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Abstract: For general regular parametric models, we compare predictive densities

under the criterion of average Kullback-Leibler divergence. Asymptotic results

are given via a Bayesian route without any assumption on curved exponentiality.

We also address the issue of asymptotic admissibility of predictive densities and

give a complete characterization when the underlying parameter is scalar-valued.

Bayes predictive densities are considered in particular and the status of probability

matching priors in this regard is examined. Finally, we indicate the consequences

of working under more general α-divergences.
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1. Introduction

Predictive densities have been of considerable recent interest in the context
of predicting a future observation from a parametric model on the basis of past
ones. A predictive density may or may not belong to the parametric family under
consideration. In the former case, it is referred to as an estimative density. Bayes
and generalized Bayes predictive densities (Komaki (1996), Corcuera and Gium-
mole (1999a), Datta, Mukerjee, Ghosh and Sweeting (2000)) are, on the other
hand, notable examples of the latter case. In a pioneering work, Aitchison (1975)
showed that Bayes predictive densities can dominate estimative densities with re-
gard to closeness to the true density. This observation was further reinforced by
Harris (1989) who introduced parametric bootstrap predictive densities. Vidoni
(1995) gave a computationally simpler approximation to the proposal of Harris
(1989). In recent years, significantly new ground was broken by Komaki (1996)
and Corcuera and Giummole (1999a, b) for curved exponential models. Under
the criterion of average Kullback-Leibler divergence, Komaki (1996) obtained
asymptotic results on improving estimative densities. Corcuera and Giummole
(1999b) extended these results to more general α-divergences. Further results
on generalized Bayes predictive densities, associated with α-divergences, were
reported by Corcuera and Giummole (1999a). More references on predictive
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densities are available in the last three papers; see also Komaki (2001) for in-
teresting results on a shrinkage predictive distribution for multivariate normal
observations. We refer to Barndorff-Nielsen and Cox (1996, Section 2) for a brief
but very informative review of the developments in the general area of prediction.

The present article has two objectives. First, we aim to compare predic-
tive densities for general regular parametric models, avoiding any assumption
on curved exponentiality. This issue was left open by Corcuera and Giummole
(1999a) in their concluding remarks. We work with a very general class of pre-
dictive densities and, without the curved exponentiality assumption, obtain an
essentially complete subclass thereof in an asymptotic sense. In particular, for
curved exponential models, this subclass includes the improved versions of es-
timative densities proposed in the literature. The above is done in Section 2
and the proofs, that follow via a transparent Bayesian route, are sketched in the
appendix.

Our second objective is to make further comparisons within the essentially
complete subclass mentioned above. This is done via consideration of asymptotic
admissibility, an issue that has been hitherto unexplored in the context of pre-
dictive densities, even for curved exponential models. Borrowing ideas from the
asymptotic theory of point estimation, rather than prediction, we give a complete
characterization for such admissibility when the underlying model is indexed by
a scalar parameter θ. This is done in Section 3. In Section 4, we give examples
illustrating how the present general results can facilitate meaningful comparisons
even for vector θ.

Throughout, we maintain an interest in Bayes predictive densities, especially
those arising from improper priors that have been advocated from other consid-
erations. In particular, our examples examine how probability matching priors
for prediction (Datta et al (2000)) behave in the present setup. Quite counter-
intuitively it is seen that, even for scalar θ, Jeffreys’ prior may be inadmissible
in spite of having the probability matching property. It is also seen that for vec-
tor θ the present approach can help in narrowing down the class of probability
matching priors.

For ease in presentation, in Sections 2-4, we work under the criterion of av-
erage Kullback-Leibler divergence. As noted in Komaki (1996), this is a natural
measure of divergence having a concrete interpretation, for instance, in cod-
ing theory. Indeed, all our results have their counterparts for more general α-
divergences. This point has been indicated briefly in Section 5.

