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Abstract: In this article we study estimation in the additive hazards regression

model with missing censoring indicators. We develop simple procedures to obtain

consistent and efficient estimators for the regression parameters as well as the cu-

mulative baseline hazard function, and derive their asymptotic properties. The

estimator of the regression parameters is shown to be asymptotically normally dis-

tributed, while the estimator of the cumulative baseline hazard function converges

to a Gaussian process. We address both the situations where the mechanism for

missingness of the censoring indicators is independent of any other factors, and

those in which the missingness may depend on the covariates. Monte Carlo studies

are also conducted to evaluate the performance of the estimators.

Key words and phrases: Additive risk, censoring, estimating equation, incomplete

data, Markov process, missing at random.

1. Introduction

When analyzing censored survival data the censoring information may be
missing for some individuals (e.g., autopsy for some subjects may not be carried
out to save expense, or medical records may be missing). Survival models with
missing censoring indicators have been studied by several authors, notably Lo
(1991), Gijbels, Lin and Ying (1993), McKeague and Subramanian (1998), van
der Laan and McKeague (1998) and Subramanian (2000), among others.

In this article we consider the regression analysis of failure times with cen-
soring indicators missing at random. Specifically, let T denote the failure time,
Z(·) be a time-varying covariate vector, and C be a censoring time that is con-
ditionally independent of T given Z(·). Data are available on X = T ∧ C and
Z(t) (0 ≤ t ≤ X), but the censoring indicator δ = I(T ≤ C) may be missing.
When the mechanism for missingness of the censoring indicators is independent
of everything else, it is referred to as missing completely at random (MCAR),
while the more general case of missing at random is known as MAR, see Little
and Rubin (1987).

In the absence of covariates and under MCAR, Dinse (1982) obtained a
nonparametric maximum likelihood estimator (NPMLE) of the survival function
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using the EM algorithm. Lo (1991) proved that there are infinitely many NPM-
LES, some of which may be inconsistent. In addition, ad hoc estimators have
been proposed by Lo (1991), Gijbels, Lin and Ying (1993) and McKeague and
Subramanian (1998). Under the more general MAR scenario, van der Laan and
McKeague (1998) proposed a sieved nonparametric maximum likelihood estima-
tor, and showed that it is asymptotically efficient.

When covariates are present, Gijbels, Lin and Ying (1993) initiated research
on estimation for the Cox model under MCAR; McKeague and Subramanian
(1998) provided an alternative approach to estimation; Subramanian (2000) con-
sidered estimation under proportionality of conditional hazards; Goetghebeur
and Ryan (1995) analyzed competing risks survival data with proportional haz-
ards regression models under MAR, and presented consistent and asymptotically
normal estimators of the regression parameters and related score tests. To date,
however, the estimation for the additive hazards (AH) model (cf. Lin and Ying
(1994)) with missing censoring indicators appears to have not been addressed.

The AH model specifies that the hazard function associated with a set of
covariates is the sum of the baseline hazard function and the regression function
of the covariates. It has been found to be more plausible than the Cox model
for many applications, see Aalen (1980), Cox and Oakes (1984), Breslow and
Day (1987), Lin and Ying (1994) and McKeague and Sasieni (1994). The main
objective of this article is to study the estimation of the regression parameters
as well as the baseline hazard function for the AH model with missing censoring
indicators. We first derive consistent estimators and their asymptotic properties
under MCAR. As the cause of failure may well be influenced by covariates (e.g.,
age, gender, or treatment method), we also study an extension in which the
missingness depends on the covariates.

The rest of the paper is organized as follows. The estimation of the regression
parameters under MCAR is given in Section 2. In Section 3, we provide an
estimator of the cumulative baseline hazard function as well as its asymptotic
properties under MCAR. The extension to the case of the missingness dependent
on the covariates is considered in Section 4. Some Monte Carlo studies on the
proposed estimators are presented in Section 5, followed by some concluding
remarks in Section 6. Finally, detailed proofs are provided Section 7.

2. Estimation of Regression Parameters under MCAR

We first briefly review the AH model studied by Lin and Ying (1994), and
describe their proposed estimator. In the AH model, the hazard function for a
failure time T is assumed to be of the form

λ(t | Z) = λ0(t) + β′
0Z(t), (2.1)
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where Z(t) is a p-vector of possibly time-varying covariates, λ0(t) is an unspecified
baseline hazard function, β0 is a p-vector of unknown regression parameters, and
v′ denotes the transpose of a vector or matrix v. Also let Λ0(t) =

∫ t
0 λ0(s)ds be

the cumulative baseline hazard function.
In the case where the data are fully observed, they consist of independent

triplets (Xi, δi, Zi(t); 0 ≤ t ≤ Xi), i = 1, · · · , n. Lin and Ying (1994) introduced a
pseudoscore function

U0(β) =
n∑

i=1

∫ ∞

0
{Zi(t) − Z̄(t)}{dNu

i (t) − Yi(t)β′Zi(t)dt} (2.2)

as an estimating function for the parameter vector β0, where Nu
i (t) = I(Xi ≤

t, δi = 1), Yi(t) = I(Xi ≥ t), and Z̄(t) =
∑n

i=1 Yi(t)Zi(t)/
∑n

i=1 Yi(t). The
resulting estimator, which takes an explicit form, is consistent and asymptotically
normal with an easily estimated covariance matrix. In addition, the cumulative
baseline hazard Λ0(t) can be consistently estimated by

Λ̃0(t) =
∫ t

0

∑n
i=1{dNu

i (s) − Yi(s)β̃′Zi(s)ds}∑n
i=1 Yi(s)

, (2.3)

which converges weakly to a Gaussian process, where β̃ is an estimate of β0.

