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Abstract: In the finance literature, cross-sectional dependence in extreme returns
of risky assets is often modelled implicitly assuming an asymptotically dependent
structure. If the true dependence structure is asymptotically independent then
current modelling approaches will lead to an over-estimation of the risk of simul-
taneous extreme events. We use two simple nonparametric measures to identify
and quantify the tail dependence among stock returns in five international stock
markets. We show that there is strong evidence in favour of asymptotically inde-
pendent models for the tail structure of stock market returns, and that most of
the extremal dependence is due to heteroskedasticity in stock returns processes.
Using a range of volatility filters, we find that tail index and tail dependence can
be partially captured by models for heteroskedasticity. We find there is no clear
reason to prefer one volatility filter over another.
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1. Introduction

Estimating dependence between risky asset returns is the cornerstone of
portfolio theory and many other finance applications such as hedging, credit
spread analysis, valuation of exotic options written on more than one asset, and
risk management in general. The conventional dependence measure, Pearson
correlation, though widely used is appropriate only for linear association. Since
it is constructed as an average of deviations from the mean, the weight given to
extreme realizations is the same as for all of the other observations in the sample.
If the dependence characteristics for extreme realizations differs from all others
in the sample, the conclusions drawn from the Pearson correlation could result
in a financial institution risking bankruptcy. The Pearson correlation is not a
good measure of dependency in cases where extreme realizations are important.

As an alternative to the traditional approach, it is possible to draw on sta-
tistical developments in extreme value theory (evt). Even though earlier applica-
tions of this field are widespread in the engineering literature, only more recently
has it been brought to finance. Most applications are univariate. Jansen and de
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Vries (1991) show that the crash of 19th October 1987 may not be an isolated
event. Loretan and Phillips (1994) use evt to study the existence of moments of
financial returns, and Longin (1996) shows that the tails of stock market returns
belong to the Fréchet class. Embrechts, Kliippelberg and Mikosch (1997) pro-
vide a summary of general evt results and comprehensive references. Diebold,
Schuerman and Stroughair (1998) sketch a number of pitfalls associated with the
application of evt techniques to financial data. They emphasize the role of small
samples and the dependency of financial data, especially considering volatility.
Kearns and Pagan (1997) show that standard errors of the tail index, that are not
robust against dependency of the underlying data, may be too small. There ex-
ist some contributions, such as Harvey and Siddique (1999) and Rockinger and
Jondeau (2002), where asset prices are modelled within a GARCH framework
based on conditional skewness and kurtosis in addition to conditional variance.
This approach may be viewed as an alternative to evt. While the number of uni-
variate contributions increases steadily, multivariate finance applications are also
beginning to appear. Longin and Solnik (2000) explore the use of multivariate
extreme value methods for stock market returns, which Longin (2000) uses to
demonstrate how VaR of a position can be derived. Starica (2000) finds a high
level of dependence between the extreme movements of most of the currencies in
the EU. Marsh and Wagner (2000) find extremal dependence between stock re-
turns and trading volume among equity markets. Hartmann, Straetmans and de
Vries (2000) find co-crashes between stock and bond markets and some evidence
of cross-border linkages for extreme events.

We draw attention to a pitfall that arises in the estimation of cross-sectional
dependence among extreme returns and provide a remedy for this. The prob-
lems arise from the fact that there are two classes of extreme value dependence,
asymptotic dependence and asymptotic independence, for which the characteris-
tics of events behave quite differently as the events become more extreme. Both
forms of extremal dependence permit dependence between moderately large val-
ues of each variable, but the very largest values from each variable can occur
together only when the variables exhibit asymptotic dependence. To illustrate
this, Figure 1 presents scatter-plots of 1,000 daily stock market returns in the
US against those in Japan, and those of Germany against France. The depen-
dence for the German-French stock market returns is persistent for both positive
and negative extremes, which is indicative of the variables being asymptotically
dependent. In contrast, the extremal dependence between US and Japanese
stock market returns is much weaker although the largest values in each tail for
one variable coincide with moderately large values of the same sign for the other
variable, suggesting the variables are asymptotically independent but not exactly
independent.



Japanese stock market returns on Nikkei 225

French stock returns on CAC 40

Figure 1. Scatter plot of 1,000 pairs of daily returns on selected stock market
indices for the period December 19th, 1995 to May 31st, 2000.
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Conventional multivariate extreme value theory has emphasized the asymp-
totically dependent class resulting in its wide use in all the finance applications
listed above. If the series are truly asymptotically independent, such an approach
will result in the over-estimation of extreme value dependence, and consequently
of the financial risk. The degree of this over-estimation depends on the degree of
asymptotic independence. Despite this potential for bias, the case for asymptot-

ically independent models has so far been missing from the finance literature.

In this paper and a companion paper (Poon, Rockinger and Tawn (2003)),
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we use techniques developed by Ledford and Tawn (1997) and Coles, Heffernan
and Tawn (1999) to distinguish between asymptotically dependent and asymp-
totically independent variables, and to quantify the degree of dependence for
the appropriate dependence class. Here we document the effect of heteroskedas-
ticity on the tail index and tail dependence among international stock market
returns, and we examine the effect of volatility filtering on tail estimates. Fi-
nally we demonstrate, using a nonparametric approach, how portfolio risk may
be assessed. We refer the readers to our companion paper for the parametric
setting. In contrast with the parametric approach, the non-parametric approach
is less precise, but it does not require any assumption on the functional form of
the joint tail distribution. We view the two approaches as complementary.

Using daily returns on five stock indices (viz. S&P, FTSE, DAX, CAC and
Nikkei) over a 31.5-year period from December 26th, 1968 to May 31st, 2000, we
find left-tail dependence to be usually stronger than right-tail dependence. In
addition, we demonstrate that many of these stock index returns do not exhibit
asymptotic dependence, suggesting that much of the extreme value dependence
reported in previous studies is likely to be over-estimated. With the use of
volatility filters, we find that most of the extreme value dependence is caused
by changing stock market volatility, but detect little difference in the results
produced by the three volatility filters. Using the US and Japanese stock return
pair as an example, we show how an erroneous assumption of asymptotic tail
dependence could lead to portfolio risk being overestimated.

The remaining sections are organized as follows: Section 2 briefly describes
univariate extreme value theory and recent developments in the measurement
of dependence in multivariate extreme values. Section 3 describes the empirical
analyses, which include a description of the data sources and a report of empirical
findings. Section 4 provides a brief discussion on how the concepts underpinning
the measures for extreme value dependence can be made into useful portfolio
management tools. Section 5 offers conclusions.