2. Asymptotic Results on Predictive Densities

2.1. Preliminaries

Let X1, . . . ,Xn be possibly vector-valued observations that are independent
and identically distributed with common density f(x; θ), where θ is an unknown



PREDICTIVE DENSITIES 1167

parameter. On the basis of Z = (X1,X2, . . . ,Xn), we intend to predict a future
independent observation from the model f(x; θ). Standard regularity conditions
are assumed. In particular the parameter space for θ = (θ1, θ2, . . . , θp)T is sup-
posed to be Rp or an open set therein, and the support X of f(x, θ) is supposed
to be free from θ. Furthermore, the per observation Fisher information matrix
I ≡ I(θ) is supposed to be positive definite for all θ, and we assume the existence
of a valid Edgeworth expansion for the distribution of

√
n(θ̂ − θ), where θ̂ is the

maximum likelihood estimator of θ based on Z. All stochastic expansions in this
paper are over a set with Pθ−probability 1 + o(n−2), uniformly on compact sets
of θ (cf. Bickel and Ghosh (1990)).

For 1≤ i, j≤ p, let Di ≡ ∂/∂θi, fi(x; θ)=Dif(x; θ), fij(x; θ)=DiDjf(x; θ),
mi(x; θ) = fi(x; θ)/f(x; θ) and mij(x; θ) = fij(x; θ)/f(x; θ). On the basis of
Z, we consider a very general class F of predictive densities such that each
f∗(x;Z) ∈ F admits a stochastic expansion of the form

f∗(x;Z) = f(x; θ̂) + n−1e1(x;Z) + Mn, (2.1)

where Mn is at most of order O(n−2), e1(x;Z) is at most of order O(1) and
satisfies ∫

X
e1(x;Z)dx = 0. (2.2)

For each f∗(x;Z) ∈ F , it is assumed that the integrals

W (Z) =
∫
X

{
e1(x;Z)/f(x; θ̂)

}2
f(x; θ̂)dx,

Vi(Z) =
∫
X

e1(x;Z)mi(x; θ̂)dx, Vij(Z) =
∫
X

e1(x;Z)mij(x; θ̂)dx, (2.3)

exist and satisfy

W (Z) = B(θ) + o(1), Vi(Z) = Gi(θ) + o(1), Vij(Z) = Gij(θ) + o(1), (2.4)

where B(·), Gi(·) (1 ≤ i ≤ p) and Gij(·) (1 ≤ i, j ≤ p) are some smooth
functions with functional form free from n.

The condition (2.2) is natural since both f∗(x; Z) and f(x; θ̂) are densities.
The existence of the integrals in (2.3) is necessary in order that stochastic expan-
sions for the divergence measures considered here be available. The conditions
in (2.4) are needed for computing the average of any such divergence up to the
desired order of approximation. The class F is very rich and contains virtually
all predictive densities that are amenable to an asymptotic analysis. This in-
cludes estimative densities associated with the maximum likelihood estimator or
a perturbed version thereof, parametric bootstrap predictive densities of Harris
(1989), as well as Bayes and generalized Bayes predictive densities.
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In this and the next two sections, the predictive densities f∗(x;Z) ∈ F are
evaluated on the basis of their average Kullback-Leibler divergence from the true
density, as given by

H(θ) = Eθ

[∫
X

f(x; θ) log {f(x; θ)/f∗(x;Z)} dx

]
. (2.5)

The smaller is H as a function of θ, the better is the predictive fit of f∗(x;Z). Let
H0(θ) be H(θ) when f∗(x;Z) is taken as the simple estimative density f(x; θ̂).

Some more notation will help. Let m(1)(x; θ) and m(2)(x; θ) be vectors, of
orders p × 1 and p2 × 1, having elements mi(x; θ)(1 ≤ i ≤ p) and mij(x; θ)(1 ≤
i, j ≤ p), respectively. Define m(x; θ) =

[
m(1)(x; θ)T , m(2)(x; θ)T

]T
and

A(θ) =

[
A11(θ) A12(θ)
A21(θ) A22(θ)

]
=
∫
X

{
m(x; θ)m(x; θ)T

}
f(x; θ)dx, (2.6)

where A11(θ) is p×p and so on. Note that A11(θ) = I where I is the per observa-
tion Fisher information matrix. Write I−1 = ((Iij)) and let Ψ ≡ Ψ(θ) be a p2×1
vector with elements Iij(1≤ i, j≤p). Also, let Ljrs ≡ Eθ {DjDrDs log f(X1; θ)}.

