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for Markov chains, we establish asymptotic normality for short-range dependent
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1. Introduction

Let {εi}i∈Z be i.i.d. c × 1 random vectors such that E(|ε1|α) < ∞ for some
0 < α ≤ 2 and E(ε1) = 0 if 1 ≤ α ≤ 2; let {ai}i≥0 be r × c matrices such that∑∞

k=1 |ak|α < ∞, where r, c ≥ 1 are fixed integers and |a| = (
∑

k,l a
2
kl)

1/2 for
matrix a = (akl). Then the multiple linear process Xn =

∑∞
i=0 aiεn−i is well-

defined (cf Corollary 5.1.3 in Chow and Teicher (1978)). In case r = c = 1 and εi

is stable, then Xn is also stable. The important fractional ARIMA models with
infinite variance innovations fall within this framework.

Let K be a measurable function for which E[K(X1)] = 0. Our goal is to
investigate the limiting behavior of Sn(K) =

∑n
i=1 K(Xi). This problem has

received much attention recently; see Hsing (1999), Koul and Surgailis (2001),
Surgailis (2002) and references therein for some historical developments. In Hsing
(1999), the central limit problem is considered. When K belongs to certain classes
of bounded functions, Koul and Surgailis (2001) and Surgailis (2002) obtained
non-central limit theorems for univariate processes. As pointed in Koul and
Surgailis (2001), the treatment of the asymptotic normality problem in Hsing
(1999) is not rigorous. The central limit problem for multiple linear processes
with heavy tails remains unsolved. Here we shall establish a central limit theorem
under mild conditions.

The method adopted in this paper is based on the limit theory for ad-
ditive functionals of Markov chains. Gordin and Lifsic (1978) introduced the
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method and an important generalization was given in Woodroofe (1992). The
main idea is to write K(Xn) = g(Xn) and use the fact that the shift process
Xn = (. . . , εn−1, εn) is a Markov chain. Then the general limit theory developed
for the additive functional Sn(g) =

∑n
i=1 g(ξi) for Markov chains ξn is applicable.

This theory can be applied to linear processes and enables one to launch a system-
atic study of their asymptotic behavior. See Wu and Mielniczuk (2001) and Wu
(2002, 2003), where certain open problems in linear processes are circumvented.
In this article, we apply this technique to processes with infinite variance inno-
vations to establish a central limit theorem for short-range dependent processes
and a non-central limit theorem for long-range dependent sequences when the
innovations are in the domain of attraction of certain stable laws. Derivations
of limit theorems based on such methods seem to be quite simple at a technical
level. By comparison, the treatment in Hsing (1999) appears formidable.

This paper is organized as follows. Main results are stated in Section 2 and
proved in Section 3. In Section 4, an open problem is proposed.

2. Main Results

Unless otherwise specified, we assume that E(|ε1|α) < ∞ holds for a fixed
0 < α ≤ 2 and E(ε1) = 0 if 1 ≤ α ≤ 2. For a random vector ξ, let ‖ξ‖p =
[E(|ξ|p)]1/p and ‖ξ‖ = ‖ξ‖2. Recall the shift process Xn = (. . . , εn−1, εn) and
consider the projection operator Pkξ = E[ξ|Xk] − E[ξ|Xk−1], k ∈ Z. Define the
truncated processes Xn,k =

∑k
i=−∞ an−iεi and Xn,k = Xn − Xn,k−1. As in Ho

and Hsing (1997), let

Kn(w) = E[K(w + Xn,1)] and K∞(w) = E[K(w + Xn)]. (1)

Theorem 1 and Corollary 1 assert central and non-central limit theorems for
Sn(K), respectively. In Corollary 1 we assume that εi ∈ D(d), the domain of
attraction of stable law with index d ∈ (0, 2). Theorem 2 provides an approxi-
mation of Sn(K) by the linear functional

∑n
i=1 Xi. An interesting application is

given in Section 2.3, where a limit theorem for level crossings is derived.