2. Extreme Value Theory and Extremal Dependence

To assess the financial risk of a portfolio using Extreme Value Theory, the
complete joint distribution of the various assets during periods of great turmoil
needs to be estimated. This involves estimating the marginal distributions and
the dependence structure. We focus on dependence estimation in the bivariate
context, though the ideas and techniques extend naturally to higher dimensions.
In the first subsection below, we briefly describe univariate extreme value meth-
ods as they are used both to determine the marginal distributions and to provide
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the inference techniques for the dependence measures described in the second
subsection.

2.1. Univariate methods

There is a long history, and a large associated literature, on probability
characterizations and statistical models for univariate extremes. The numerous
approaches by which extreme values may be statistically modelled come in two
forms: methods for maxima over fixed intervals, and methods for exceedances
over high thresholds. We outline the fundamental aspects of each method. Fur-
ther details can be found in Embrechts, Kliippelberg and Mikosch (1997) and
Reiss and Thomas (1997).

The limit theory for the maximum of a sample of n independent and iden-
tically distributed random variables is based on a location-scale normalization
of the maximum so that its distribution is non-degenerate as n — oco. Provided
a non-degenerate limit can be achieved, the limit distribution of the maximum
must be the Gumbel, the Fréchet or the negative Weibull distributions. The
generalized extreme value distribution (GEV) is a unifying model that encom-
passes these three types of extreme value distributions. It has three parameters,
u, o and &, denoting the location, scale and shape parameters respectively. The
shape parameter, &, also called the tail index, determines the three extreme value
types. Specifically, when & takes negative values, positive values or 0, the GEV
distribution is the negative Weibull, the Fréchet or the Gumbel distribution, re-
spectively. For example, if the original variables follow a normal distribution
then a Gumbel distribution will result for the maximum. Similarly, the Fréchet
(negative Weibull) distributions arise as the distribution of the maximum for
variables with heavier (lighter) tails than the normal. There is now a growing
consensus that many financial series have heavy tails (see for example, Loretan
and Phillips (1994)), so the Fréchet distribution is to be expected.

When observations on all exceedances of a high threshold are available, then
using only fixed interval maximum values is inefficient as this may exclude large
observations from the analysis. The appropriate limit theory in this context is one
based on a point process result of Pickands (1971), which has been advocated
for statistical modelling by Smith (1989). The limit result suggests modelling
exceedances of a high threshold by a non-homogeneous Poisson process. A con-
sequence of this model is that the excess values over the threshold follow the
generalized Pareto distribution (GPD) and that maximum values are modelled
by the generalized extreme value distribution, both distributions having a com-
mon shape parameter £. The GPD model, advocated by Pickands (1975) and
Davison and Smith (1990), provides a flexible family of tail behaviours, with
& = 0 corresponding to the exponential distribution. A key modelling aspect
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with threshold methods is the selection of the threshold. A number of diagnos-
tic techniques exist for threshold selection, including a bootstrap method which
produces an optimal value that minimizes the empirical mean square errors of
the tail index (Danielsson and de Vries (1997)). The critical aspect of threshold
selection is that inferences should be insensitive to increases in threshold above
the optimal level.

For the subsequent dependence measures we introduce a special example of
threshold modelling linked to the generalized Pareto distribution for the case
where £ > 0, i.e., Fréchet tail. In this case the tail of the variable Z above a high
threshold u can be approximated as

L(z)
G

Pr(Z > z) ~ for z > wu, (1)
where L£(z) is a slowly varying function of z (see Embrechts, Kliippelberg and
Mikosch (1997, p.325). Treating the slowly varying function as a constant for
all z > u, say £(z) = ¢, and under the assumption of independent observations,
the maximum likelihood estimators for &, known as Hill’s estimator (Hill (1975)),

and c are
~ 1 T 20
E= 3 o (7)., &)
(Tt u
o M, 176 3
o=, 3)
where 2(1),...,2(p,) are the n, observations of variable Z that exceed w.

The above discussion applies to independent variables. When the variables
are dependent, the statistical approaches for analyzing maxima are unchanged as
the limit distribution of the maximum is also a generalized extreme value distri-
bution. Unlike the maximum over intervals method, temporal dependence due to
the use of threshold method adds some complications. Ignoring the dependence
and applying the methods as if the data were independent will lead to unbi-
ased estimators but with standard errors that are too small (Kearns and Pagan
(1997)). Several approaches may be used to overcome this problem: decluster-
ing of the exceedances of the threshold to produce approximately independent
data (see Davison and Smith (1990)), or adjusting the standard error within a
maximum likelihood framework (see Coles and Walshaw (1994)).

In this paper, the standard errors of the parameters of the marginal and
joint tails are evaluated under the assumption of independence over time. To as-
sess the validity of this assumption we use the reciprocal of the extremal index,
the standard measure of clustering of extreme values in univariate stationary
time series, to estimate the average size of clusters of extreme values (see Smith
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and Weissman (1994)). Small average cluster sizes are found, typically 1.2 ob-
servations for the raw series and 1.1 for the filtered and squared filtered series.
Consequently, the effect of ignoring temporal dependence on the standard errors
used in this paper is likely to be minimal.

2.2. Measuring extreme value dependence

Much effort has been made to extend univariate extreme value theory for
applications in a multivariate context. In almost all multivariate studies, it is
helpful to remove the influence of marginal aspects first by transforming the orig-
inal variables to a common marginal distribution. After such a transformation,
differences in distributions are purely due to dependence aspects. Hence our de-
pendence measures, unlike correlation, are no longer influenced by the form of
the marginal distribution. For a further discussion of this issue, see Embrechts,
McNeil and Strautman (2002). In this spirit, we transform the bivariate returns
(X,Y) to unit Fréchet marginals (S,T') using the transformation

S=-1/log Fx(X) and T = —1/log Fy (Y), (4)

where F'x and Fy are the respective marginal distribution functions for X and Y.
Consequently, Pr(S > s) = Pr(T > s) ~ s! as s — oo, and (9,T) possess the
same dependence structure as (X,Y’). In practice, the values of Fx and Fy that
are used in the transformation (Hl) are obtained using the empirical distribution
functions of the separate variables.