In the MCAR case, the observed data consist of n independent and identi-
cally distributed vectors (Xi, ξi, σi, Zi(t), 0 ≤ t ≤ Xi) (i = 1, . . . , n), where ξi is
the indicator that δi is not missing and σi = ξiδi. It is assumed that ξi is inde-
pendent of (Ti, Ci, Zi(·)), and ρ = Pr(ξi = 1) > 0 under MCAR. A naive method
for estimating β0 is to simply ignore the missing data and apply the pseudoscore
function U0 to the complete data only. Such a procedure (called the complete
case estimator) is clearly inefficient if there is a significant amount of missing
data.

Let Hjk(t) = P (Xi ≤ t, ξi = j, σi = k) for (j, k) ∈ {(1, 1), (1, 0), (0, 0)},
and define dΛjk(t) = dHjk(t)/H̄−(t), where H̄(t) = 1 − ∑

(j,k)∈∆ Hjk(t), and
H̄−(t) = H̄(t−). Then the cumulative hazard function of T (denoted by ΛT ) can
be expressed as (McKeague and Subramanian (1998))

ΛT (t | Z) = Λ11(t | Z) + π(t | Z)Λ00(t | Z), (2.4)

where π = Λ11/(Λ11 + Λ10). Define the following pseudoscore functions (cf. Lin
and Ying (1994)):

U11(β, t) =
n∑

i=1

∫ t

0
{Zi(s) − Z̄(s)}ξi{dNu

i (s) − Yi(s)β′Zi(s)ds},
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U10(β, t) =
n∑

i=1

∫ t

0
{Zi(s) − Z̄(s)}ξidN c

i (s), (2.5)

U00(β, t) =
n∑

i=1

∫ t

0
{Zi(s) − Z̄(s)}(1 − ξi){dNi(s) − Yi(s)β′Zi(s)ds},

where Ni(t) = I(Xi ≤ t) and N c
i (t) = (1−δi)Ni(t). In view of (2.4), and following

the idea of McKeague and Subramanian (1998) for the Cox model, we propose
the following estimating function:

U(β, t) = U11(β, t) + P (β, t)U00(β, t), (2.6)

where P (β, t) = diag(U11(β, t))[diag(U11(β, t)) + diag(U10(β, t))]−1, and diag(v)
is the diagonal matrix with diagonal vector v. Let 0 < τ < ∞ be a fixed
quantity. Our proposed estimator β̂ is a solution to the estimating equation
U(β, τ) = 0. It can be shown that there exists a neighborhood of β0 within
which, with probability approaching 1 as n → ∞, the root β̂ of U(β, τ) = 0 is
uniquely defined (see the proof of Theorem 1). Let z̄(t) = E[Yi(t)Zi(t)]/E[Yi(t)].
To establish the asymptotic properties of β̂, we need the following regularity
conditions:
R1. Λ0(τ) < ∞;
R2. Pr(Yi(τ) = 1) > 0;
R3. E[sup0≤t≤τ ‖Zi(t)‖2] < ∞;
R4. A = E[

∫ τ
0 (Zi(t) − z̄(t))⊗2Yi(t)dt] is nonsingular, where a⊗2 = aa′ for any

vector a.

The asymptotic properties of β̂ are given in the following theorem.

Theorem 1. Under R1−R4, the estimator β̂ of β0 is consistent and n1/2(β̂−β0)
converges in distribution to a zero-mean normal random vector with variance

V = A−1ΣA−1 + (ρ−1 − 1)A−1E{NCZ
1 (τ) − B(τ)NZ

1 (τ)}⊗2A−1, (2.7)

where Σ = E[
∫ τ
0 {Zi(s) − z̄(s))}⊗2dNu

i (s)],

NCZ
i (t) =

∫ t

0
{Zi(s) − z̄(s)}dN c

i (s), (2.8)

NZ
i (t) =

∫ t

0
{Zi(s) − z̄(s)}{dNi(s) − Yi(s)β′

0Zi(s)ds}, (2.9)

and B(t) = diag{E[NCZ
1j (t)]/E[NZ

1j(t)], j = 1, . . . , p}.
Note that the first term in (2.7) is the asymptotic variance of the estimator

in Lin and Ying (1994) based on the full data (ρ = 1), and the second term
represents the effect of the missing censoring indicators.
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Let ρ̂ = n−1∑n
i=1 ξi. By plugging β̂ and ρ̂ into the corresponding empirical

estimator in place of the unknown β0 and ρ, and replacing the (unobserved) pro-
cesses Nu

i and N c
i by ρ̂−1ξiN

u
i and ρ̂−1ξiN

c
i (which are observable), respectively,

V̂ = Â−1Σ̂Â−1 + (ρ̂−1 − 1)Â−1Ŵ Â−1 (2.10)

is a consistent estimator of V , where

Â = n−1
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}⊗2Yi(s)ds,

Σ̂ = ρ̂−1n−1
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}⊗2ξidNu

i (s),

Ŵ = n−1
n∑

i=1

{N̂CZ
i (τ) − B̂(τ)N̂Z

i }⊗2,

N̂CZ
i (t) = ρ̂−1

∫ t

0
{Zi(s) − Z̄(s)}ξidN c

i (s),

N̂Z
i (t) =

∫ t

0
{Zi(s) − Z̄(s)}{dNi(s) − Yi(s)β̂′Zi(s)ds},

B̂(t) = diag
{

n−1
n∑

i=1

N̂CZ
ij (t)/n−1

n∑
i=1

N̂Z
ij (t), j = 1, . . . , p

}
.

3. Estimation of Cumulative Baseline Hazard Function under MCAR

The cumulative baseline hazard function Λ0 can be expressed in the same
form as the basic equation (2.4) for ΛT ,

Λ0(t) = Λ0
11(t) + π0(t)Λ0

00(t), (3.1)

where

Λ0
11(t) = ρ

∫ t

0

E[dNu
1 (s) − Y1(s)β′

0Z1(s)ds]
E[Y1(s)]

,

Λ0
10(t) = ρ

∫ t

0

dE[N c
1 (s)]

E[Y1(s)]
,

Λ0
00(t) = (1 − ρ)

∫ t

0

E[dN1(s) − Y1(s)β′
0Z1(s)ds]

E[Y1(s)]
,

π0(t) =
Λ0

11(t)
Λ0

11(t) + Λ0
10(t)

.