2.1. A central limit theorem

For a function f define a local Lipschitz constant by

Lf (x) = sup
y �=x:|y−x|≤1

|f(y) − f(x)|
|y − x| .

Theorem 1. Assume that E[K2(X0)] < ∞ and that either (a) there exist q > 1
and κ ∈ N for which

∞∑
n=1

|an|
α
2q < ∞, (2)
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Fq(κ) < ∞, where Fq(n) = E[|LKn(Xn,0)|2p + |Kn(Xn,0)|2p], p = q/(q−1), (3)

or (b) there exists κ ∈ N for which

F1(κ) < ∞, where F1(n) = sup
x

[|LKn(x)| + |Kn(x)|] < ∞, (4)

∞∑
n=1

|an|
α
2 < ∞. (5)

Then Sn(K)/
√

n ⇒ N(0, σ2) for some σ < ∞.

Remark 1. Case (b) can be viewed as a limit of (a) when q ↓ 1. Note that Fq

defined in (3) is a non-increasing function in n. To see this, by the smoothing
property, Kn+1(x) = EKn(x + anε1),

LKn+1(x) = sup
y �=x:|y−x|≤1

|E[Kn(y + anε1) − Kn(x + anε1)]|
|y − x|

≤ E

{
sup

y �=x:|y−x|≤1

|Kn(y + anε1) − Kn(x + anε1)|
|y − x|

}
= ELKn(x + anε1)

which, in conjunction with |Kn+1(x)| ≤ E|Kn(x + anε1)| and the fact that
Xn+1,0 +anε1 and Xn,0 are identically distributed, implies Fq(n+1) ≤ Fq(n) by
Jensen’s inequality. Similarly, F1(·) defined in (4) is non-increasing.

Remark 2. In Theorem 1, we need not assume an = n−γ�(n) in the univariate
case r = c = 1, � a slowly varying function, and the innovations εi need not be in
D(d). If r = c = 1, an = n−γ�(n) and εi ∈ D(d), then (5) holds for 2/γ < α < d
provided dγ > 2, an assumption used in Hsing (1999) to obtain a central limit
theorem for Sn(K).

2.2. A non-central limit theorem

Suppose K ′∞(0) := (∂K∞(w)/∂w1, . . . , ∂K∞(w)/∂wr)|w=0 exists. Let Rn =
Sn(K) − Tn, where the linear functional Tn = K ′∞(0)

∑n
i=1 Xi. Set An(α) =∑∞

i=n |ai|α.

Condition 1. For sufficiently large n, Kn(·) is differentiable and there exist
q ≥ 1, 1 ≤ ν < α/q such that

‖Kn−1(Xn,1)− Kn(Xn,0)− K ′
∞(0)an−1ε1‖ν = O[|an−1|

α
qν + |an−1|A

1
qν
n (α)]. (6)

Intuitively, (6) asserts a first order expansion of Taylor’s type.

Theorem 2. Assume Condition 1 and |an| = n−γ�(n), where 1 > γ > 1/α.
Then for all β′ < β0 = min {1, γα/(qν), γ + (γα − 1)/(qν)},

‖Rn‖ν = O[n1−β′+1/ν ]. (7)
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To state Corollary 1, we assume that εi ∈ D(d). Namely, there exists a
slowly varying function �ε such that

∑n
i=1 εi/[n

1
d �ε(n)] ⇒ Z, where Z is a stable

law with index d.

Corollary 1. Let r = c = 1. Assume Condition 1, an = n−γ�(n) and −β0 +
1/ν < −γ + 1/d. Then Sn(K)/Dn ⇒ K ′∞(0)Z, where

Dn =
n1−γ+ 1

d �(n)�ε(n)
1 − γ

{∫ ∞

0
[t1−γ − (max(t − 1, 0))1−γ ]ddt

} 1
d

.