2.2.1. The conventional approach

To understand extremal dependence, one must first appreciate that the form
and degree of such dependence determine the chance of obtaining large values of
both variables. As S and 7' are on a common scale, events of the form {S > s}
and {T" > s}, for large values of s, correspond to equally extreme events for each
variable. As all such probabilities will tend to zero as s — oo it is natural to
consider conditional probabilities of one variable given that the other is extreme.
Specifically, consider the behaviour of Pr(T" > s|S > s) for large s. If (S,T) are
perfectly dependent then Pr(T > s|S > s) = 1. In contrast, if (S,T) are ezactly
independent then Pr(T > s|S > s) = Pr(T > s), which tends to 0 as s — oo. If

X:Sli_>11010P1r(T>s|S>s)7 (5)

0 < x < 1, we say that variables are asymptotically dependent if x > 0 and
asymptotically independent if x = 0. Clearly x measures the degree of dependence
that persists to the limit. An example of a non-trivial asymptotically dependent
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joint distribution is the logistic model in the bivariate extreme value family, see
Tawn (1988) and Longin and Solnik (2000), which for unit Fréchet margins has

Pr(S < s,T <t)=exp{—(s~ /4t 1)} (6)

with 0 < a < 1. When a = 1, the variables are exactly independent and x = 0.
When a < 1, x = 2 — 2% and the variables are asymptotically dependent to a
degree depending on «. Generally, when xy = 0 the two random variables are
not necessarily exactly independent. For example, if the dependence structure
is that of a bivariate normal random variable with any value for the correlation
coefficient less than one, then y = 0 (Sibuya (1960)).

When exact independence is rejected, traditional multivariate extreme value
methods assume Pr(T > s|S > s) = x > 0 for all large s. See for example de
Haan (1985), de Haan and de Ronde (1998) and Coles and Tawn (1991, 1994). If
the true distribution of the variables is asymptotically independent, the use of the
traditional multivariate extreme value methods will over-estimate Pr(S > s, 7 >
s) and all other probabilities of joint extreme events since Pr(T > s|S > s) — 0
as s — 00. The degree of bias will depend on the difference between the estimated
x and the true value of Pr(T" > s|S > s), which is determined by the value of s
and the rate at which Pr(7" > s|S > s) — 0 as s — oc.

2.2.2. An alternative measure of dependence

More recently, Ledford and Tawn (1996, 1997), Bruun and Tawn (1998),
Bortot and Tawn (1998) have provided a range of extremal dependence models,
derived from a different form of multivariate limit theory, that describe depen-
dence but have y = 0. Although the random variables are asymptotically in-
dependent in this case, different degrees of dependence are attainable at finite
levels of s. Based on these studies, Coles, Heffernan and Tawn (1999) suggest

that
— 2log Pr(S > s)
Y = lim

s—oo log Pr(S > s,T > s)

- 17 (7)

—1 < ¥ <1, is an appropriate measure of asymptotic independence as it gives
the rate that Pr(7" > s|S > s) — 0. Values of ¥ > 0, X = 0 and ¥ < 0 loosely
correspond, respectively, to when (S, T) are positively associated in the extremes,
exactly independent, and negatively associated. For the bivariate normal depen-
dence structure Y is the correlation coefficient. For other examples see Heffernan
(2000).

The pair of dependence measures (x,%) together provide all the necessary
information to characterise the form and degree of extremal dependence. For
asymptotically dependent variables ¥ = 1 with the degree of dependence given
by x > 0. For asymptotically independent variables x = 0 with the degree of
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dependence given by X. It is important to test if ¥ = 1 first before drawing
conclusions about asymptotic dependence based on estimates of .

2.3. X¥ and x: Estimation and statistical inference

For estimating ¥ and x, weak assumptions are required (the first three of
which are essentially the same as those required when estimating the univariate
tail behaviour by extreme value models): (i) the joint distribution (S,7’) has a
joint tail behaviour that is bivariate regularly varying, satisfying the conditions of
Ledford and Tawn (1998)—counter examples to this form are given by Schlather
(2001); (ii) both % and x are limit properties, so it is necessary to assume that
the sample characteristics of the empirical joint distribution, above some selected
threshold, reflect the limiting behaviour; (iii) the series has sufficient indepen-
dence over time for the sample characteristics to converge to the population char-
acteristics ¥ and x; (iv) the marginal variables can be transformed to identically
distributed Fréchet variables.

With the above assumptions, we use results in Ledford and Tawn (1996,
1997, 1998) to estimate X and x, where it was established that, under weak
conditions,

Pr(S > s,T > s) ~ L(s)s /" as s — 00, (8)

0 < n < 1is a constant and L(s) is a slowly varying function. From this
representation it follows that
X =2n-1 (9)

and that if ¥ = 1, corresponding to 7 = 1, then y = limg_. £(s). Thus estimat-
ing n and lim,_. £(s) provide the basis for estimating y and . There is the
possibility that n = 1 and £(s) — 0 as s — oo leading to asymptotic indepen-
dence. This boundary case cannot be identified from data as the slowly varying
function cannot be identified other than as a constant, and misspecification of
the dependence structure in this situation is unlikely to be important. Thus, we
focus on inference for 1 and lims_,o, £(s), treating the slowly varying function as
constant over some threshold u, i.e. £(s) =d for s > u.

Inference follows using univariate extreme value techniques by noting that if
Z =min(S,T),

Pr(Z>z) = Pr{min(S,T) >z} = Pr(§>2,T>z) = L(z)z" /" = dz"/"
for z > u, (10)

for some high threshold uw. From this representation and the univariate tail form
(@, it can be seen that 7 is the tail index of the univariate variable Z, and so can
be easily estimated using the Hill estimator from (2]), truncated to the interval
(0,1], and that d is the associated scale parameter which can be estimated as at

@).
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The following development is based on the assumption of independent ob-
servations on Z to obtain our estimator for :

i:n% (ilog (%)) _1, (11)

Var (X) = (X +1)* /nu, (12)

with the notation as in equations (2)) and (B]), and the asymptotically normality
of X ensured by results in Smith (1987). IfY is significantly less than 1 (i.e., if ¥+

1.961/Var (X) < 1) then we infer the variables to be asymptotically independent
and take xy = 0. Only if there is no significant evidence to reject ¥ = 1 do
we estimate y, which we do under the assumption that ¥ = n = 1. Using the
maximum likelihood estimator given by (B)) and under the constraint X =1, our
estimator of y is

UTy
X = 13
X=- (13)
. wng(n—ny
Var (X) = —(n3 ) (14)

Furthermore, we can assess whether the variables have a joint tail which decays
with the same form as for exact independence by testing if ¥ is significantly
different from 0.