This leads to the following estimator of the cumulative baseline hazard function:

Λ̂0(t) = Λ̂0
11(t) + π̂0(t)Λ̂0

00(t), (3.2)
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where

Λ̂0
11(t) =

∫ t

0

∑n
i=1 ξi[dNu

i (s) − Yi(s)β̂′Zi(s)ds]∑n
i=1 Yi(s)

,

Λ̂0
10(t) =

∫ t

0

∑n
i=1 ξidN c

i (s)∑n
i=1 Yi(s)

,

Λ̂0
00(t) =

∫ t

0

∑n
i=1(1 − ξi)[dNi(s) − Yi(s)β̂′Zi(s)ds]∑n

i=1 Yi(s)
,

π̂0(t) =
Λ̂0

11(t)
Λ̂0

11(t) + Λ̂0
10(t)

,

where the last is defined to be zero when the denominator vanishes. The estimator
Λ̂0(t) reduces to the Lin and Ying estimator Λ̃0(t) (see (2.3)) when there are no
missing censoring indicators. The asymptotic properties of the estimator Λ̂0(t)
are given in the next theorem.

Theorem 2. Under the assumptions of Theorem 1, we have (i) sup0≤t≤τ |Λ̂0(t)−
Λ0(t)| p→ 0; (ii) n1/2{Λ̂0(t) − Λ0(t)} converges weakly on [0, τ ] to a zero-mean
Gaussian process whose covariance function at (t, s) (t ≤ s) is

G(t, s) = C1(t, s)
∫ t

0

[λ0(u) + β′
0z̄(u)]du

E[Y1(u)]
+ C2(t, s)

∫ t

0

dE[N c
1(u)]

(E[Y1(u)])2

+C3(t, s)
∫ t

0

∫ t

u

dE[N c
1 (v)]dΛ0(u)

E[Y1(v)]E[Y1(u)]
+ C3(s, t)

∫ t

0

∫ s

u

dE[N c
1(v)]dΛ0(u)

E[Y1(v)]E[Y1(u)]

+C4(t, s)
∫ t

0

[Λ0(t) + Λ0(s) − 2Λ0(u)]λ0(u)du

E[Y1(u)]
+C5(t, s)[d(t)′A−1ΣA−1d(s) − d(t)′A−1D(s) − d(s)′A−1D(t)], (3.3)

where

C1(t, s) = {1+ρD00(t)D10(t)+(1−ρ)D11(t)}{1+ρD00(s)D10(s) + (1−ρ)D11(s)}
+ρ(1 − ρ){1 + D00(t)D10(t) − D11(t)}{1 + D00(s)D10(s) − D11(s)},

C2(t, s) = D11(t)D11(s){1 − ρ − ρD00(t)}{1 − ρ − ρD00(s)}
+ρ(1 − ρ)D11(t)D11(s){1 + D00(t)}{1 + D00(s)},

C3(t, s) = −ρ(1 − ρ)D11(t)(1 + D00(t)){1 + D00(s)D10(s) − D11(s)},
C4(t, s) = ρ(1 − ρ){1 + D00(t)D10(t) − D11(t)}{1 + D00(s)D10(s) − D11(s)},
C5(t, s) = {1+ρD00(t)D10(t)+(1−ρ)D11(t)}{1+ρD00(s)D10(s)+(1−ρ)D11(s)},

Dkl(t, s) =
Λ0

kl(t)
Λ0

11(t) + Λ0
10(t)

, k, l = 0, 1, (3.4)
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d(t) =
∫ t

0
z̄(s)ds, (3.5)

D(t) =
∫ t

0

{
E[Y1(s)Z1(s)⊗2]

E[Y1(s)]
− z̄(s)⊗2

}
β0du.

The covariance in (3.3) can be consistently estimated by plugging β̂ and ρ̂ into the
corresponding empirical estimator in place of the unknown β0 and ρ, and replac-
ing the (unobserved) processes Nu

i and N c
i by ρ̂−1ξiN

u
i and ρ̂−1ξiN

c
i , respectively.

For an individual with a given covariate vector z0(·), the corresponding estimator
of the survival function S(t, z0) is

Ŝ(t, z0) = exp{−Λ̂0(t) −
∫ t

0
β̂′z0(u)du}. (3.6)

By the functional delta-method and Theorem 2, we can get the asymptotic prop-
erties of Ŝ(t, z0) and these can be applied to construct confidence bands for
S(t, z0).

Remark 1. As shown in (3.2), the estimator Λ̂0(t) may not always be mono-
tone in t. However the modification suggested by Lin and Ying (1994), i.e.,
Λ̃∗

0(t) = maxs≤t Λ̂0(t), can ensure the monotonicity of Λ̃∗
0(t) and, under appro-

priate regularity conditions, Λ̃∗
0(t) and Λ̂0(t) are asymptotically equivalent in the

sense that Λ̃∗
0(t) − Λ̂0(t) = op(n−1/2).

4. Missingness Dependent on Covariates

In this section we consider an extension to allow the missing machanism
to depend on the covariates, but under the restriction that the covariates are
time invariant. We assume that, conditional on the covariate Z, the missingness
indicator ξ is independent of T and C.

It is typical in this case to specify a parametric model for the missing data
mechanism (Rubin (1976)), that is,

P (ξi = 1 | Ti, Ci, Zi) = φ(Zi, α), (4.1)

where φ is a known function and α is an unknown parameter vector distinct from
β. Often we can specify φ as a logistic regression function since ξi is binary (cf.
Ibrahim, Lipsitz and Chen (1999) or Lipsitz, Ibrahim and Zhao (1999)). Assume
φ is twice differentiable with respect to α. Because Zi is always observed, we can
get the consistent and asymptotically normal maximum likelihood estimate α̂ of
α based on {Zi}.