Proof. By Theorem 2, Rn = oP (Dn). Hence the Corollary follows from the
classical result that

∑n
i=1 Xi/Dn ⇒ Z (Avram and Taqqu (1986)).

Proposition 1. Assume that there exist ν ∈ [1, α), q ∈ [1, α/ν) and n ∈ N such
that

Fq(n) := E[|LK ′
n
(Xn,0)|νp + |K ′

n(Xn,0)|νp + |Kn(Xn,0)|νp + |Kn(Xn,1)|νp] < ∞,

(8)
where p = q/(q−1). Here F1(n) < ∞ is interpreted as supx |LK ′

n
(x)|+ |K ′

n(x)|+
|Kn(x)|] < ∞. Then Condition 1 holds.

By Remark 1, Fq(·) is non-increasing. As illustrated in Example 2, Corol-
lary 1 goes beyond earlier ones by allowing unbounded functionals K; see Koul
and Surgailis (2001) and Surgailis (2002) where boundedness are required.

Example 1. Let α = d− y2, ν = d− y and q = 1+ cy, where c < (γd− 1)/(γd2)
is a nonnegative number. Then as y ↓ 0, (−γ + 1/d) − (−β0 + 1/ν) = (−γc +
γ/d − 1/d2)y + O(y2) > 0 since −γc + γ/d − 1/d2 > 0. Corollary 1 is applicable
if y > 0 is sufficiently small.

Example 2. Let a0 = 1, r = c = 1 and let εi be i.i.d. symmetric-α-stable random
variables with index d ∈ (1, 2) and characteristic function φ(t) = E[exp(t

√−1ε1)]
= exp(−|t|d) for t ∈ R. Assume that there exists C > 0 such that for all u ∈ R,

|K(u)| ≤ C(1 + |u|)α/(νp). (9)

Then (8) holds with n = 1. Notice that (9) allows unbounded and discontinuous
functions if p < ∞. To see that (9) implies (8), let f be the density of εi. By
Theorem 2.4.2 in Ibragimov and Linnik (1971), f(t) ∼ cd|t|−1−d as |t| → ∞,
where cd = π−1Γ(1+ d) sin(πd/2) and Γ is the Gamma function. It is easily seen
that a similar argument also implies

|f ′(t)| ∼ cd(1 + d)|t|−2−d and |f ′′(t)| ∼ cd(1 + d)(2 + d)|t|−3−d (10)
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as |t| → ∞. Observe that K1(x) =
∫

R
K(w + x)f(x)dx =

∫
R

K(u)f(u− x)du and
K ′

1(x) = − ∫
R

K(u)f ′(u − x)du. Let g(x; 1) = sup|y|≤1 |g(x + y)| be the maximal
function of g. Using 1 + |x + v| ≤ (1 + |x|)(1 + |v|), we have

LK ′
1
(x) ≤

∫
R

|K(u)| sup
|y−x|≤1

|f ′(u − y) − f ′(u − x)|
|x − y| du ≤

∫
R

|K(x + v)||f ′′(v; 1)|dv

≤ C(1 + |x|)α/(νp)
∫

R

(1 + |v|)α/(νp)|f ′′(v; 1)|dv ≤ C1(1 + |x|)α/(νp)

in view of (10), where C1 is a constant. Similarly, |K ′
1(x)| ≤ C2(1+ |x|)α/(νp) and

|K1(x)| ≤ C3(1 + |x|)α/(νp) hold for some constants C2 and C3. Thus (8) holds
since α < d.