3. Empirical Analyses

Our data consists of closing stock index levels of S&P 500 from the US, FTSE
100 from the UK, DAX 30 from Germany, CAC 40 from France and Nikkei 225
from Japan. Our sample period spans from December 26th, 1968 to May 31st,
2000, giving rise to 8,200 daily return observations for each series. Three of
the indices (viz. S&P, FTSE and CAC) were created by grafting two returns
series from the same country. For example, the UK returns are represented
by the FT All Shares returns before 1st January 1980 and FTSE returns after
that date. Daily index returns are generated by taking first differences of the
logarithmic indices. Although some of the returns series do not include the
dividend distribution, dividends do not generate extreme movements so this is
not a problem for our analysis.

It has been widely documented elsewhere that the US market has, by far, the
greatest influence on all the other stock markets (see, for example, Martens and
Poon (2001)). The US market is also the latest to close on a calendar day among
the five stock markets in our sample. This means that any extreme movements
in the US stock market are likely to impact on the other stock markets on the
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following day. As a result, contemporaneous day observations will underestimate
the dependence between US and other stock markets. To overcome this problem,
we adopt the synchronization procedures in Martens and Poon (2001), where the
dependence measure is calculated between the non-US returns and a weighted
sum of today’s and yesterday’s US returns. The weights are derived by opti-
mizing this dependence measure. However, we find that the results reported in
the following sections are not sensitive to the synchronization procedure or the
weighting scheme adopted. This is because extreme returns tend to cluster and
extremes have equal chances of originating from the US and outside the US.

Zero returns due to holidays may cause estimators to be biased. It turns
out that when the focus is on the tails of the distribution, there is no difference
whether one removes the zero returns or not. Nevertheless, for the analyses in
the following sections, we have removed all zero returns in all univariate models.
In the bivariate case, both observations of a particular day are removed if at least
one of the two observations is a zero return.

3.1. Descriptive statistics

Table 1 presents some summary statistics for the five stock index returns.
The mean, variance, skewness and excess kurtosis statistics, computed using
Richardson and Smith (1993) generalized method of moment procedures, are
robustness against heteroskedasticity. The average for the five mean returns is
0.033% (or 8.5% per annum) excluding dividends. All five returns series have a
negative skewness, which means that extreme negative returns are a dominant
feature for all five indices. Excess kurtosis is significantly greater than zero for all
series. The excess kurtosis for US stock returns is particularly high, suggesting
Fréchet type tails for US stock returns distribution.

The Engle(1) statistic is large and highly significant, indicating strong het-
eroskedasticity for all five stock returns series. The Portmanteau test for stock
returns autocorrelation among the first five lags, Q(5), is reported in Table 1.
Due to the presence of strong heteroskedasticity, the standard errors and the as-
sociated p-values are computed following Hansen (1982) and Nicholls and Pagan
(1983). The null hypothesis of no autocorrelation is rejected for UK, Germany
and France, and is marginally rejected for the US returns. This suggests returns
series are autocorrelated, which may affect the degree of dependence across series.
For this reason, we fit an autoregressive filter to all stock returns.

Table 2 presents descriptive statistics for returns that are filtered for auto-
correlation and those that are filtered for heteroskedasticity in addition. Three
volatility filters were used to remove heteroskedasticity: AGARCH is an asym-
metric version of GARCH; ADC is the Asymmetric Dynamic Covariance model in
Kroner and Ng (1998), which is a multivariate GARCH model; SV is the stochas-
tic volatility model in Kim, Shephard and Chib (1998). Detail specifications of
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the volatility filters are presented in the Appendix. ADC filtered residuals were
derived by fitting a bivariate ADC model to US and UK returns. The filtered
residuals for German, French and Japanese stock returns come, respectively, from
fitting each of the return series with the US returns (as the second series) in the
bivariate ADC model. We find descriptive statistics of filtered residuals to be
insensitive to the choice of the second stock returns series used in the ADC model.

Table 1. Descriptive statistics for daily stock index returns over the period
December 26th, 1968 to May 31st, 2000.

US UK Germany  France Japan
Mean 0.032 0.035 0.031 0.039 0.028
Std. Err. (0.011) (0.012) (0.012) (0.012) (0.012)
Std Deviation 0.953 1.042 1.082 1.055 1.092
Std. Err. (0.036) (0.019) (0.020) (0.020) (0.025)
Skewness -1.791 -0.313 -0.555 -0.610 -0.164
Std. Err. (1.498) (0.313) (0.297) (0.318) (0.469)
Excess Kurtosis 45.110 9.413 9.668 10.173 15.168
Std. Err. (33.709) (2.995) (2.871) (3.346) (5.230)
Engle(1) 108.383  1973.137 313.459 79.355  325.174
p-value (0.000) (0.000) (0.000) (0.000) (0.000)
Q(5) 10.908 30.536 12.935 59.595 7.435
p-value (0.053) (0.000) (0.024) (0.000) (0.190)

Notes: The stock market indices are S&P 500 (for the US), FTSE 100 (for the UK),
DAX 30 (for Germany), CAC 40 (for France) and Nikkei 225 (for Japan). The mean,
variance, skewness and excess kurtosis statistics, computed using Richardson and Smith
(1993) generalized method of moment procedures, are robust against heteroskedasticity.
The Engle(1) statistic is calculated as T' X R?, where T is the sample size and R? is
the coefficient of determination for the regression of squared centered returns on a
constant and lagged squared returns of order 1. Q(5) is the Portmanteau test for stock
returns autocorrelation among the first five lags. The standard error and p-value of the
Portmanteau test statistic, computed following Hansen (1982) and Nicholls and Pagan
(1983), are robust against heteroskedasticity.

We note from Table 2 that the AR filtered returns have retained much of
the characteristics of the raw returns except that skewness and Q(5), the Port-
manteau test for autocorrelation, are no longer significantly different from zero.
The AR filtered residuals continue to have thick tails and heteroskedasticity.
Excess kurtosis and heteroskedasticity were successfully removed by all three
heteroskedasticity filters. Hence, returns that are filtered for heteroskedasticity
are now much closer to being i.i.d. The SV residuals, in particular, are approxi-
mately Gaussian as the skewness and excess kurtosis are the cloest to zero.
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Table 2. Descriptive statistics for AR filtered returns series over the period
December 26th, 1968 to May 31st, 2000.