Let ρi = φ(Zi, α0), ρ̂i = φ(Zi, α̂), where α0 is the true value of α. Using the
weighted estimating equation procedure (cf. Lipsitz, Ibrahim and Zhao (1999)),
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we propose the following estimating function for β0 under the missingness de-
pendent on the covariates:

U∗(β, t) = U∗
11(β, t) + P ∗(β, t)U∗

00(β, t), (4.2)

where

U∗
11(β, t) =

n∑
i=1

∫ t

0
{Zi − Z̄(s)} ξi

ρ̂i
{dNu

i (s) − Yi(s)β′Zids},

U∗
10(β, t) =

n∑
i=1

∫ t

0
{Zi − Z̄(s)} ξi

ρ̂i
dN c

i (s),

U∗
00(β, t) =

n∑
i=1

∫ t

0
{Zi − Z̄(s)}(1 − ξi

ρ̂i
){dNi(s) − Yi(s)β′Zids},

P ∗(β, t) = diag(U∗
11(β, t))[diag(U∗

11(β, t)) + diag(U∗
10(β, t))]−1.

Our estimator β̂∗ is a solution to the estimating equation U∗(β, τ) = 0, which
reduces to β̂ under MCAR. It can be checked that there exists a unique root β̂∗

of U(β, τ) = 0 in a neighborhood of β0 with probability approaching 1 as n → ∞.

The asymptotic properties of β̂∗ are established in the following theorem.

Theorem 3. Assume that φ is twice differentiable with respect to α, and R1−R4
hold. Then the estimator β̂∗ of β0 is consistent and n1/2(β̂∗ − β0) converges in
distribution to a zero-mean normal random vector with variance A−1(Σ+Φ)A−1,

where

Φ = E
{
ρ−1

1 (1 − ρ1)−1
(
(1 − ρ1)[NCZ

1 (τ) − B(τ)NZ
1 (τ)] − ΩΓ−1 ∂φ(Z1, α0)

∂α

)⊗2}
,

Ω = E
(
ρ1N

CZ
1 (τ)

∂φ(Z1, α0)
∂α′

)
,

Γ = −E
[
ρ1

∂2 log φ(Z1, α0)
∂α∂α′ + (1 − ρ1)

∂2 log(1 − φ(Z1, α0))
∂α∂α′

]
.

The asymptotic variance matrix A−1(Σ + Φ)A−1 can be consistently esti-
mated by Â−1(Σ̂∗ + Φ̂)Â−1, where

Σ̂∗ = n−1
n∑

i=1

∫ τ

0
{Zi − Z̄(s)}⊗2 ξi

ρ̂i
dNu

i (s),

Φ̂ = n−1
n∑

i=1

ρ̂−1
i (1−ρ̂i)−1

[
(1−ρ̂i)[ÑCZ

i (τ)−B̃(τ)N̂Z
i (τ)] − Ω̂Γ̂−1 ∂φ(Zi, α̂)

∂α

]⊗2
,

ÑCZ
i (t) =

∫ t

0
{Zi − Z̄(s)} ξi

ρ̂i
dN c

i (s),
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B̃(t) = diag
{

n−1
n∑

i=1

ÑCZ
ij (t)/n−1

n∑
i=1

N̂Z
ij (t), j = 1, · · · , p

}
,

Ω̂ = n−1
n∑

i=1

ρ̂iÑ
CZ(τ)

∂φ(Zi, α̂)
∂α′ ,

Γ̂ = −n−1
n∑

i=1

[
ξi

∂2 log φ(Zi, α̂)
∂α∂α′ + (1 − ξi)

∂2 log(1 − φ(Zi, α̂))
∂α∂α′

]
.

Â and N̂Z
i (t) are defined following (2.10), and Z̄(t) =

∑n
i=1 Yi(t)Zi/

∑n
i=1 Yi(t)

(which is still time dependent although Zi are time invariant in this section).
Similarly, we can estimate the cumulative baseline hazard function Λ0 by

Λ̂∗
0(t) = Λ̂∗

11(t) + π̂∗(t)Λ̂∗
00(t), (4.3)

where

Λ̂∗
11(t) =

∫ t

0

∑n
i=1

ξi

ρ̂i
[dNu

i (s) − Yi(s)β̂′Zids]∑n
i=1 Yi(s)

, (4.4)

Λ̂∗
10(t) =

∫ t

0

∑n
i=1

ξi

ρ̂i
dN c

i (s)∑n
i=1 Yi(s)

, (4.5)

Λ̂∗
00(t) =

∫ t

0

∑n
i=1(1 − ξi

ρ̂i
)[dNi(s) − Yi(s)β̂′Zids]∑n

i=1 Yi(s)
, (4.6)

π̂∗(t) =
Λ̂∗

11(t)
Λ̂∗

11(t) + Λ̂∗
10(t)

. (4.7)

The estimator Λ̂∗
0(t) reduces to Λ̂0(t) under MCAR. As in Theorem 2, we can

prove that Λ̂∗
0(t) is a consistent estimate of Λ0(t), and n1/2{Λ̂∗

0(t) − Λ0(t)} con-
verges weakly on [0, τ ] to a zero-mean Gaussian process whose covariance function
is more complicated than (3.3). We omit the details.

Remark 2. If the binary regression function φ is unknown, we estimate it by
some nonparametric method, such as kernel smoothing, wavelet method, spline
approximation, or local polynomial modelling, etc. As shown in McKeague and
Subramanian (1998), it would be a non-trivial problem for the nonparametric
method because the ‘curse-of-dimensionality’ implies that φ is difficult to estimate
for high-dimensional covariates. But if there exists a consistent estimator of φ,
then we can estimate β0 as in (4.2).
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5. Simulation Studies

We carried out a small Monte Carlo study to compare the performance of
the proposed estimators with those of the complete case estimators of β0 and
Λ0 under the MCAR model. The case when missingness is dependent on the
covariates is similar, though not reported here. The underlying AH model was
taken to be λ(t | Z) = 1+β′

0Z for β0 = 0, 0.5, 1, where Z is uniformly distributed
on (0, 6). The censoring was exponential with the parameter adjusted to give
prescribed censoring rates. In each case the mean square errors (MSE) of the
various estimators of β0 were computed from 1,000 simulated samples of size
n = 200 each. The results are shown in Tables 1−2. The “full data” estimator is
also included for comparison. The results in Tables 1−2 are classified according
to the value of ρ (0.8 or 0.5). We have also tested selected simulations with 2,000,
5,000 or 10,000 replications, the results are very similar to those in Tables 1 and
2. Figures 1−2 show the plots of the various estimators of Λ0 with β0 = 0.5 and
a single simulation in each case.