2.3. Level crossing analysis

Consider the one dimensional process Xn =
∑∞

i=0 aiεn−i, where εi ∈ D(d)
and an = n−γ�(n) with γ > 1/α and 1 < d < 2. Corollary 1 gives the
asymptotic distribution for the instantaneous filter Sn(K) =

∑n
i=1 K(Xi). As

a simple non-instantaneous filter, we discuss the level crossing statistics Nn =∑n
t=1 1(Xt−1−l)(Xt−l)≤0 and M

(τ)
n =

∑n
t=1 1(∆τ Xt)(∆τ Xt−1)≤0, where ∆Xt = Xt −

Xt−1 is the difference operator and ∆τXt = ∆ . . . ∆Xt for τ ∈ N. Note that
Nn counts how many times the process {Xt}n

t=1 crosses level l, and M
(τ)
n is the

τth order crossing count. In particular, M
(1)
n is the number of local extremes of

the process {Xt}n
t=1. In certain engineering problems, it is popular to conduct

analysis based on crossing counts; see Kedem (1994) for more details. Limit the-
orems for Nn and M

(τ)
n are useful for related statistical inference. A central limit

theorem for Nn is derived in Wu (2002), where l = 0 and {Xn} is a short-range
dependent linear process with finite variance.

For r ≥ 1, (Xn,Xn−1, . . . ,Xn−r+1)′ can be viewed as a multiple linear pro-
cess Yn =

∑∞
i=0 aiεn−i, where ai = (ai, ai−1, . . . , ai−r+1)′ and ai = 0 for i < 0.

Let Fn(u, v) be the joint distribution function of (Xn,0,Xn−1,0) and fn(u, v) its
density; let F (u) and F (u, v) be the distribution functions of Xn and (Xn,Xn−1)′,
respectively. Write f (10)(u, v) = ∂f(u, v)/∂u, f (01)(u, v) = ∂f(u, v)/∂v and
f(u) = dF (u)/du. Recall Corollary 1 for the definition of Dn.

Corollary 2. Let γ > 1/α and 1 < d < 2. (i) If there exists β′ > 1 such that
|an − an+1| = O(n−β′

), then for all τ ≥ 1, [M (τ)
n − EM

(τ)
n ]/

√
n ⇒ N(0, σ2

τ ) for
some σ2

τ < ∞. (ii) If γ > 2/α, then (Nn − ENn)/
√

n ⇒ N(0, σ2). (iii) If γ < 1,
then

Nn − ENn

Dn
⇒ 2[f (01)(l, l) + f (10)(l, l) − f(l)]Z. (11)
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Proof. Consider (iii) first. Let f
(10)
n (u, v) = ∂fn(u, v)/∂u and f

(01)
n (u, v) =

∂fn(u, v)/∂v. By properties of the characteristic function of εi ∈ D(d), it follows
from the inversion formula that there exist n0 ∈ N and C < ∞ for which

sup
n≥n0

sup
u,v∈R

[fn(u, v) + |f (01)
n (u, v)| + |f (10)

n (u, v)|] < C. (12)

By Proposition 1, Theorem 2 can be applied to the functional K(x1, x2) =
1(x1−l)(x2−l)≤0 − E1(X0−l)(X1−l)≤0. Observe that K∞(x1, x2) = F (l − x1) +
F (l − x2) − 2F (l − x1, l − x2) − 2[F (l) − F (l, l)]. Then K ′∞(0) = (−f(l) +
2f (10)(l, l),−f(l)+2f (01)(l, l))′. Using the same argument as in Corollary 1, (11)
follows from K ′∞(0)

∑n
i=1 Yi/Dn ⇒ 2[f (01)(l, l) + f (10)(l, l) − f(l)]Z.

The cases (i) and (ii) similarly follow from Theorem 1 by establishing inequal-
ities like (12). We omit the details since they only involve elementary computa-
tions based on the inversion formula between density functions and characteristic
functions.

3. Proofs

By the smoothing property, E[K(Xn)|Xk] = Kn−k(Xn,k) holds for k ≤ n.
Let {ε′i, i ∈ Z} be an independent copy of {εi, i ∈ Z} and X ′

n,1 = an−1ε
′
1 + Xn,0.

Then E[Kn−1(X ′
n,1)|X1] = Kn(Xn,0) almost surely. In the proofs below, we will

use these claims. We omit the proof of the following lemma.