2.2. Asymptotic results

Consider f∗(x;Z) ∈ F having a stochastic expansion as in (2.1), the asso-
ciated W (Z), Vi(Z), Vij(Z) and B(θ), Gi(θ), Gij(θ) being as in (2.3) and (2.4),
respectively. Let V (1)(Z), V (2)(Z), G(1)(θ) and G(2)(θ) be vectors, of orders p×1,
p2×1, p×1 and p2×1, having elements Vi(Z) (1 ≤ i ≤ p), Vij(Z) (1 ≤ i, j ≤ p),
Gi(θ) (1 ≤ i ≤ p) and Gij(θ) (1 ≤ i, j ≤ p), respectively. Then with reference to
such an f∗(x;Z), the following theorem holds. In part (a) of the theorem, and
elsewhere, we follow the summation convention with sums ranging from 1 to p
over repeated subscripts or superscripts.

Theorem 1.

(a) H(θ) − H0(θ) = n−2∆(θ) + o(n−2), where

∆(θ) = Dj
{
IijGi(θ)

}− 1
2IisIjrLjrsGi(θ)

+1
2

{
B(θ) − ΨTG(2)(θ)

}
.

(b) B(θ) − ΨTG(2)(θ) ≥ q(θ)T Iq(θ) − 1
4ΨT A22(θ)Ψ,

where q(θ) = I−1
{
G(1)(θ) − 1

2A12(θ)Ψ
}

.

(2.7)

Theorem 1, proved in the appendix, helps to identify an essentially complete
subclass of F under the criterion considered here. Let F0 be a subclass of F
consisting of predictive densities for which

e1(x;Z) = gi(Z)fi(x; θ̂) + gij(Z)fij(x; θ̂), (2.8)
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where the gi(Z) and gij(Z) are at most of order O(1) and satisfy

gi(Z) = di(θ) + o(1), gij(Z) =
1
2
Iij + o(1), (2.9)

the di(·) being some smooth functions with functional form free from n. By (2.3),
(2.4) and (2.6), for such a predictive density in F0, we have

B(θ) = d(θ)T A11(θ)d(θ) + ΨTA21(θ)d(θ) +
1
4
ΨT A22(θ)Ψ,

G(i)(θ) = Ai1(θ)d(θ) +
1
2
Ai2(θ)Ψ, (i = 1, 2), (2.10)

where d(θ) is a p × 1 vector with elements di(θ)(1 ≤ i ≤ p).

Theorem 2. Given any predictive density in F , there exists one in F0 such that
∆(θ) for the latter does not exceed that for the former, for any θ.

In view of Theorem 2, proved in the appendix, hereafter we consider only
the class F0. For any member of F0, with the associated vector d(θ) defined via
(2.9), it follows from (2.7) and (2.10) that ∆(θ) = ∆0(θ) + ∆1(θ), where ∆1(θ)
is the same for all members of F0, and

∆0(θ) = Di {di(θ)} − 1
2
IjrLjrsds(θ) +

1
2
d(θ)T Id(θ), (2.11)

recalling that A11(θ) = I. By (2.9) the class F0 excludes estimative densities
but includes the predictive densities constructed by Komaki (1996) for curved
exponential models. Following Komaki (1996) or Datta et al (2000), it also
includes the Bayes predictive density corresponding to any smooth and positive
prior π(·), the associated di(·) being given by

di(θ) = Iij πj(θ)
π(θ)

+
1
2
IisIjrLjrs, (1 ≤ i ≤ p), (2.12)

where πj(θ) = Djπ(θ). Substituting (2.12) in (2.11), the part of ∆0(θ)(or equiv-
alently of ∆(θ)) that involves π(·) is

∆π(θ) = Di

{
Iij πj(θ)

π(θ)

}
+

1
2
Iij

{
πi(θ)
π(θ)

}{
πj(θ)
π(θ)

}
. (2.13)

Since DiI
ij = IirIjs(Li,rs + Lirs) (see Ghosh and Mukerjee (1991)), where

Li,rs = Eθ [{Di log f(X1; θ)}{DrDs log f(X1; θ)}] , (2.14)

use of Bartlett conditions shows that (2.13) is in agreement with equation (17) of
Corcuera and Giummole (1999a). They considered curved exponential models,
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but left open the issue of extension beyond such models. Incidentally, apart from
settling this open issue, (2.13) looks somewhat simpler as well.