Table 1. Simulation results with ρ = 0.8.

Full data Proposed Complete case
P (δ = 0) β0 Mean MSE Mean MSE Mean MSE

0.2 0.2011 0.0053 0.2026 0.0059 0.2048 0.0080
25% 0.5 0.5026 0.0133 0.5042 0.0149 0.5099 0.0198

1.0 1.0107 0.0338 1.0140 0.0372 1.0230 0.0488

0.2 0.2017 0.0174 0.2031 0.0193 0.2095 0.0239
75% 0.5 0.5096 0.0391 0.5104 0.0446 0.5128 0.0570

1.0 1.0141 0.1016 1.0262 0.1102 1.0659 0.1346

Table 2. Simulation results with ρ = 0.5.

Full data Proposed Complete case
P (δ = 0) β0 Mean MSE Mean MSE Mean MSE

0.2 0.2015 0.0055 0.2047 0.0062 0.2076 0.0129
25% 0.5 0.5037 0.0134 0.5097 0.0161 0.5121 0.0334

1.0 1.0115 0.0341 1.0183 0.0378 1.0347 0.0769

0.2 0.2021 0.0177 0.2085 0.0211 0.2102 0.0395
75% 0.5 0.5094 0.0395 0.5112 0.0516 0.5176 0.0972

1.0 1.0152 0.1039 1.0518 0.1407 1.0896 0.2438

From Tables 1 and 2, it is clear that the proposed estimator of β0 is more
efficient than the complete case estimator in all cases, and it makes significant
improvements over the complete case estimator when the censoring is heavy
(75%) and there is a high proportion of missing censoring indicators (ρ = 0.5).
Figures 1−2 and more simulations show that the performance of the proposed
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estimator of Λ0 is close to that of the “full data” estimator, and is better than
that of the complete case estimator in various rates of censoring and missingness.
These results suggest that our proposed estimators of β0 and Λ0 are more efficient
than the complete case estimators, and are adequate for practical use.
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Figure 1. 25% cencoring and 20% missingness.

0
0.1 0.2 0.3 0.4

0.5

0.5 0.6 0.7 0.8 0.9

1

1 1.1

2.1

2

2.5

3

proposed estimator
full data estimator
complete case estimator

Figure 2. 25% cencoring and 50% missingness.
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6. Concluding Remarks

The Cox and AH models provide two principal tools for the analyses of
survival data associated with risk factors. Both models have sound biological and
empirical bases, as pointed out by Breslow and Day (1987), Lin and Ying (1994),
McKeague and Sasieni (1994), and so on. The choice between the two models is
usually an empirical matter, since both models can provide adequate fit to any
given data set if appropriate covariates are introduced. Although no method is
available yet to formally test which of the two models fits the MCAR or MAR
data better, some simple goodness-of-fit methods, such as plots of cumulative
hazard estimates, can be used to check the adequacy of the two models.

We have proposed a simple estimation procedure for the AH model under
MCAR and the case of the missingness dependent on the covariates, based on
the estimating equation approach of McKeague and Subramanian (1998), and
derived the asymptotic properties of the resulting estimators. As the estimator
of Lin and Ying is not efficient (McKeague and Sasieni (1994)), our proposed
estimators based on the estimating functions (2.6) and (4.2) may not be efficient
either. However, simulation studies reported in Section 5 have shown that the
estimators are reasonably good.

It may be possible to further improve the proposed estimators by other
approaches, such as that of McKeague and Sasieni (1994) and the maximum
likelihood methods, which point to a potential direction for further research. In
addition, the estimation procedure for the general Aalen additive model (Aalen
(1980)) and the semiparametric model of McKeague and Sasieni (1994) is also
worth investigating.

A key assumption for the MCAR model is the assumed independence be-
tween the mechanism for missingness and everything else. This may not be
appropriate in practice. We have considered the case of the missingness de-
pendent on the covariates in Section 4. This is an important case in practice,
because the availability of the censoring information (e.g., the cause of death)
often depends on such covariates as age, gender, treatment method, etc. The
more general MAR where the missingness may depend on other random factors,
including the failure times, needs further investigations and is of considerable
interest in applications.

Recently, Ibrahim, Lipsitz and Chen (1999) proposed a maximum likelihood
method for estimating parameters in generalized linear models with missing co-
variates and a non-ignorable missing data mechanism, and used a Monte Carlo
version of the EM algorithm to obtain the maximum likelihood estimates. Their
likelihood approach, however, is difficult to apply to the extension considered in
Section 4 because the AH model is semiparametric and the missing information is
on censoring indicators instead of covariates. The estimating equation approach,
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on the other hand, can be easily applied to such situations. Furthermore, we
should point out that the proposed missing mechanism in (4.1) is similar to the
missing data mechanism considered by Ibrahim, Lipsitz and Chen (1999) and
Lipsitz, Ibrahim and Zhao (1999).