US UK Germany France Japan
Returns not filtered for heteroskedasticity
Skewness -1.707 -0.257 -0.556 -0.595 -0.313
Std. Err. (-63.117) (-9.516) (-20.534) (-21.989) (-11.565)
Excess Kurtosis 43.043 8.512 9.729 10.761 14.153
Std. Err. (795.569) (157.330) (179.827) (198.888) (261.594)
Engle(1) 191.374 2096.846 368.428 147.171 399.572
p-value (0.000) (0.000) (0.000) (0.000) (0.000)
Q(5) 0.004 0.002 0.018 0.003 0.002
p-value (1.000) (1.000) (1.000) (1.000) (1.000)
AGARCH filtered residuals
Skewness -0.385 -0.474 -0.718 -0.497 -0.468
Std. Err. (-14.230) (-17.527) (-26.525) (-18.365) (-17.311)
Excess Kurtosis 4.116 5.091 9.670 8.243 8.411
Std. Err. (76.049) (94.068) (178.680) (152.306) (155.405)
Engle(1) 3.641 5.874 0.046 0.017 0.927
p-value (0.602) (0.319) (1.000) (1.000) (0.968)
Q(5) 4.057 2.150 5.217 7.947 11.590
p-value (0.945) (0.995) (0.876) (0.634) (0.313)
ADC filtered residuals
Skewness -0.330 -0.300 -0.665 -0.468 -0.316
Std. Err. (-12.094) (-11.000) (24.425) (-17.192) (-11.641)
Excess Kurtosis 3.483 2.105 8.282 7.567 6.285
Std. Err. (63.904) (38.612) (152.163) (138.937) (115.622)
Engle(1) 0.763 3.067 0.005 0.007 0.081
p-value (0.979) (0.690) (1.000) (1.000) (1.000)
Q(5) 5.409 1.989 5.072 7.583 11.580
p-value (0.862) (0.996) (0.886) (0.669) (0.314)
SV filtered residuals

Skewness -0.043 -0.074 -0.067 0.013 -0.101
Std. Err. (-1.569) (-2.718) (-2.456) (0.481) (-3.720)
Excess Kurtosis -0.120 -0.389 -0.415 -0.439 -0.487
Std. Err. (-2.208) (-7.185) (-7.664) (-8.116) (-9.004)
Engle(1) 1.274 1.613 0.202 0.737 0.083
p-value (0.938) (0.900) (0.999) (0.981) (1.000)
Q(5) 4.583 2.202 6.774 14.339 15.099
p-value (0.917) (0.995) (0.747) (0.158) (0.129)

Notes: The stock market indices are S&P 500 (for the US), FTSE 100 (for the UK), DAX 30
(for Germany), CAC 40 (for France) and Nikkei 225 (for Japan). All stock market returns are
filtered for autocorrelation using an AR filter with five autoregressive terms. The mean, vari-
ance, skewness and excess kurtosis, computed using Richardson and Smith (1993) generalized
method of moment procedures, are robust against heteroskedasticity. The Engle(1) statistic
is calculated as T' x R?, where T is the sample size and R? is the coefficient of determination
for the regression of squared centered returns on a constant and lagged squared returns of
order 1. Q(5) is the Portmanteau test for stock returns autocorrelation among the first five
lags. The standard error and p-value of the Portmanteau test statistic, computed following
Hansen (1982) and Nicholls and Pagan (1983), are robust against heteroskedasticity.



942 SER-HUANG POON, MICHAEL ROCKINGER AND JONATHAN TAWN

3.2. Univariate tail indices

In this study, all tail indices and tail dependence structure are separately
estimated for left and right tails. Table 3 presents tail indices estimates for re-
turns filtered for autocorrelation and those that are filtered for heteroskedasticity
in addition. Following the Danielsson and de Vries (1997) method for optimal
threshold selection, the threshold estimated for our sample of 8,200 observations
typically contains 2% of the data in the tail. Estimation results, details not re-
ported here, suggest that the tail index estimate is quite stable within a small
variation of the threshold selected using this method. The stability of the tail
index with respect to the choice of small variations of the threshold confirms the

findings in Lux (2001).

Table 3. Tail index estimates for daily stock market returns over the period

December 26th, 1968 to May 31st, 2000.

US UK Germany France Japan

Returns not filtered for heteroskedasticity
Left tail 0.3179 0.2907 0.2999 0.3368 0.3165
(0.0171)  (0.0221) (0.0242) (0.0220)  (0.0270)
Right tail 0.2731 0.3300 0.3067 0.2768 0.3562
(0.0229)  (0.0328) (0.0216) (0.0203)  (0.0288)

AGARCH filtered residuals
Left tail 0.2455 0.2350 0.2394 0.2702 0.2735
(0.0172)  (0.0156) (0.0174) (0.0186)  (0.0195)
Right tail 0.1895 0.2018 0.2137 0.2205 0.2980
(0.0155)  (0.0146) (0.0148) (0.0167)  (0.0195)
ADC filtered residuals
Left tail 0.2363 0.2328 0.2527 0.2666 0.2707
(0.0168)  (0.0152) (0.0167) (0.0171)  (0.0205)
Right tail 0.1925 0.1933 0.2176 0.2132 0.2936
(0.0169)  (0.0157) (0.0143) (0.0166)  (0.0202)
SV filtered residuals

Left tail 0.1346 0.1466 0.1425 0.0926 0.0853
(0.0111)  (0.0117) (0.0105) (0.0076)  (0.0069)
Right tail 0.1172 0.1351 0.1205 0.0919 0.0892
(0.0097)  (0.0110) (0.0102) (0.0075)  (0.0073)

Notes: The stock market indices are S&P 500 (for the US), FTSE 100 (for the
UK), DAX 30 (for Germany), CAC 40 (for France) and Nikkei 225 (for Japan).
All stock market returns are filtered for autocorrelation using an AR filter with
five autoregressive terms. The tail index is estimated based on Hill estimator using
a bootstrap method for selecting optimal threshold following Danielsson and de

Vries (1997). Numbers presented in parentheses are standard errors.

From Table 3 we note that tail index estimates are significantly reduced
when stock returns are filtered for heteroskedasticity, and the reduction is the
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most dramatic when the SV filter is used. Note that the tail index of a Gaus-
sian variable is equal to zero, whereas all the tail indices reported in Table 3 are
significantly greater than zero even after the returns are filtered for autocorre-
lation and heteroskedasticity. There is no significant evidence that the left and
right tail indices are different from one another for each of the series we consider,
independent of the type of volatility filter used.

3.3. Extremal dependence

Campbell and Hentschel (1993) suggest that news arrival creates volatility,
which in turn leads to an increase in the risk premium and a fall in stock prices.
The fall in stock price is greater if the news is bad, and less severe if the news is
good. We argue further that bad news tends to affect several stock markets at the
same time creating a co-movement among their volatility and a stronger depen-
dence among international stock markets during crises. The empirical findings
in the following sections generally support this conjecture.