Lemma 1. Assume E(|Z|α) < ∞. Then for q1 ≥ α ≥ q2 ≥ 0, as M → ∞,

E[|Z/M |q11|Z|≤M ] + E[|Z/M |q21|Z|>M ] = O(1/Mα).

Proof of Theorem 1. First we show that, under (a),

∞∑
n=1

‖P1K(Xn)‖ < ∞. (13)

By Cauchy’s inequality,

‖P1K(Xn)‖ = ‖E[Kn−1(X ′
n,1)−Kn−1(Xn,1)|X1]‖≤‖Kn−1(X ′

n,1)−Kn−1(Xn,1)‖
≤ ‖[Kn−1(X ′

n,1) − Kn−1(Xn,1)] × 1|X′
n,1−Xn,1|≤1‖

+ ‖[Kn−1(X ′
n,1) − Kn−1(Xn,1)] × 1|X′

n,1−Xn,1|>1‖.

Let ∆ = X ′
n,1−Xn,1 = an−1(ε′1−ε1). Then by Hölder’s inequality and Lemma 1,

‖[Kn−1(X ′
n,1) − Kn−1(Xn,1)] × 1|∆|≤1‖2 ≤ E{L2

Kn−1
(Xn,1) × |∆|21|∆|≤1}

≤ ‖L2
Kn−1

(Xn,1)‖p × ‖|∆|21|∆|≤1‖q = O[E(|∆|α1|∆|≤1)]
1
q = O(|an−1|

α
q ).



ADDITIVE FUNCTIONALS OF INFINITE-VARIANCE MOVING AVERAGES 1265

Similarly, ‖Kn−1(Xn,1) × 1|∆|>1‖2 ≤ ‖K2
n−1(Xn,1)‖p × ‖1|∆|>1‖q = O(|an−1|

α
q ).

Thus (13) follows from (2), and
∑∞

n=1 P1K(Xn) converges to ξ (say) in L2. By
Theorem 1 in Woodroofe (1992), {Sn(K)− E[Sn(K)|X0]}/

√
n ⇒ N(0, ‖ξ‖2). To

conclude the proof, it remains to establish ‖E[Sn(K)|X0]‖2 = o(n). To this end
notice that P−jSn(K), j = 0,−1, . . . , are orthogonal and

‖E[Sn(K)|X0]‖2 =
∞∑

j=0

‖P−jSn(K)‖2 ≤
∞∑

j=0

[
n∑

i=1

‖P−jK(Xi)‖
]2

= O

 ∞∑

j=0

n∑
i=1

‖P1K(Xi+j+1)‖

 = o(n)

by (13). Since arguments for (b) are similar, we omit the details.

Proof of Theorem 2. Let Vi = K(Xi) − K ′∞(0)Xi. Clearly PjRn, j =
. . . ,−1, 0, . . . , n, are martingale differences. Then by Bahr-Esseen’s (cf. Avram
and Taqqu, 1986) and Minkowski’s inequalities,

‖Rn‖ν
ν ≤2

n∑
j=−∞

‖PjRn‖ν
ν ≤2

n∑
j=−∞

[
n∑

i=1

‖PjVi‖ν

]ν

=2
n∑

j=−∞

[
n∑

i=1

‖P1Vi−j+1‖ν

]ν

.

Write θn = |an−1|
α
qν +|an−1|A

1
qν
n (α) and Θn =

∑n
k=0 θn. By Karamata’s theorem,

Θn = O(n1−β′
) and

∑∞
j=n θν

j = O(n1−νβ′
). Observe that PkVi = 0 for k > i.

Then (6) implies

n∑
j=1

[
n∑

i=1

‖P1Vi−j+1‖ν

]ν

=
n∑

j=1


 n∑

i=j

‖P1Vi−j+1‖ν




ν

≤n

[
n∑

i=1

‖P1Vi‖ν

]ν

=O(nΘν
n).