7. Proofs

Proof of Theorem 1. The results are proved using the same techniques as
in McKeague and Subramanian (1998), and therefore only limited details are
provided here. First, a Taylor expansion of U(β̂, τ) around β0 yields

n−1/2U(β0, τ) = n−1I(β∗, τ)n1/2(β̂ − β0), (7.1)

where β∗ is on the line segment between β̂ and β0, and I(β, τ) is minus the
derivative matrix of U(β, τ) with respect to β′. The essential part of the proof is
to show the asymptotic normality of n−1/2U(β0, τ) and the consistency of β̂. Here
we only consider the case of a one-dimensional covariate, since the general case
is similar. We first show the asymptotic normality of n−1/2U(β0, τ). Following
(2.6) we can write

U(β, t) = U11(β, t) + U00(β, t) − P̃ (β, t)U10(β, t), (7.2)

where P̃ (β, t) = diag(U00(β, t))[diagU11(β, t)+diagU10(β, t)]−1 and U00, U11 and
U10 are defined in (2.5). Note that

∑n
i=1

∫ t
0{Zi(s)−Z̄(s)}Yi(s)λ0(s)ds = 0. Hence

U11(β0, t) =
n∑

i=1

∫ t

0
{Zi(s) − Z̄(s)}(ξi − ρ)[dNu

i (s) − Yi(s)β′
0Zi(s)ds]

+ρ
n∑

i=1

∫ t

0
{Zi(s) − Z̄(s)}dMi(s), (7.3)

U00(β0, t) =
n∑

i=1

∫ t

0
{Zi(s) − Z̄(s)}(1 − ξi)dMi(s)

+
n∑

i=1

∫ t

0
{Zi(s) − Z̄(s)}(ρ − ξi)Yi(s)λ0(s)ds

+
n∑

i=1

∫ t

0
{Zi(s) − Z̄(s)}(1 − ξi)dN c

i (s), (7.4)

where Mi(t) = Nu
i (t)−∫ t

0 Yi(s){dΛ0(s)+β′
0Zi(s)ds}. Write P̃ (β, t) = Q−1(β, t)−

1, where

Q(β, t) =
n∑

i=1

∫ t

0
{Zi(s) − Z̄(s)}ξi[dNi(s) − Yi(s)β′Zi(s)ds]

×
{ n∑

i=1

∫ t

0
(Zi(s) − Z̄(s))[dNi(s) − Yi(s)β′Zi(s)ds]

}−1
.
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Using (7.3)−(7.4), we have

U(β0, t) = A1(t) + A2(t), (7.5)

where A1(t) =
∑n

i=1

∫ t
0{Zi(s)− Z̄(s)}dMi(s) and A2(t) =

∑n
i=1

∫ t
0{Zi(s)− Z̄(s)}

(1 − ξiQ
−1(β0, t))dN c

i (s).
Using the Functional Central Limit Theorem (Pollard (1990, p.53)), it can

be checked that since sup0≤t≤τ |Q(β0, t) − ρ| = Op(n−1/2) and

sup
0≤t≤τ

∣∣∣∣n−1
n∑

i=1

ξi

∫ t

0
{Zi(s)−Z̄(s)}dN c

i (s)−ρE

[ ∫ t

0
{Zi(s)−z̄(s)}dN c

i (s)
]∣∣∣∣ = op(1),

A2(t) =
n∑

i=1

∫ t

0
{Zi(s) − Z̄(s)}

(
1 − ξi

ρ

)
dN c

i (s)

+
n∑

i=1

ξi

∫ t

0
{Zi(s) − Z̄(s)}dN c

i (s)
Q(β0, t) − ρ

ρQ(β0, t)

=
n∑

i=1

ρ−1(ρ − ξi)NCZ
i (t) + nρ−1(Q(β0, t) − ρ)E[NCZ

1 (t)] + op(n1/2)

uniformly on [0, τ ], where NCZ
i (t) is defined in (2.8). Applying the delta method

(Andersen, Borgan, Gill and Keiding (1993, p.109)) gives

Q(β0, t) − ρ

=
1

E[NZ
1 (t)]

n∑
i=1

(ξi − ρ)
∫ t

0
{Zi(s) − z̄(s)}[dNi(s) − Yi(s)β′

0Zi(s)ds] + op(n−1/2)

uniformly on [0, τ ], where NZ
i (t) is defined in (2.9). Therefore,

A2(t) = ρ−1
n∑

i=1

(ρ − ξi){NCZ
i (t) − B(t)NZ

i (t)} + op(n1/2) (7.6)

uniformly on [0, τ ].
It follows from (7.5)−(7.6) that n−1/2U(β0, τ) converges in distribution to a

normal random vector with mean zero and variance Σ + (ρ−1 − 1)E{NCZ
1 (τ) −

B(τ)NZ
1 (τ)}⊗2.

We next prove the consistency of β̂. It follows from (7.2) that

−n−1∂U(β, τ)
∂β′ = n−1

n∑
i=1

∫ τ

0
{Zi(s) − Z̄(s)}Yi(s)Z ′

i(s)ds + Rn(β, τ),
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Rn(β, τ) = n−1
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}ξidN c

i (s)

×
{ n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}Yi(s)Z ′

i(s)ds

×
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}ξi[dNi(s) − Yi(s)β′Zi(s)ds]

−
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}ξiYi(s)Z ′

i(s)ds

×
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}[dNi(s) − Yi(s)β′Zi(s)ds]

}

×
( n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}ξi[dNi(s) − Yi(s)β′Zi(s)ds]

)−2
.

Using the independence assumption of the MCAR model and the Uniform Strong
Law of Large Numbers (Pollard (1990, p.41)), we have, almost surely,

n−1
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}ξidN c

i (s) → ρENCZ
1 (τ),

n−1
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}ξi[dNi(s) − Yi(s)β′

0Zi(s)ds] → ρENZ
1 (τ),

n−1
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}Yi(s)Z ′

i(s)ds → E
[ ∫ τ

0
{Z1(s) − z̄(s)}Y1(s)Z ′

1(s)ds
]
,

n−1
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}ξi[dNi(s) − Yi(s)β′

0Zi(s)ds] → ρENZ
1 (τ),

n−1
n∑

i=1

∫ τ

0
{Zi(s)−Z̄(s)}ξiYi(s)Z ′

i(s)ds → ρE
[ ∫ τ

0
{Z1(s)−z̄(s)}Y1(s)Z ′

1(s)ds
]
,

n−1
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}[dNi(s) − Yi(s)β′

0Zi(s)ds] → ENZ
1 (τ).