Before concluding this section, we indicate a connection between Theorem
1 and the findings in Corcuera and Giummole (2000). Let F∗ be a subclass of
F consisting of predictive densities for which G(1)(θ) = 0, identically in θ. Since
A11(θ) = I, it is clear from (2.10) that any member of F0 with

d(θ) = −1
2
I−1A12(θ)Ψ (2.15)

belongs to F∗. Furthermore, by Theorem 1(b) and (2.10), it is not hard to see
that such a member of F0 minimizes ∆(θ) over F∗. This is in agreement with
Proposition 3 of Corcuera and Giummole (2000) when the latter is interpreted
in our setup with reference to Kullback-Leibler divergence. A member of F0

satisfying (2.15), however, is not guaranteed to minimize ∆(θ), or equivalently
∆0(θ), over the class F0. This will be evident from Example 1 in the next section.

3. Admissibility Results for Scalar Parameter

We now turn to the problem of comparing predictive densities in F0 on the
basis of ∆(θ) or equivalently ∆0(θ). While minimization of ∆0(θ) uniformly in
θ is not possible, the problem can be addressed via admissibility considerations.
A predictive density in F0 will be called second-order admissible if there is no
other member of F0 such that ∆0(θ) for the latter is less than or equal to that
of the former for all θ, with strict inequality for some θ. A prior will be called
second-order admissible if the corresponding Bayes predictive density is so in F0.
Clearly, by Theorem 2, second-order admissibility in F0 is equivalent to that in
the larger class F .

We now consider the case of scalar θ and present a complete characterization
of second-order admissibility in the above sense. Let (θ−, θ+) be the parameter
space for θ, where θ− < θ+ and θ− = −∞ or θ+ = +∞ are possible. The p × 1
vector d(θ), associated with any member of F0, now reduces to the scalar d1(θ).
Similarly, I(≡ I(θ)) becomes a scalar and we write L(≡ L(θ)) for L111. Formula
(2.11) for ∆0(θ) then becomes

∆0(θ) =
1
2
I {d1(θ)}2 + d′1(θ) − 1

2
I−1Ld1(θ), (3.1)

where the prime denotes differentiation with respect to θ.
Consider now two members f̄(x;Z) and f̃(x;Z) of F0. Let d̄1(θ) and ∆̄0(θ)

be the expressions for d1(θ) and ∆0(θ) associated with f̄(x;Z). Similarly, define
d̃1(θ) and ∆̃0(θ) with reference to f̃(x;Z). Then by (3.1), ∆̃0(θ) − ∆̄0(θ) =
(1/2)I

[{λ(θ)}2 + 2I−1λ′(θ) + 2λ(θ)b(θ)
]
, where λ(θ) = d̃1(θ)− d̄1(θ) and b(θ) =

d̄1(θ) − (1/2)I−2L. Hence, following a result of Ghosh and Sinha (1981) in the
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context of point estimation, f̄(x;Z) is second-order admissible in F0 if and only
if ∫ θ0

θ−
I(θ) exp

{∫ θ0

θ
b(u)I(u)du

}
dθ = ∞ and

(3.2)∫ θ+

θ0

I(θ) exp

{∫ θ0

θ
b(u)I(u)du

}
dθ = ∞,

for some θ0 ∈ (θ−, θ+).
Further reduction of (3.2) is possible for Bayes predictive densities. By (2.12),

for scalar θ and with reference to the predictive density corresponding to a prior
π(·), we get

d1(θ) = I−1 {π′(θ)/π(θ)
}

+
1
2
I−2L, (3.3)

so that b(θ) becomes I−1{π′(θ)/π(θ)}. Therefore, by (3.2), π(·) is second-order
admissible if and only if

∫ θ0

θ−

I(θ)
π(θ)

dθ = ∞ and
∫ θ+

θ0

I(θ)
π(θ)

dθ = ∞, (3.4)

for some θ0 ∈ (θ−, θ+). The conditions in (3.4) substantially simplify the study
of second-order admissibility of priors under the criterion of average Kullback-
Leibler divergence. In particular, Jeffreys’ prior π(θ) ∝ {I(θ)}1/2 is second-order
admissible if and only if

∫ θ0

θ−
{I(θ)} 1

2 dθ = ∞, and
∫ θ+

θ0

{I(θ)} 1
2 dθ = ∞, (3.5)

for some θ0 ∈ (θ−, θ+).

Example 1. For the one-parameter location or scale models, it is immediate
from (3.5) that Jeffreys’ prior is second-order admissible when one works with the
usual parameter spaces for these models. In particular, for the simple exponential
model with scale parameter θ, one can readily check from (3.1) and (3.3) that the
Bayes predictive density given by Jeffreys’ prior has a smaller ∆0(θ), for every
θ, than any member of F0 with d(θ) as in (2.15).