3.3.1. Whole period analysis

Table 4 reports tail dependency X estimates for the left and right tails of
selected pairs of stock index returns that are filtered for autocorrelation and the
corresponding heteroskedasticity filtered counterparts. Note that —1 < ¥ < 1
from (@), but our estimation based on the Hill’s estimator in (2)) is not constrained
to satisfy the upper bound. Table 4 shows that all ¥ estimates are greater than
zero but the tail dependence of heteroskedasticity filtered returns is substantially
reduced. This is true for both right and left tail dependence with little difference
between the three volatility filters. All (except two) of the X estimates for the
left tail are larger than those for the right tail. Hence, we may conclude that it is
much more likely for the five international stock markets to exhibit joint crashes
than to have simultaneous upswings. This corresponds to findings reported in
Ang and Chen (2000), Longin and Solnik (2000) and Martens and Poon (2001).

Inspection of the tail indices and associated standard errors indicates that the
only case where asymptotic dependence cannot be rejected (i.e., ¥ = 1) is between
German and French returns when they are both not filtered for heteroskedastic-
ity. All filtered returns are asymptotically independent (i.e., ¥ < 1). From the
interpretation of ¥ in Section 2.2, this implies that there is significant dependence
between large values of the paired series but that the very largest values do not
occur concurrently. Since most of the pairs are asymptotically independent, mul-
tivariate extreme value models that assume asymptotic dependency among stock
market returns are likely to have overestimated portfolio joint risk. In Section 4
we assess how important this error is by obtaining an approximation to the bias
in a portfolio risk assessment that is incurred by falsely assuming asymptotic
dependence.
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Table 4. Measures of tail independence, Y, for selected daily stock market
return pairs.

Returns not filtered for AGARCH filtered residuals

heteroskedasticity
Left tail Right tail Left tail Right tail
X s.e. X s.e. X s.e. X s.e.
US-UK 0.592 0.092 0.605 0.114 0.364 0.054 0.317 0.066
US-GER 0.661 0.075 0.456 0.057 0.528 0.064 0.248 0.057

US-FRA 0.507 0.060 0.358 0.070 0.472 0.070 0.296 0.051
US-JAP 0.479 0.089 0.510 0.106 0.395 0.055 0.262 0.098

UK-GER 0.854 0.115 0.676 0.116 0.495 0.057 0.290 0.076
UK-FRA 0.752 0.109 0.511 0.063 0.630 0.093 0.351 0.055
GER-FRA 1.191 0.155 0.817 0.115 0.614 0.080 0.353 0.054
ADC filtered residuals SV filtered residuals

Left tail Right tail Left tail Right tail

X s.e. X s.e. X s.e. X s.e.
US-UK 0.392 0.051 0.279 0.051 0.386  0.052 0.283 0.051
US-GER 0.471 0.068 0.268 0.056 0.532 0.065 0.264 0.056
US-FRA 0.397 0.059 0.279 0.048 0.349 0.081 0.287 0.052
US-JAP 0.374 0.068 0.302 0.056 0.367 0.066 0.326 0.053
UK-GER 0.538 0.071 0.278 0.066 0.446 0.058 0.285 0.061
UK-FRA 0.608 0.089 0.330 0.055 0.659 0.121 0.362 0.054
GER-FRA 0558 0.062 0.324 0.061 0.552 0.069 0.336 0.067

Notes: The stock market indices are S&P 500 (for the US), FT'SE 100 (for the UK), DAX
30 (for Germany), CAC 40 (for France) and Nikkei 225 (for Japan). All stock market
returns are filtered for autocorrelation using an AR filter with five autoregressive terms.
is computed based on the tail index of Frechet transformed margins of daily co-exceedances
of stock market returns pair. Standard errors (s.e.) are computed as (X + 1)/1/7a, where
N, is the number of observations exceeding the threshold w.

3.3.2. Subperiod analysis

In this section, we focus on the stability of dependence structure across time.
To keep the analysis and reporting of results manageable, we omit all filtering ex-
ercises in this subsection. Table 5 presents unconstrained  estimates for selected
pairs of unfiltered stock index returns, across three non-overlapping subperiods.
Each subperiod is over ten years, with the world market crash taking place in
subperiod 2 and the integration of the European Union evolving throughout sub-
period 3. The percentage of observations that exceed the thresholds is stable
across the three subperiods for each returns pair. For example, the percent-
ages of observations falling into the left tail of German-French unfiltered returns
distribution in subperiods 1, 2 and 3 are 6%, 6% and 5% respectively. The cor-
responding figures for US-UK unfiltered returns are 3%, 5% and 6% for the right
tail.
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Table 5. Two measures of tail dependence, Y and Y, for selected daily stock
market return pairs over three sub-periods.

Subperiod 1: 27 December 1968 — 19 June 1979 (2,733 observations)
Left tail Right tail Left tail Right tail
P X S.e. X S.e. X S.e. X S.e.
US-UK 0.220 0.472 0.118 0.601 0.170
US-GER  0.211 0.820 0.185 0.355 0.098 0.239 0.024
US-FRA 0.261 0.381 0.109 0.683 0.238 0.173 0.025
US-JAP 0.116 0.333 0.104 0.368 0.095
UK-GER  0.102 0.332 0.097 0.299 0.089
UK-FRA  0.141 0.502 0.125 0.344 0.092
GER-FRA 0.163 0.438 0.111 0.183 0.127
Subperiod 2: 20 June 1979 — 8 December 1989 (2,733 observations)
Left tail Right tail Left tail Right tail
P X S.e. X S.e. X S.e. X S.e.
US-UK 0.347 0.800 0.243 0.765 0.156  0.195 0.026 0.257 0.022
US-GER  0.319 0.688 0.116 0.442 0.106
US-FRA 0.257 0.568 0.107 0.272 0.081
US-JAP 0.407 0.626 0.111 0.764 0.193 0.238 0.026
UK-GER  0.345 0.658 0.114 0.591 0.173
UK-FRA  0.287 0.845 0.234 0.449 0.102 0.222 0.028
GER-FRA 0.358 0.809 0.140 0.518 0.104 0.309 0.023
Subperiod 3: 11 December 1989 — 31 May 2000 (2,733 observations)
Left tail Right tail Left tail Right tail
p X S.e. X S.e. X S.e. X S.e.
US-UK 0.311 0.724 0.177 0.462 0.119 0.275 0.028
US-GER  0.361 0.593 0.110 0.452 0.099
US-FRA 0.275 0.575 0.109 0.345 0.123
US-JAP 0.264 0.482 0.118 0.493 0.114
UK-GER  0.570 1.043 0.166 0.850 0.142 0.421 0.033 0.361 0.027
UK-FRA  0.670 0.824 0.167 0.711 0.136
GER-FRA 0.664 1.023 0.177 0.913 0.156 0.476 0.041 0.413 0.033
Notes: The stock market indices are S&P 500 (for the US), FTSE 100 (for the UK), DAX
30 (for Germany), CAC 40 (for France) and Nikkei 225 (for Japan). p is the correlation
coefficient calculated using all observations in the subperiod. ¥ and x are computed based
on tail index estimation on Frechet transformed margins of daily co-exceedances of stock
market returns pair. For cases Wher(iz asymptotic dependence cannot be rejected (i.e.
X = 1), x is computed assuming that X is equal to 1.