Thus, Rn(β0, τ) = o(1) almost surely. Therefore,

− n−1 ∂U(β0, τ)
∂β′ → A (7.7)

almost surely. Note that ∂U(β, τ)/∂β′, as a function of β, is uniformly continuous
in a neighborhood of β0. Along the lines of Lin and Ying (1995, p.1717) (see also
Andersen and Gill (1982) or Foutz (1977)), we conclude that β̂ exists and is
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consistent, and that I(β∗, τ) → A almost surely. This completes the proof of
Theorem 1.

Proof of Theorem 2(i). Using Λ0
11(t) = ρΛ0(t), we get

Λ̂0
11(t) − Λ0

11(t) =
n∑

i=1

ρ

∫ t

0

dMi(s)∑n
i=1 Yi(s)

+ ρ(β0 − β̂)′
n∑

i=1

∫ t

0

Yi(s)Zi(s)ds∑n
i=1 Yi(s)

−β̂′
n∑

i=1

∫ t

0

(ξi − ρ)Yi(s)Zi(s)ds∑n
i=1 Yi(s)

+
n∑

i=1

∫ t

0

(ξi − ρ)dNu
i (s)∑n

i=1 Yi(s)
.

Note that sup0≤t≤τ

∣∣∣n−1∑n
i=1 Yi(t)−E[Y1(t)]

∣∣∣ = Op(n−1/2). Hence the first term
in the above sum is a martingale integral with a variance function converging to
0 in probability, uniformly in t. The second term converges to 0 uniformly in t
by consistency of β̂. The third term tends to 0 uniformly in t as well, because
its integrand converges uniformly to 0 by R3 and the Chebyshev inequality. The
last term is asymptotically equivalent to

n−1
n∑

i=1

∫ t

0

(ξi − ρ)dNu
i (s)

E[Y1(s)]
,

which converges uniformly to 0 by R2 and the Law of Large Numbers. Thus
Λ̂0

11(t) is uniformly consistent to Λ0
11(t). Likewise, the consistency of Λ̂0

10(t) and
Λ̂0

00(t) can be obtained. This proves part(i) of Theorem 2.

Proof of Theorem 2(ii). It follows from (3.1)−(3.2) that

n1/2(Λ̂0(t) − Λ0(t)) =

(
1 +

D00(t)Λ0
10(t)

Λ̂10(t) + Λ̂0
11(t)

)
n1/2(Λ̂0

11(t) − Λ0
11(t))

+
Λ0

11(t)
Λ̂10(t) + Λ̂0

11(t)
n1/2(Λ̂0

00(t) − Λ0
00(t))

− D00(t)Λ0
11(t)

Λ̂10(t) + Λ̂0
11(t)

n1/2(Λ̂0
10(t) − Λ0

10(t)), (7.8)

where Dkl(t) (k, l = 0, 1) are defined in (3.4). Along the lines of the proof of
Theorem 3.1 in Lin and Ying (1995, p.1722), we have

n1/2(Λ̂0
11(t) − Λ0

11(t)) = ρn−1/2
∫ t

0

∑n
i=1 dMi(s)
E[Y1(s)]

+ρd(t)′A−1n−1/2
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}dMi(s)

+n−1/2
n∑

i=1

(ξi − ρ)
∫ t

0

dNu
i (s) − Yi(s)β′

0Zi(s)ds

E[Y1(s)]

+op(1) (7.9)
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uniformly on [0, τ ], where d(t) is defined in (3.5). Applying the delta method
gives

n1/2(Λ̂0
10(t) − Λ0

10(t)) = ρn1/2

(
n∑

i=1

∫ t

0

dN c
i (s)∑n

i=1 Yi(s)
−
∫ t

0

dE[N c
1 (s)]

E[Y1(s)]

)

+n1/2
n∑

i=1

∫ t

0

(ξi − ρ)dN c
i (s)∑n

i=1 Yi(s)

= ρn−1/2
n∑

i=1

∫ t

0

d(N c
i (s) − E[N c

1(s)])
E[Y1(s)]

−ρn−1/2
n∑

i=1

∫ t

0

(Yi(s) − E[Y1(s)])dE[N c
1 (s)]

(E[Y1(s)])2

+n−1/2
n∑

i=1

(ξi − ρ)
∫ t

0

dN c
i (s)

E[Y1(s)]
+ op(1) (7.10)

uniformly on [0, τ ]. Similarly, we get

n1/2(Λ̂0
00(t) − Λ0

00(t)) = (1 − ρ)n−1/2
n∑

i=1

∫ t

0

dM c
i (s)

E[Y1(s)]

+(1 − ρ)d(t)′A−1n−1/2
n∑

i=1

∫ τ

0
{Zi(s) − Z̄(s)}dMi(s)

+n−1/2
n∑

i=1

(ρ − ξi)
∫ t

0

dNi(s) − Yi(s)β′
0Zi(s)ds

E[Y1(s)]

+(1 − ρ)n−1/2
n∑

i=1

∫ t

0

d(N c
i (s) − E[N c

1 (s)])
E[Y1(s)]

−(1 − ρ)n−1/2
n∑

i=1

∫ t

0

(Yi(s) − E[Y1(s)])dE[N c
1 (s)]

(E[Y1(s)])2

+op(1) (7.11)

uniformly on [0, τ ]. In view of (7.8)−(7.11) and the proof of Theorem 2(i), we
obtain

n1/2(Λ̂0(t) − Λ0(t)) =
4∑

i=1

Sni(t) + op(1) (7.12)

uniformly on [0, τ ], where

Sn1(t) =
(
1 + ρD00(t)D10(t) + (1 − ρ)D11(t)

)
n−1/2

n∑
i=1

[ ∫ t

0

dMi(s)
E[Y1(s)]

+d(t)′A−1
∫ τ

0
{Zi(s) − Z̄(s)}dMi(s)

]
,
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Sn2(t) =
(
1 + D00(t)D10(t) − D11(t)

)

×n−1/2
n∑

i=1

(ξi − ρ)
∫ t

0

dNu
i (s) − Yi(s)β′

0Zi(s)ds

E[Y1(s)]
,

Sn3(t) = −D11(t){1 + D00(t)}n−1/2
n∑

i=1

(ξi − ρ)
∫ t

0

dN c
i (s)

E[Y1(s)]
,

Sn4(t) = D11(t)
(
1 − ρ − ρD00(t)

)
n−1/2

n∑
i=1

{∫ t

0

d(N c
i (s) − E[N c

1(s)])
E[Y1(s)]

−
∫ t

0

(Yi(s) − E[Y1(s)])dE[N c
i (s)]

(E[Y1(s)])2

}
.