Example 2. Even beyond the one-parameter location or scale models, Jeffreys’
prior can be second-order admissible. Consider the univariate normal model with
both mean and variance equal to θ, where θ > 0. Then I(θ) = (2θ + 1)/(2θ2)
and, by (3.5), this conclusion about Jeffreys’ prior follows.

Example 3. We now give an example where Jeffreys’ prior is not second-order
admissible but another improper prior, satisfying this admissibility property, is
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available. Let f(x; θ) = θ(1 + θ)(x + θ)−2, 0 < x < 1, where θ > 0. Then
I(θ) = (1/3){θ(1 + θ)}−2 so that the second condition in (3.5) cannot hold for
any θ0 > 0. Therefore, Jeffreys’ prior is second-order inadmissible. On the other
hand, by (3.4), the prior π∗(θ) ∝ {θ(1 + θ)2}−1 is second-order admissible. Here
L = (1 + 2θ)/{θ(1 + θ)}3 and, from (3.1) and (3.3), one can check that π∗(θ)
dominates Jeffreys’ prior for every θ. At this stage, one may be concerned that
π∗(θ) does not share the well-known invariance property of Jeffreys’ prior. In the
present context, however, this poses no serious problem since a Bayes predictive
density based on any prior is invariant of the parameterization. Thus the prior
π∗(θ) under the θ−parameterization produces the same Bayes predictive density
as a transformed version of π∗(θ) would under a one-to-one reparameterization.

Remark 1. As noted in Datta et al (2000), Jeffreys’ prior is uniquely probability
matching in Examples 1 and 3, in the sense of ensuring approximate frequentist
validity of posterior quantiles of a future observation, whereas in Example 2 it is
not so. On the other hand, our findings show that Jeffreys’ prior is second-order
admissible in Examples 1 and 2 but is not in Example 3. The last example is
particularly revealing since it demonstrates that, even for scalar θ, Jeffreys’ prior
may be second-order inadmissible in spite of enjoying the probability matching
property. On the whole, these examples suggest the absence of any general rela-
tionship between probability matching and second order admissibility properties
of a prior.

Example 4. We now give an example that allows an exact analysis and enables
us to examine how close the present asymptotic results are to the exact ones.
With reference to the univariate normal model with mean θ (−∞ < θ < ∞) and
variance unity, consider the class of improper priors of the form π(θ) = exp(wθ),
where w is any real number. The average Kullback-Leibler divergence (2.5) can
be obtained exactly for the resulting Bayes predictive densities and it is not
hard to check that (2.5) is minimized, with respect to w, when w = 0, which
corresponds to Jeffreys’ prior (cf. Example 1). On the other hand, here I = 1,
L = 0 and, from (3.1) and (3.3), it is evident that ∆0(θ) is also minimized over
w at w = 0. Furthermore the conditions in (3.4) are met if and only if w = 0.
Therefore, the asymptotic results are in perfect agreement with the exact one.
In this example, if instead one considers a normal prior on θ, with specified mean
and variance, then again (3.4) is met, i.e., such a normal prior becomes second
order admissible. This too is in agreement with what one expects under an exact
analysis with a proper prior.

4. Examples for Vector Parameter

General admissibility results, like those in Ghosh and Sinha (1981), are
unknown for vector θ even in the context of point estimation. Hence ana-
logues of conditions (3.2) and (3.4) are no longer available. However, formulae
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(2.11)−(2.13) allow us to make meaningful comparisons in reasonable subclasses
of F0, considering even models that do not belong to the curved exponential
family. Illustrative examples follow.

Example 5. Consider the symmetric location-scale model f(x; θ) = θ−1
2 f0((x −

θ1)/θ2),−∞ < x < ∞, where −∞ < θ1 < ∞, θ2 > 0 and f0(·) is a density on
the real line that is symmetric about zero. Then

I11 = a11/θ
2
2, I22 = a22/θ

2
2, L112 = ξ112/θ

3
2 , (4.1)