There is evidence of complex non-stationarity in the extremal dependence
with a general increase over time in the ¥ estimates for the left tail. The same
pattern is found for the right tail amongst the European markets. Table 5
also presents the Pearson correlation coefficients. All the correlation coefficients
are significantly positive and appear to have increased through time, especially
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among the European countries.

Estimates of x for pairs where asymptotic dependence cannot be rejected
are also reported in Table 5. There are twelve of these; five for the right tails
and seven for the left tails. In most of these cases, they are pertaining to the
left tail dependence within the European markets and in the last decade. This
provides a considerable strengthening to the understanding provided by Pearson
correlation coefficients.

4. Implications of Asymptotic Independence for Portfolio Risk Assess-
ment

In this section, we focus on estimating portfolio risk. The emphasis here is to
show that portfolio risk will be over-estimated when based on the assumption of
asymptotic dependence when the returns are asymptotically independent. Here,
we follow the Ledford and Tawn (1997) approach for handling asymptotic inde-
pendence to develop a method for providing bounds on the portfolio risk. These
are relatively tight if the variables are asymptotically dependent, but for asymp-
totically independent variables the bounds differ, with the lower bound being
the more likely to provide a better approximation in many cases. In a compan-
ion paper, Poon, Rockinger and Tawn (2003), we adopt parametric models for
the joint tail distributions. Here we adopt a nonparametric approach. Bounds of
the portfolio returns distribution are inferred directly from the y and Y estimates
produced from the previous section without additional distributional dependence
assumptions.

To illustrate the estimation of bounds on portfolio risk we focus on the
bivariate case. Define (X,Y’) to be two returns. In a portfolio risk management
context, one would seek a convex combination of these returns, i.e., aX+(1—a)Y
for 0 < a < 1, such that the probability of the combination exceeding a high
threshold, k, is minimized over a. The key stage of this process is the evaluation
of the probability for a given a. This is the aspect we focus on, estimating
Pr{aX + (1 —a)Y > k} for fixed a and k, with k large. For any (x,y), where
y=(k—ax)/(1 —a), we obtain

Pr( X >z, Y >y) <Pr(aX+(1—-a)Y >k) <1-Pr(X <z,Y <y). (15

Generally, these bounds will be uninformative, however the point (x,y) can be
selected to minimize the errors for each bound simultaneously. The appropriate
(z,y) point is the one with the largest joint density, which generally occurs when
x and y are at equal marginal quantile values, i.e., we seek (x,y) with y =
(k—ax)/(1 —a) and

Pr(X > z) =Pr(Y > y). (16)
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Define this point by (xg,yo). To evaluate (zg,y9) we need a model for the
marginal distribution tail form. From Section 2.1 the univariate tail model ()
is appropriate for finance data, with different parameters cx, £x and cy, &y
for each margin. Thus, () corresponds to yo = (cy /Cx)§Y$SY/ 8 Tt follows
that Pr(X > x0,Y > yo) = Pr(S > 59,7 > s9) and 1 — Pr(X < z,Y <y) =
2Pr(X > x9) — Pr(S > s0,T > s¢), where (S,T) have unit Fréchet marginal
distributions, and sg ~ 1/Pr(X > zp) = zgx/cx = ygy/q/. Then (I5]) be-
comes Pr(X > zo)Pr(T > so|S > so) < Pr(aX + (1 —a)Y > k) < Pr(X >
20){2 —Pr(T > s9|S > sp)}, so from expressions (§) and (I0),

dsg T/ < PraX 4 (1—a)Y > k)/Pr(X > zo) < 2—dsy "0/ (17)

Using estimators of the marginal tail parameters and estimators of the extremal
dependence structure characteristics, d and %, these bounds can be evaluated.
Together with the estimate of Pr(X > x(), these bounds provide the required
bounds on Pr(aX + (1 — a)Y > k). If the variables are asymptotically depen-
dent, so Y = 1 and d = x, then as k — oo the bounds on Pr(aX + (1 —a)Y >
k)/Pr(X > xp) converge to x and 2 — yx, so are very tight. For asymptotically
independent variables these limits for the bounds are 0 and 2, respectively. How-
ever the rate of approach to these limits depends on the degree of asymptotic
independence, Y. Typically, for finite k, the lower bound in (I7) provides a much
closer approximation to the truth than the upper bound.

Figure 2 presents the upper and lower bounds of the portfolio risk, Pr(aX +
(1—a)Y > k), calculated based on (7)) for two country pairs, viz., US vs. Japan
and Germany vs. France, using left tail parameter estimates for the most recent
subperiod unfiltered returns. The solid lines in the first graph are generated by
“wrongly” assuming that US and Japanese stock market returns are asymptoti-
cally dependent. Since tail dependence of stock returns that are not filtered for
heteroskedasticity exhibit an intertemporal instability, the use of subperiord es-
timates is more appropriate. Also, to avoid the complication caused by changing
volatility, we use x and ) estimated from unfiltered returns. Current research on
the estimation of portfolio risk under the influence of heteroskedasticity is still
ongoing.

To provide an example, we assume in each portfolio that the weights for
the first and second assets are 0.25 and 0.75 respectively. The daily percentage
loss, k, is selected such that it is always greater than the individual univariate
extreme value thresholds obtained through bootstrap estimation, as mentioned in
Section 2.1. As one would expect when the daily percentage loss k increases, the
logarithmic expected waiting time between such losses in Figure 2 increases, and
the band between the upper and lower bounds widens. We observed previously
from Table 5 that asymptotic dependence is rejected for the US-Japanese returns
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Figure 2. Bounds on portfolio risk estimated for subperiod 3 from 11 De-
cember 1989 to 31 May 2000.

