∑
j=1

αi−j
1 , (33)

where σ2
t and ρ2

i are the respective conditional variances of the diffusion process
at (7) and (8) and the SV process at (2) and (3), here α0 = β0 /n, α1 = 1+β1 /n.

Proof. For σ2
t , applying Itô lemma (Ikeda and Watanabe (1989), Karatzas and

Shreve (1997)) to the process given by the lemma, we have

d log σ2
t = β1 eβ1 t dt

{
log σ2

0 + β2

∫ t

0
e−β1 s dW2,s + β0

∫ t

0
e−β1 s ds

}

+ eβ1 t
{
β2e

−β1 t dW2,t + β0e
−β1 t dt

}
= (β0 + β1 log σ2

t ) dt + β2 dW2,t.

Thus, log σ2
t given in (32) is the solution of (8).

We can verify the expression for ρ2
i by applying (3) recursively or by an

inductive argument. In fact, for i = 1, (3) and (33) agree. And, substituting (33)
for i − 1 into (3) yields

log ρ2
i = α0 + α1


αi−1

1 log σ2
0 + β2α

−1
1

i−1∑
j=1

αi−j
1 γj/

√
n + α0α

−1
1

i−1∑
j=1

αi−j




+α2γi/
√

n

= α0α
−1
1

i∑
j=1

αi−j + αi
1 log σ2

0 + α2α
−1
1

i∑
j=1

αi−j
1 γj/

√
n,

as desired.

Lemma 4. Let ti = i/n, i = 1, . . . . Then sup1≤i≤n | log ρ2
i − log σ2

ti | = Op(n−1).

Proof. Evaluate (33) in terms of β0, β1 and evaluate sums to get

log ρ2
i =eβ1i/n


log σ2

0 +
β0

β1
(1−e−β1i/n)+β2

∑
j

[
e−β1j/n+O

(
1
n

)]
γj√
n


+ O

(
1
n

)

with the O(n−1) terms being uniform over Θ, i, j. Now, as employed in the proof
of Theorem 1, let

γj√
n

= W2,j/n − W2,(j−1)/n =
∫ j/n

(j−1)/n
dW2,s.
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Then the expression for log ρ2
i can be rewritten as

log ρ2
i = eβ1ti

{
log ρ2

0 +
β0

β1
(1 − e−β1ti) + β2

∫ t

0

(
e−β1 + O

(
1
n

))
dW2,s

}
+O

(
1
n

)
.

Comparing this to (32) completes the proof of the lemma since supt |
∫ t
0 h(s)dW2,s|

= Op(1) for any bounded function h.

Lemma 5. sup1≤i≤n | log σ2
i − log σ̄2

i | = Op(n−1/2 log1/2 n), where σ̄2
i = σ̄2

ti =
n−1

∫ ti
ti−1

σ2
u du.

Proof. First we show that for t = ti,

σ̄2
t = σ2

t

∫ 1

0
exp

(
−β2 λ1/2

n

∫ u

0
eβ1 v dW̃2,v

)
du + Op(n−1), (34)

where λn = 1/n, and W̃2,u = λ
−1/2
n (W2,t − W2,t−λn u) is the rescaled Brownian

motion. From the definition of σ̄2 and the expression of σ2
t given in Lemma 3 we

have

σ̄2
t =

∫ 1

0
σ2

t−λn u du

=
∫ 1

0
exp

(
e−β1λnu log σ2

t − eβ1(t−λnu)
{
β2

∫ t

t−λnu
e−β1hdW2,h

+β0

∫ t

t−λn u
e−β1 h dh

})
du

= σ2
t

∫ 1

0
exp

(
−e−β1λnu

{
β2λ

1/2
n

∫ u

0
eβ1vdW̃2,v + β0λn

∫ u

0
eβ1vdv

})
du + Op(λn)

= σ2
t

∫ 1

0
exp

(
−β2 λ1/2

n

∫ u

0
eβ1 v dW̃2,v

)
du + Op(λn).

As W̃2 is a Brownian motion,
∫ u
0 eβ1 v d W̃ 2, v is normally distributed

with mean zero and variance
∫ u
0 e 2 β1 v d v = (2β1 )−1 ( e 2 β1 u − 1 ). Thus,∫ 1

0 exp(−β2λ
1/2
n
∫ u
0 eβ1vdW̃2,v)du is of order 1 + Op(n−1/2). Combing this result

with (34) we obtain σ̄2
t = σ2

t {1 + Op(n−1/2)}+ Op(n−1) = σ2
t + Op(n−1/2). Now

the lemma is a direct consequence of the above relation and Lemma 4.

Lemma 6. We have

log τ2
i = αi−1

1 log τ0 + α2 α−1
1

i−1∑
j=1

αi−j
1 ξj + α0 α−1

1

i−1∑
j=1

αi−j
1 ,

log τ̄2
i = αi−1

1 log τ0 + α2 α−1
1

i−1∑
j=1,j �=k�

αi−j
1 ξj + α0 α−1

1

i−1∑
j=1

αi−j
1 .
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where τ2
i and τ̄2

i are the respective conditional variances of the MGARCH process
at (5) and (6) and the hybrid process given by (18)−(20), α0 = β0 λn, α1 =
1 + β1 λn and α2 = β2 λ

1/2
n .

Proof. The expressions for τ2
i and τ̄2

i can be easily obtained by recursively
applying (6) and (19)−(20), respectively.

Lemma 7. sup1≤i≤n | log σ2
i − log τ2

i | = Op(n−1/2 log n).

Proof. Applying KMT’s strong approximation to the partial sum process of δi

in the formula for log σ2
i given by Lemma 3 and the partial sum process of ξi in

the expression for log τ2
i in Lemma 6, we can show sup1≤i≤n | log σ2

i − log τ2
i | =

Op(n−1/2 log n).

Lemma 8. P (Ωc
m,n) ≤ C m/(n A2

n), where C is a generic constant, and M� and
Ωj,n are defined in (25) and (26), respectively.

Proof. From the definition of M� in (25) we have M� = log τ2
k � − log τ̄2

k � =
α2 α−1

1

∑�−1
l=1 αk �−k l

1 ξk l and Ωj,n = [sup1≤�≤j−1 M� ≤ An], where α0 = β0 λn,

α1 = 1 + β1 λn, α2 = β2 λ
1/2
n , and ξk � are i.i.d. Direct calculations show that, for

� = 1, . . . ,m, E(M2
� ) = α2

2 α−2
1

∑�−1
l=1 α

2 k (�−l)
1 E(ξ2

k l) = Cα2
2 α−2

1

∑�−1
l=1 α

2 k (�−l)
1 ≤

C/k = Cm/n. Now the lemma is a direct application of the Kolomogorov in-
equality.

Lemma 9. sup1≤�≤m | log τ2
k � − log τ̄2

k �| = Op(k−1/2).

Proof. Taking An = B k−1/2 in Lemma 8 we get P (sup1≤�≤m M� > B k−1/2) ≤
[(C m k)/(n B2)] = C/B2. We complete the proof by letting B → ∞.
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