L222 = ξ222/θ
3
2, I12 = L111 = L122 = 0,

where a11, a22, ξ112 and ξ222 are constants that do not involve θ. Let F1 be a
subclass of F0 consisting of predictive densities for which d1(θ) = 0 and d2(θ) [=
d2(θ2), say ] is free from θ1. By (2.12) and (4.1), F1 includes Bayes predictive
densities corresponding to the natural class of priors π(·) that do not involve θ1;
furthermore, for any such prior,

d2(θ2) = a−1
22 θ2{θ2ρ(θ2) + k}, (4.2)

where k = (1/2)(a−1
11 ξ112 + a−1

22 ξ222) and ρ(θ2) = π2(θ)/π(θ). For any member of
F1, by (2.11) and (4.1),

∆0(θ) =
1
2
a22θ

−2
2 {d2(θ2)}2 + d′2(θ2) − kθ−1

2 d2(θ2), (4.3)

where the prime denotes differentiation with respect to θ2. Hence following Ghosh
and Sinha (1981) as in the previous section, a predictive density in F1 is second-
order admissible in F1 if and only if the corresponding d2(θ2) satisfies the condi-
tions

∫ θ0

0

1
θ2
2

exp

{∫ θ0

θ2

b(u)a22

u2
du

}
dθ2 = ∞ and

(4.4)∫ ∞

θ0

1
θ2
2

exp

{∫ θ0

θ2

b(u)a22

u2
du

}
dθ2 = ∞,

for some θ0 > 0, where b(u) = d2(u) − a−1
22 ku.

Consider now a prior of the form π(θ) ∝ θ−w
2 , where w is any real number.

By (4.2), for such a prior d2(θ2) = a−1
22 (k − w)θ2. Then by (4.3), ∆0(θ) =

a−1
22 (k−w){(1/2)(k−w)−k+1}, which is minimized over w at w = 1. From (4.4),

it is easily seen that the resulting prior π(θ) ∝ θ−1
2 is second-order admissible in

the entire class F1. As noted in Datta et al (2000), this is also the unique prior
having the probability matching property mentioned in the last section.
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Example 6. This example demonstrates how, for vector θ, the criterion of
average Kullback-Leibler divergence can help in narrowing down the class of
probability matching priors. Consider the bivariate Cauchy model

f(x; θ)=


2πθ1θ2


1+

(
x(1)

θ1

)2

+

(
x(2)−θ3x

(1)

θ2

)2



3
2



−1

, −∞<x(1), x(2) <∞,

where x = (x(1), x(2))T , θ = (θ1, θ2, θ3)T , θ1 > 0, θ2 > 0 and −∞ < θ3 < ∞. It
can be seen here that

I11 =
5
3
θ2
1, I22 =

5
3
θ2
2, I33 =

5
3

θ2
2

θ2
1

, I12 =
5
6
θ1θ2, I13 = I23 = 0. (4.5)

Let F1 be a subclass of F0 consisting of Bayes predictive densities associated
with priors of the form

π(θ) ∝ (θw1
1 θw2

2 )−1, (4.6)

where w1 and w2 are any real numbers. By (2.13) and (4.5), we have ∆π(θ) =
(5/24)

{
3(w1 + w2 − 2)2 + (w1 − w2)2 − 12

}
, which reaches minimum when w1 =

w2 = 1.
Following Datta et al (2000), a prior of the form (4.6) ensures approximate

frequentist validity of highest posterior predictive density regions if and only
if w1 + w2 = 2. The optimal prior obtained in the last paragraph satisfies this
condition. Thus the criterion of Kullback-Leibler divergence helps in this example
to identify a unique prior among all those satisfying the matching condition.

5. Results under α-divergence

Before concluding, we briefly indicate the consequences of working with more
general α-divergence measures that cover the Kullback-Leibler divergence as the
special case α = −1, and correspond to the Hellinger or chi-squared distances
when α = 0 or 3, respectively. Following Corcuera and Giummole (1999a), the
α-divergence of f∗(x; Z) ∈ F from the true density is defined as

∫
X

f(x; θ)Kα

(
f∗(x; Z)
f(x; θ)

)
dx,

Kα(t) =




t log t, if α = 1,
− log t, if α = −1,

4
1 − α2

(1 − t(1+α)/2), if α �= 1, −1.
(5.1)
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For 1 ≤ i, j ≤ p, let m∗
ij(x; θ) = mi(x; θ)mj(x; θ) − Iij(θ), where Iij(θ) is

the (i, j)th element of the Fisher information matrix I. In order to study the
predictive densities in F under the criterion of average α-divergence, we need
a mild assumption that for every member of F , as given by (2.1), the integrals
V ∗

ij(Z) =
∫
X e1(x;Z)m∗

ij(x; θ̂)dx exist and satisfy V ∗
ij(Z) = G∗

ij(θ) + o(1), the
G∗

ij(·) (1 ≤ i, j ≤ p) being some smooth functions with functional form free
from n.