Note: Portfolio weights for first and second assets are 0.25 and 0.75 respec-
tively. The soild lines in first graph are generated by “wrongly” assuming
that US and Japanese stock market returns are asymptotically dependent.

pair, but cannot be rejected for the German-French returns pair. This corre-
sponds to the wider band between upper and lower bounds of the US-Japanese
portfolio compared with that of the German-French portfolio. If we translate the
probability of portfolio risk into a waiting time between threshold exceedances,
the probability of the US-Japanese portfolio having a one-day loss equal to or
exceeding 3% ranges between 1.2 and 17.2 months. The estimated waiting time
for the equivalent loss for the German-French portfolio ranges between only 2
and 7 months. On the other hand, if we had erroneously concluded that US
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and Japanese returns were asymptotic dependent, the waiting time would have
been 1.3 and 7.8 months. In term of one-day loss estimates, the one-day loss will
be overstated as 3.614% and 8.25% for fixed level of lower bound probability,
whereas the true one-day loss should be 3% and 5.5%, respectively. For finite
level of one-day loss, the lower bound provides a much closer approximation to
the truth than the upper bound. These overstatements of one-day loss will ex-
ert a wrong influence on the portfolio composition in an environment where risk
management is an important aspect of the internal control system.

5. Conclusion

In this paper, we use two non-parametric measures for extreme value de-
pendency to characterise tail dependence of returns in five international stock
markets and demonstrate how portfolio tail risk may be assessed. These new
tools have allowed us to document, for the first time, the widespread asymptotic
independence among stock market returns, a phenomenon that has so far been
overlooked in the finance literature. The omission of asymptotic independence
models has led to over-estimation, possibly substantial, of portfolio risk.

Other empirical findings include a confirmation that extreme value depen-
dence is much stronger in bear markets than in bull markets, and that much
of the extreme value dependency is due to correlated conditional volatility. We
find tail indices and tail dependence to be substantially reduced after the stock
returns are filtered for heteroskedasticity. Three volatility filters were tested but
we found there is little to choose between them. This suggests that in modelling
tail dependence, it is acceptable to use a univariate GARCH for modelling and
controlling the effect of heteroskedasticity.

In general, the correlation between volatilities has increased over time to
produce asymptotically dependent stock markets within Europe and strong, but
still asymptotically independent stock markets between Europe (UK, Germany
and France), North America (US) and Asia (Japan).

An accurate measurement of asset-returns behaviour during periods of ex-
treme movements is useful in many finance applications. With the new depen-
dency measures, the dynamics of conditional correlation can be better under-
stood. Further work could investigate the hedging efficiency gain and option
pricing improvement with a model for conditional correlation that captures the
characteristics observed here. The modelling of portfolio joint tail distribution
would require detailed calibration of individual tail distributions and asset ex-
treme value dependency. Ongoing research in this area should provide better
tools for portfolio management and risk diversification.
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Appendix

This appendix describes the filters used in Section 3. There are two types of
filters; one used to removed autocorrelation in stock returns and a second used
to remove stock returns heteroskedasticity. Three volatility models were used
to filter out heteroskedasticity, viz. AGARCH (Asymmetric GARCH), ADC
(Asymmetric Dynamic Covariance) and SV (Stochastic Volatility). ADC is a
bivariate GARCH filter, whereas AGARCH and SV are both univariate filters.

A.1. AR filter for autocorrelation in returns

The filter used to remove autoregressive dependency is an AR(5) model:
Ry=p+ Z?:1 ajRi_j + €. Stock returns, I;, were replaced by the residuals ¢
in the estimation of tail index and tail dependence.

A.2. AGARCH filter for heteroskedasticity

The first filter for heteroskedasticity we use is an asymmetric version of the
GARCH(1,1) model, see Zakoian (1994), which is based on the model that the
return R; at time ¢ follows a normal distribution with mean w and standard
deviation v/h¢, where Ry = w + Vh:Z; and hy = ag + a+Zt2_1ht_1DZt_120 +
a~Z% (hy_1Dz,_ <o+ Bhi_1. Here ag, a™, a~ and 3 are parameters, and D is
the indicator function that event E occurs. We refer to this filter as AGARCH.
Using estimated values of these parameters the filtered series of Z; values is de-
rived to replace stock returns in the estimation of tail index and tail dependence.

A.2. SV filter for heteroskedasticity

A second, more general form of volatility filter, is the stochastic volatility
model presented by Kim, Shephard and Chib (1998): R, = Be"/2Z, hy = p+



MODELLING EXTREME-VALUE DEPENDENCE 951

¢(he—1 — p) + oy, ha ~ N(p,0%/(1 — ¢?)), where hy is interpreted as the log
volatility at time ¢. The innovations Z; and 7; are uncorrelated standard normal
white noise shocks. For identifiability reasons, either S must be set to one or u
to zero. These parameters play the role of scaling variables.

Whereas all the other estimations of this paper are done under GAUSS, the
estimation of the stochastic volatility model was achieved using Ox. We down-
loaded Ox from the website of Jurgen Doornik (http://www.nuff.ox.ac.uk/users/
doonik) and obtained the code used in the Kim, Shephard and Chib (1998) from
the web-site http://www.nuff.ox.ac.uk /users/sheppard /ox). After experimenting
with the various estimation methods, we settled for the Gibbs sampling algorithm
presented in Kim, Shephard and Chib (1998). We refer to the stochastic volatility
model as the SV filter.

A.2. ADC bivariate GARCH filter

There have been studies documenting volatility spillover from one country
to the other. To take care of this type of phenomenon, we also consider a gener-
alized multivariate GARCH model of Kroner and Ng (1998), which also captures
asymmetric dynamic covariances (ADC). To describe this model, we use the no-
tations R;; for time t rate of return of asset ¢ = 1,..., N. The expected return,
given all information at time ¢ — 1 is p;, which will either be a constant or a
constant plus AR(5), Z;; is the unexpected return of asset i, Z = [Z14,..., Znt),
hit is the conditional variance of R;; given all information at time ¢t —1, h;j; is the
conditional covariance between R;; and Rj;. Let H; be the conditional covariance
matrix (Ht = [hmﬂ@j).

Introducing 7;; = max(0, —Z;;) and 7 = [m1¢, . .., nne)’ the ADC model that
we consider here is h;jy = wij+b,Hy_1bj+a; Zy 1 Z]_ a;+gm—1me—19;, Vi, j, where
a;, bj, and g;, i = 1,..., N, are parameters. The w;; are scalars. The ADC model
may be viewed as a multivariate extension of the previous AGARCH model.
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