Since
∑4

i=1 Sni(t) is a sum of i.i.d. processes, the convergence of the finite di-
mensional distribution of

∑4
i=1 Sni(t) follows from the Multivariate Central Limit

Theorem. To prove that
∑4

i=1 Sni(t) is tight, it suffices to show the tightness for
each Sni(t), i = 1, 2, 3, 4. First, Sn1(t) is tight as it is a martingale integral.
Next, note that Zi(t) = max{Zi(t), 0} − max{−Zi(t), 0}, so we can also write∫ t
0 Yi(s)β′

0Zi(s)ds/E[Y1(s)] as the sum of two monotone processes on [0, τ ]. It
follows that (ξi − ρ)

∫ t
0{dNu

i (s) − Yi(s)β′
0Zi(s)ds}/E[Y1(s)] can be written as

sums of monotone processes, and the tightness of Sn2(t) follows from Example
2.11.16 of van der Vaart and Wellner (1996). Furthermore, for each i, the process
(ξi − ρ)

∫ t
0 dN c

i (s)/E[Y1(s)] has mean zero and can be expressed as the sum of
two monotone processes on [0, τ ]. Thus, Sn3(t) is also tight. Finally, the tight-
ness of Sn4(t) follows from some basic properties of empirical processes (Shorack
and Wellner (1986, p.109)). This proves the weak convergence of Theorem 2(ii).
Moreover, a straightforward calculation yields (3.3), which completes the proof
of Theorem 2(ii).

Proof of Theorem 3. As in the proof of Theorem 1, we can write

U∗(β0, t) = A1(t) + A∗
2(t) + A∗

3(t), (7.13)

where A1(t) is defined in (7.5), and

A∗
2(t) =

n∑
i=1

∫ t

0
{Zi − Z̄(s)}(1 − ξi

ρiQ∗(β0, t)
)dN c

i (s),

A∗
3(t) =

n∑
i=1

∫ t

0
{Zi − Z̄(s)} ξi

Q∗(β0, t)
(
1
ρi

− 1
ρ̂i

)dN c
i (s),

Q∗(β, t) =
n∑

i=1

∫ t

0
{Zi − Z̄(s)} ξi

ρ̂i
[dNi(s) − Yi(s)β′Zids]

×
{ n∑

i=1

∫ t

0
(Zi − Z̄(s))[dNi(s) − Yi(s)β′Zids]

}−1
.
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Note that α̂ − α0 = Op(n−1/2) and ξi is conditionally independent of (Ti, Ci)
given Zi. Using the Taylor expansion of φ(Zi, α̂) around α0, we obtain

sup
0≤t≤τ

|Q∗(β0, t) − 1| = Op(n−1/2) (7.14)

and

sup
0≤t≤τ

∣∣∣∣n−1
n∑

i=1

ξi

ρi

∫ t

0
{Zi − Z̄(s)}dN c

i (s) − E

[ ∫ t

0
{Zi − z̄(s)}dN c

i (s)
]∣∣∣∣ = op(1).

Thus,

A∗
2(t) =

n∑
i=1

∫ t

0
{Zi − Z̄(s)}

(
1 − ξi

ρi

)
dN c

i (s)

+
n∑

i=1

ξi

ρi

∫ t

0
{Zi − Z̄(s)}dN c

i (s)
Q∗(β0, t) − 1

Q∗(β0, t)

=
n∑

i=1

ρ−1
i (ρi − ξi)NCZ

i (t) + nρ−1
i (Q∗(β0, t) − 1)E[NCZ

1 (t)] + op(n1/2)

uniformly on [0, τ ]. Note that Q∗(β0, t) in the denominator above can be replaced
with 1 in view of (7.14). In addition, the delta method gives

Q∗(β0, t) − 1 =
1

E[NZ
1 (t)]

n∑
i=1

ρ−1
i (ξi − ρi)NZ

i (t) + op(n−1/2)

uniformly on [0, τ ]. Therefore,

A∗
2(t) =

n∑
i=1

ρ−1
i (ρi − ξi){NCZ

i (t) − B(t)NZ
i (t)} + op(n1/2) (7.15)

uniformly on [0, τ ]. Note that each ξi is a binary variable. Thus it follows from
likelihood theory that

α̂ − α0 = Γ−1 1
n

n∑
i=1

ξi − ρi

ρi(1 − ρi)
∂φ(Zi, α0)

∂α
+ op(n−1/2). (7.16)

Using (7.14), (7.16) and the delta method, we have

A∗
3(t) = E

(
ρ1N

CZ
1 (t)

∂φ(Z1, α0)
∂α′

)
Γ−1

n∑
i=1

ξi − ρi

ρi(1 − ρi)
∂φ(Zi, α0)

∂α
+ op(n1/2).

(7.17)
It follows from (7.13), (7.15) and (7.17) that n−1/2U∗(β0, τ) converges in distri-
bution to a zero mean normal random vector with variance Σ + Φ. Similar to
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(7.7), we get −n−1∂U∗(β0, τ)/∂β′ → A almost surely. Consequently, the results
of Theorem 3 follow from the same arguments as in the proof of Theorem 1.
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