Then, under the criterion of average α-divergence, one can check that a
counterpart of Theorem 1(a) holds with ∆(θ) in the statement of Theorem 1(a)
replaced by

∆(α)(θ) = ∆(θ) +
1
4
(1 + α)IijG∗

ij(θ). (5.2)

Similarly, a counterpart of Theorem 2 holds with ∆(θ) and F0 there replaced
by ∆(α)(θ) and F (α)

0 , respectively. Here F (α)
0 is a subclass of F consisting of

predictive densities for which

e1(x;Z) = gi(Z)fi(x; θ̂) + gij(Z)fij(x; θ̂) + g∗ij(Z)m∗
ij(x; θ̂)f(x; θ̂), (5.3)

where the gi(Z), gij(Z) and g∗ij(Z) are at most of order O(1) and satisfy g∗ij(Z) =
−(1/4)(1 + α)Iij + o(1) (1 ≤ i, j ≤ p), in addition to the conditions in (2.9).
These results follow along the lines of the appendix with slightly heavier algebra,
but no assumption of curved exponentiality is needed. In proving the counterpart
of Theorem 2, one also requires a counterpart of Theorem 1(b) which is omitted
here.

For any member of F (α)
0 , from (5.2) and (5.3), it can be seen that ∆(α)(θ) =

∆0(θ) + ∆(α)
1 (θ), where ∆(α)

1 (θ) is the same for all members of F (α)
0 and ∆0(θ),

free from α, is as given by (2.11). The class F (α)
0 contains the predictive densities

constructed by Corcuera and Giummole (1999b) for curved exponential models.
Because of the last term in (5.3), this class does not in general include Bayes
predictive densities unless α = −1. However, it includes the generalized Bayes
predictive density corresponding to any smooth and positive prior. For curved
exponential models, this follows from Corcuera and Giummole (1999a). Even
otherwise, this can be shown if one starts from their equation (4), considers
an expansion for the posterior density of h =

√
n(θ − θ̂) (Ghosh and Mukerjee

(1991)) and incorporates a normalizing factor. For any such generalized Bayes
predictive density, (2.12) and (2.13) continue to hold.

Thus the key equations (2.11)−(2.13) remain unaltered as we pass to α-
divergence from the Kullback-Leibler divergence. The only point is that now
(2.12) and (2.13) correspond to generalized Bayes rather than Bayes predictive
densities. Consequently, the admissibility results presented earlier readily extend
themselves to the case of general α-divergence. Thus for scalar θ, (3.2) gives a
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characterization for second-order admissibility in F (α)
0 and hence in F . Similarly

(3.4) becomes a necessary and sufficient condition for the second-order admissi-
bility of the generalized Bayes predictive density corresponding to a prior π(·).
Since (3.4) does not involve α, this entails a robustness property for priors in
the sense that a given prior either generates second-order admissible generalized
Bayes predictive densities for all α or it fails to do so for any α, depending on
whether (3.4) holds or not.

Corcuera and Giummole (1999b) considered an even wider class of divergence
measures of the form ∫

X
f(x; θ)F

(
f∗(x; Z)
f(x; θ)

)
dx,

where F (·) is a smooth strictly convex function that vanishes at 1. As in their
paper, without loss of generality, let F ′′(1) = 1. Along the lines of the appendix,
one can again check that, under any such divergence, a counterpart of Theorem
1(a) holds with ∆(θ) there replaced by ∆(α)(θ), where α = 2F ′′′(1)+3 and ∆(α)(θ)
is as in (5.2). This is in agreement with the findings of Corcuera and Giummole
(1999b) who worked under curved exponentiality. Consequently, even with these
divergences, one can develop counterparts of Theorem 2 and the second order
admissibility results just as indicated above for α−divergences. The details are
omitted here.
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Appendix. Proofs

Proof of Theorem 1. (a) By (2.5),

H(θ) − H0(θ) = −Eθ

[∫
X

f(x; θ) log{f∗(x;Z)/f(x; θ̂)}dx

]
. (A.1)