On the other hand, since �(n) is slowly varying,

0∑
j=−∞

[
n∑

i=1

‖P1Vi−j+1‖ν

]ν

=


 0∑

j=−n+1

+
−n∑

j=−∞


 (Θn−j+1 − Θ1−j)ν

= O(nΘν
2n) + nν

∞∑
j=n

O(θν
j ),

which clearly implies (7).

Proof of Proposition 1. Let U = Kn(Xn,1) − Kn(Xn,0) − K ′
n(Xn,0)an−1ε1.

Then
1
2ν

E(|U |ν) ≤ E(|U1|an−1ε1|≤1|ν) + E(|U1|an−1ε1|>1|ν)

≤ E(|LK ′
n
(Xn,0)|an−1ε1|21|an−1ε1|≤1|ν) + 3ν

E[|Kn(Xn,1)1|an−1ε1|>1|ν ]
+ 3ν

E[|Kn(Xn,0)1|an−1ε1|>1|ν ] + 3ν
E[|K ′

n(Xn,0)||an−1ε1|1|an−1ε1|>1|ν ].
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By Lemma 1 and (8), the first, third and fourth terms in the proceeding dis-
play are of order O(|an−1|α). The second one, by Hölder’s inequality, has order
‖|Kn(Xn,1)|ν‖p × ‖1|an−1ε1|>1‖q = O(|an−1|

α
q ). So, ‖U‖ν = O(|an−1|

α
νq ). Let

V = Kn−1(Xn,1 +an−1ε
′
1)−Kn−1(Xn,1)−K ′

n−1(Xn,1)an−1ε
′
1. Similarly ‖V ‖ν =

O(|an−1|
α
νq ), which implies ‖Kn(Xn,1)−Kn−1(Xn,1)‖ν = O(|an−1|

α
νq ) in view of

the fact that Kn(x)−Kn−1(x) = E[Kn−1(x+an−1ε
′
1)−Kn−1(x)−an−1ε

′
1K

′
n−1(x)].

Hence ‖Kn−1(Xn,1)−Kn(Xn,0)−K ′
n(Xn,0)an−1ε1‖ν = O(|an−1|

α
νq ). To conclude

the proof, it suffices to verify that ‖K ′
n(Xn,0)−K ′∞(0)‖ν = O[A1/(νq)

n (α)]. Since
K∞(ι) = EKn(ι + Xn,0),

∣∣∣K∞(ι) − K∞(0)
ι

− EK ′
n(Xn,0)

∣∣∣ ≤ E

∣∣∣Kn(ι + Xn,0) − Kn(Xn,0)
ι

− K ′
n(Xn,0)

∣∣∣
≤ |ι|E|LKn(Xn,0)|,

implying that EK ′
n(Xn,0) = K ′∞(0) for sufficiently large n by letting ι ↓ 0. Let

X∗
n,0 =

∑∞
i=n aiε

′
n−i and ∆ = Xn,0 − X∗

n,0. Then E(|∆|α) = O[An(α)]. By
Jensen’s inequality,

‖K ′
n(Xn,0) − K ′

∞(0)‖ν = ‖E[K ′
n(Xn,0) − K ′

n(X∗
n,0)|X0]‖ν

≤ ‖K ′
n(Xn,0) − K ′

n(X∗
n,0)‖ν

≤ ‖[K ′
n(Xn,0) − K ′

n(X∗
n,0)] × 1|∆|≤1‖ν + ‖[K ′

n(Xn,0) − K ′
n(X∗

n,0)] × 1|∆|>1‖ν

which, by (8) and Lemma 1, is of order O[A
1

νq
n (α)] by using the same arguments

as in the proof of Theorem 1.

4. An Open Problem

Theorem 2 can be viewed as a first order expansion of Sn(K); namely it is
approximated by a linear functional

∑n
i=1 Xi. Do higher order expansions exist?

The issue is well understood when the innovations have finite fourth moment, see
Ho and Hsing (1997). Such expansions would enable one to obtain finer results
than Corollary 1 in the degenerate case K ′∞(0) = 0.
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