Let the remainder term Mn in (2.1) be denoted by n−2e2(x; Z), where e2(x; Z)
is at most of order O(1). Then by (2.1) and (2.2),

∫
X e2(x; Z)dx = 0, and

f∗(x;Z)/f(x; θ̂) = 1 + n−1U1 + n−2U2, where Ui = ei(x;Z)/f(x; θ̂) (i = 1, 2).
Write h = (h1, h2, . . . , hp)T =

√
n(θ − θ̂) and note that f(x; θ) = f(x; θ̂){1 +

n−1/2himi(x; θ̂) + (1/2)n−1hihjmij(x; θ̂)} + o(n−1). Using the above together
with (2.2) and (2.3),∫

X
f(x; θ) log

{
f∗(x;Z)
f(x; θ̂)

}
dx
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= n−3/2hT V (1)(Z) +
1
2
n−2 {hihjVij(Z) − W (Z)} + o(n−2). (A.2)

Clearly, by (2.4),

Eθ{hihjVij(Z) − W (Z)} = ΨT G(2)(θ) − B(θ) + o(1). (A.3)

We next find the expectation of the first term on the right-hand side of (A.2)
via a Bayesian route. To that effect, define l(θ) = n−1∑n

i=1 log f(Xi; θ), cjr =
−{DjDrl(θ)}θ=θ̂, ajrs = {DjDrDsl(θ)}θ=θ̂ and ((cjr)) = ((cjr))−1. Consider now
the posterior density of h, given Z, under an auxiliary prior π̄(·) satisfying the
conditions of Bickel and Ghosh(1990, p.1078). Let Eπ̄{·|Z} denote expectation
with respect to this posterior density. Using an expansion for this posterior
density (see, for example, Ghosh and Mukerjee (1991)), we get

Eπ̄{hT V (1)(Z)|Z} = n− 1
2

{
π̄j(θ̂)
π̄(θ̂)

cij +
1
2
ciscjrajrs

}
Vi(Z) + o(n−1/2),

where π̄j(θ) = Dj π̄(θ). If one now calculates Eθ

[
Eπ̄{hT V (1)(Z)|Z}

]
and then

employs a shrinkage argument, popular in Bayesian asymptotics (Mukerjee and
Dey (1993)), then one gets

Eθ

{
hT V (1)(Z)

}
= n−1/2

[
1
2
IisIjrLjrsGi(θ) − Dj{IijGi(θ)}

]
+ o(n−1/2), (A.4)

recalling (2.4). Part (a) of the theorem is evident from (A.1)−(A.4).
(b) Let q̂ = q(θ̂) and Ψ̂ = Ψ(θ̂). By (2.3) and (2.6),∫

X

[
{e1(x;Z)/f(x; θ̂)} − q̂T m(1)(x; θ̂) − 1

2
Ψ̂Tm(2)(x; θ̂)

]2

f(x; θ̂)dx

=W (Z)−2q̂T V (1)(Z)−Ψ̂T V (2)(Z)+q̂TA11(θ̂)q̂+q̂TA12(θ̂)Ψ̂+
1
4
Ψ̂TA22(θ̂)Ψ̂.(A.5)

By (2.4), the definition of q(θ) and the fact that A11(θ) = I, one can check that
the right-hand side of (A.5) is Q(θ) + o(1) where Q(θ) = B(θ) − ΨT G(2)(θ) −
q(θ)T Iq(θ) + (1/4)ΨT A22(θ)Ψ. Since the left-hand side of (A.5) is nonnegative,
part (b) of Theorem 1 follows.

Proof of Theorem 2. Let Î = I(θ̂) = ((Îij)). By (2.10), equality holds in
Theorem 1(b) for every member of F0. Hence by (2.7), it is enough to show
that given any member of F , there exists one of F0 such that the two have the
same G(1)(θ). In view of (2.8)−(2.10), for any f∗(x;Z) ∈ F with the associated
Vi(Z) given by (2.3), this follows considering f0(x;Z) ∈ F0, where f0(x;Z) =
f(x; θ̂)+n−1{gi(Z)fi(x; θ̂)+(1/2)Îijfij(x; θ̂)}, with (g1(Z), g2(Z), . . . , gp(Z))T =
Î−1{V (1)(Z) − (1/2)A12(θ̂)Ψ̂, V (1)(Z)} being defined as in the beginning of sub-
section 2.2.
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